JPH06154535A - Method for purifying harmful gas - Google Patents
Method for purifying harmful gasInfo
- Publication number
- JPH06154535A JPH06154535A JP4308649A JP30864992A JPH06154535A JP H06154535 A JPH06154535 A JP H06154535A JP 4308649 A JP4308649 A JP 4308649A JP 30864992 A JP30864992 A JP 30864992A JP H06154535 A JPH06154535 A JP H06154535A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- purifying
- purifying agent
- silver
- potassium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Treating Waste Gases (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は有害ガスの浄化方法に関
し、さらに詳細には、半導体製造工程におけるCVD、
イオン注入などで用いられる水素化物ガスを含む有害ガ
スを系外に排出するに先立って効率良く浄化するための
有害ガスの浄化方法に関する。近年、半導体工業の発展
とともにアルシン、ホスフィン、シラン、ジボランおよ
びセレン化水素などの極めて毒性の強い水素化物系ガス
の使用量が増加している。これらの有害ガスはシリコン
半導体や化合物半導体の製造プロセスにおいて、原料ガ
スあるいはドーピングガスとして不可欠なものである
が、いずれも極めて毒性が高く、それぞれの許容濃度は
アルシン(AsH3 )で0.05ppm、ホスフィン
(PH3 )で0.3ppm、シラン(SiH4 )で5p
pm、ジボラン(B2 H6 )で0.1ppm、セレン化
水素(SeH2 )で0.05ppmとされている。これ
らの有害ガスが半導体製造ラインより排出される場合、
環境を汚染することを防止するための安全対策が強く要
望されている。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying harmful gases, and more particularly, CVD in semiconductor manufacturing processes,
The present invention relates to a method for purifying a harmful gas, which is used for ion implantation or the like, for efficiently purifying a harmful gas containing a hydride gas before it is discharged from the system. In recent years, with the development of the semiconductor industry, the amount of highly toxic hydride-based gases such as arsine, phosphine, silane, diborane and hydrogen selenide used has been increasing. These harmful gases are indispensable as a raw material gas or a doping gas in the manufacturing process of silicon semiconductors and compound semiconductors, but all have extremely high toxicity, and the permissible concentration of each is 0.05 ppm in arsine (AsH 3 ), Phosphine (PH 3 ) 0.3ppm, Silane (SiH 4 ) 5p
pm, diborane (B 2 H 6 ) is 0.1 ppm, and hydrogen selenide (SeH 2 ) is 0.05 ppm. When these harmful gases are emitted from the semiconductor manufacturing line,
There is a strong demand for safety measures to prevent polluting the environment.
【0002】[0002]
【従来の技術】アルシン、ホスフィンなどの有害ガスを
除去するために化学戦争においては活性炭を充填したガ
スマスクが知られており、またこの活性炭の吸着力を利
用し種々の物質を活性炭に添着して除去能力の向上を企
てる試みもおこなわれている。例えば特開昭60ー71
040号公報にはヨウ素またはヨウ素化合物と金属硫酸
塩などを活性炭に含浸させた吸着剤が開示されている。
また、本願出願人は先に二酸化マンガンおよび酸化銅を
主成分とする組成物に銀化合物を添着させた浄化剤を用
いる方法を提案した(特開平1ー254230号公
報)。2. Description of the Related Art A gas mask filled with activated carbon is known in chemical warfare to remove harmful gases such as arsine and phosphine, and various substances are impregnated on the activated carbon by utilizing the adsorption power of the activated carbon. Attempts have also been made to improve the removal capacity. For example, JP-A-60-71
Japanese Patent No. 040 discloses an adsorbent obtained by impregnating activated carbon with iodine or an iodine compound and a metal sulfate.
Further, the applicant of the present application has previously proposed a method of using a purifying agent in which a silver compound is impregnated in a composition containing manganese dioxide and copper oxide as main components (JP-A-1-254230).
【0003】[0003]
【発明が解決しようとする課題】しかしながら、活性炭
のような吸着剤は比較的低濃度のアルシン、ホスフィン
などの有害ガスを除去することは可能であるが、高濃度
で流速の大きいガス中の有害ガスに対して活性が低す
ぎ、またこれらの水素化物系ガスによって還元されたヨ
ウ素が飛散し易いという問題点がある。また、二酸化マ
ンガン、酸化銅および銀化合物を添着させた浄化剤は能
力が大きく、高濃度の水素化物ガスの除去が可能である
が、活性が高いため反応熱による発熱によって除去剤の
温度が条件によっては10℃〜20℃上昇する。特に、
ベースガスが水素を含む場合には、40℃以下のような
低温でも還元反応による発熱を生じ易く、条件によって
は温度か急激に上昇し、200℃以上のような高温に達
し、冷却設備が必要であるばかりでなく、浄化能力も大
巾に低下するという問題点のあることが判明した。However, although adsorbents such as activated carbon can remove harmful gases such as arsine and phosphine at relatively low concentrations, they are harmful to gases in high concentrations and at high flow rates. There is a problem that the activity is too low for gas and iodine reduced by these hydride-based gases is easily scattered. Further, the purifying agent impregnated with manganese dioxide, copper oxide and a silver compound has a large capacity and can remove a high concentration of hydride gas, but since the activity is high, the temperature of the removing agent is conditioned by the heat generated by the reaction heat. Depending on the temperature, the temperature rises by 10 to 20 ° C. In particular,
When the base gas contains hydrogen, heat is easily generated due to the reduction reaction even at a low temperature of 40 ° C or lower, the temperature rises rapidly depending on the conditions, reaches a high temperature of 200 ° C or higher, and cooling equipment is required. Not only that, but it was also found that there was a problem that the purification capacity was significantly reduced.
【0004】[0004]
【課題を解決しようとする手段】本発明者らはこれらの
問題を解決するべく鋭意検討を重ねた結果、有害ガスと
してアルシン、ホスフィン、シラン、ジボランおよびセ
レン化水素などの水素化物ガスを含むガスを二酸化マン
ガン、酸化銅および銀化合物を主成分とする組成物に適
当量のカリウム成分を含有させた浄化剤を用いることに
より、水素を含むガスに対しても浄化剤の還元反応によ
る異常な発熱がなく、安全で、しかも高濃度の有害成分
を極めて効率良く除去しうることを見いだし本発明に到
達した。すなわち本発明は、有害成分である水素化物ガ
スを含むガスを、二酸化マンガンおよび酸化銅を主成分
とし、かつ、カリウム成分を含有する組成物に銀化合物
を添着せしめてなる浄化剤と接触させることを特徴とす
る有害ガスの浄化方法である。As a result of intensive studies to solve these problems, the present inventors have found that a gas containing a hydride gas such as arsine, phosphine, silane, diborane and hydrogen selenide as a harmful gas. By using a purifying agent containing an appropriate amount of potassium component in a composition containing manganese dioxide, copper oxide, and a silver compound as the main components, abnormal heat generation due to the reducing reaction of the purifying agent can be performed even for gas containing hydrogen. The present invention has been accomplished by finding out that there is no problem, it is safe, and that a high concentration of harmful components can be removed very efficiently. That is, in the present invention, a gas containing a hydride gas, which is a harmful component, is contacted with a purifying agent obtained by impregnating a composition containing manganese dioxide and copper oxide as main components and a potassium component with a silver compound. Is a method for purifying harmful gas.
【0005】本発明は半導体製造プロセスから排出され
る水素、窒素、アルゴン、ヘリウムなどの排ガス中に含
まれるアルシン、ホスフィン、シラン、ジボラン、セレ
ン化水素などの水素化物ガスの除去、特に比較的濃度の
高く、水素など還元性のガスを含むような有害ガス中の
水素化物ガスの迅速な除去に適用される。The present invention removes hydride gases such as arsine, phosphine, silane, diborane and hydrogen selenide contained in exhaust gases such as hydrogen, nitrogen, argon and helium discharged from a semiconductor manufacturing process, and particularly to a relatively high concentration. It is applied to the rapid removal of hydride gas from harmful gas containing high reducing gas such as hydrogen.
【0006】本発明において、二酸化マンガンおよび酸
化銅の含有量は通常、両者を合せて50重量%以上、好
ましくは70重量%以上とされる。また、二酸化マンガ
ンに対する酸化銅の割合は重量比で、通常は1:0.2
〜1.2好ましくは1:0.3〜0.8程度とされる。
二酸化マンガンと酸化銅の混合物はそれぞれの成分を混
合することによって得ることができる。また、これらの
混合物はホプカライトとして市販もされているので容易
に入手することができる。例えば、ホプカライトとして
は二酸化マンガン60重量%、酸化銅40重量%の二元
素系が中心として市販されている。これらはマンガン−
銅に、少量のマグネシウム、アルミニウム、珪素、カリ
ウムなどが主に酸化物として含まれているものもある。
しかしながら、これらのカリウム成分の含有量はK2 O
として通常は2.0重量%以下であり、しかもこの含有
量は製造過程でコントロールが難しいので、変化が大き
く一定しない。In the present invention, the total content of manganese dioxide and copper oxide is usually 50% by weight or more, preferably 70% by weight or more. The weight ratio of copper oxide to manganese dioxide is usually 1: 0.2.
-1.2, preferably about 1: 0.3-0.8.
The mixture of manganese dioxide and copper oxide can be obtained by mixing the respective components. In addition, these mixtures are commercially available as hopcalite, so that they can be easily obtained. For example, as the hopcalite, a binary element system containing 60% by weight of manganese dioxide and 40% by weight of copper oxide is mainly commercially available. These are manganese-
Some copper contains a small amount of magnesium, aluminum, silicon, potassium, etc. mainly as an oxide.
However, the content of these potassium components is K 2 O.
Is usually 2.0% by weight or less, and this content is difficult to control in the manufacturing process, so that the change is not large and constant.
【0007】本発明において、浄化剤の1成分であるカ
リウムの形態には特に制限はなく、金属、酸化物、水酸
化物、塩のいずれでもよく、例えば酸化カリウム、水酸
化カリウム、塩化カリウム、炭酸カリウムなどが挙げら
れる。これらのうちでも一般的には酸化物(K2 O)の
形で含有されることが好ましい。カリウムの含有量はK
2 Oとして通常は2.5〜15重量%程度、好ましくは
3.5〜10重量%とされる。2.5%よりも少ない
と、特に水素を含むガスの場合には還元反応による発熱
が著しくなり、一方、15重量%よりも多いと水素化物
ガスの除去能力が低下する。In the present invention, the form of potassium which is one component of the purifying agent is not particularly limited, and may be any of metal, oxide, hydroxide and salt, such as potassium oxide, potassium hydroxide, potassium chloride, Examples include potassium carbonate. Of these, in general, it is preferable that they are contained in the form of oxide (K 2 O). The content of potassium is K
The amount of 2 O is usually about 2.5 to 15% by weight, preferably 3.5 to 10% by weight. When it is less than 2.5%, especially in the case of a gas containing hydrogen, heat generation due to the reduction reaction becomes remarkable, while when it is more than 15% by weight, the ability to remove hydride gas is lowered.
【0008】本発明において、二酸化マンガンおよび酸
化銅にカリウム成分を含有する組成物(以下Mn−Cu
−K組成物と記す)に銀化合物を添着せしめてなる浄化
剤が用いられる。銀化合物としては酸化銀(I)、酸化
銀(II)ならびに無機酸銀、有機酸銀およびハロゲン
化銀などの銀塩(I)が挙げられる。無機酸銀としては
例えば、炭酸銀、硝酸銀、亜硝酸銀、硫酸銀、亜硫酸
銀、塩素酸銀、過塩素酸銀、臭素酸銀、ヨウ素酸銀、過
ヨウ素酸銀、燐酸水素二銀、燐酸銀、ピロリン酸銀、メ
タリン酸銀、テトラフルオロホウ酸銀、ヘキサフルオロ
燐酸銀など、ハロゲン化銀としては例えば弗化銀、塩化
銀、臭化銀、ヨウ化銀、有機酸銀としては例えば酢酸
銀、シュウ酸銀などがある。これらのうちでも酸化銀
(II)、炭酸銀(I)、酸化銀(I)およびこれらの
混合物などが好ましい。In the present invention, a composition containing manganese dioxide and copper oxide containing a potassium component (hereinafter referred to as Mn-Cu).
A purifying agent obtained by impregnating a silver compound with (-K composition) is used. Examples of the silver compound include silver (I) oxide, silver (II) oxide, and silver salts (I) such as inorganic acid silver, organic acid silver and silver halide. Examples of the inorganic acid silver include silver carbonate, silver nitrate, silver nitrite, silver sulfate, silver sulfite, silver chlorate, silver perchlorate, silver bromate, silver iodate, silver periodate, disilver hydrogen phosphate, silver phosphate. , Silver pyrophosphate, silver metaphosphate, silver tetrafluoroborate, silver hexafluorophosphate, etc., as the silver halide, for example, silver fluoride, silver chloride, silver bromide, silver iodide, and as the organic acid silver, for example, silver acetate. , Silver oxalate, etc. Of these, silver (II) oxide, silver (I) carbonate, silver (I) oxide and mixtures thereof are preferable.
【0009】銀化合物を添着させるMn−Cu−K組成
物としては破砕品、押出し成型品、打錠成型などの種々
の形状のものを用いることができる。そのサイズは破砕
品であれば4〜20メッシュ程度、押出し品であれば
1.5〜4mmφ×3〜20mm程度、打錠成型品であ
れば通常は円筒状で3〜6mmφ×3〜6mm程度の大
きさのものが好ましい。しかし装置の設計条件などによ
ってその他の寸法としても何ら支障はない。銀化合物を
Mn−Cu−K組成物に添着させる方法も種々のやり方
が可能であり、湿式法を用いててもよく、また乾式法を
用いてもよい。簡便な方法としてはMn−Cu−K組成
物に粉末状の銀化合物をまぶしつける方法あるいは銀化
合物を水性スラリーとして添着する方法がある。添着さ
せる銀化合物の量は浄化剤全体に対し、Agとして通常
は、0.01〜10.0重量%とされ、好ましくは0.
2〜5重量%とされる。0.01重量%よりも少ないと
浄化能力が低下し、また、10.0重量%よりも多くな
ると経済的負担が大きくなる。浄化剤には通常は7〜3
0重量%程度の水分が含まれ、これらは空気中の相対湿
度になどに応じて変化するが、有害ガスの浄化性能には
特に影響を及ぼすものではない。As the Mn-Cu-K composition to which the silver compound is attached, various shapes such as a crushed product, an extrusion molded product and a tablet molding can be used. The size is about 4 to 20 mesh for a crushed product, about 1.5 to 4 mmφ × 3 to 20 mm for an extruded product, and usually 3 to 6 mmφ × 3 to 6 mm for a tablet molding product. The size of is preferable. However, there are no problems with other dimensions depending on the design conditions of the device. Various methods can be used for attaching the silver compound to the Mn-Cu-K composition, and a wet method or a dry method may be used. As a simple method, there is a method of sprinkling a powdery silver compound on the Mn-Cu-K composition or a method of impregnating the silver compound as an aqueous slurry. The amount of the silver compound to be attached is usually 0.01 to 10.0% by weight as Ag based on the total amount of the cleaning agent, and preferably 0.1.
It is set to 2 to 5% by weight. If it is less than 0.01% by weight, the purifying ability is lowered, and if it is more than 10.0% by weight, the economical burden becomes large. Usually 7 to 3 for purifying agents
Moisture of about 0% by weight is contained, and these change according to the relative humidity in the air and the like, but do not particularly affect the purification performance of harmful gas.
【0010】本発明において、ガス中に含まれる水素化
物ガスの濃度はその種類、ガス流量などによって異なり
一概に特定はできないが、通常は10vol%以下、好
ましくは1vol%以下である。これよりも高濃度では
反応熱が大きくなり冷却装置が必要となることがある。
また、ガスと浄化剤との接触時間は通常は0.6秒以
上、好ましくは3.0秒以上であり、これらは水素化物
ガスの濃度などとの関連で適宣設計される。浄化剤とガ
スとの接触は一般的には100℃以下とされるが、通常
は、室温の10℃〜50℃程度で操作され、特に加熱や
冷却を必要としない。ただし、接触開始後は条件によっ
て水素や水素化物ガスなど還元性ガスの濃度などに応じ
た温度上昇を示す。接触時の圧力は常圧近辺でおこなわ
れることが多いが、減圧下乃至は1kg/cm2 Gのよ
うな加圧下で操作することも可能である。In the present invention, the concentration of the hydride gas contained in the gas varies depending on its type, gas flow rate and the like and cannot be specified unconditionally, but it is usually 10 vol% or less, preferably 1 vol% or less. If the concentration is higher than this, the heat of reaction becomes large and a cooling device may be required.
The contact time between the gas and the purifying agent is usually 0.6 seconds or longer, preferably 3.0 seconds or longer, and these are appropriately designed in relation to the concentration of the hydride gas. The contact between the purifying agent and the gas is generally 100 ° C. or less, but it is usually operated at room temperature of about 10 ° C. to 50 ° C., and heating or cooling is not particularly required. However, after the contact is started, the temperature rises according to the concentration of reducing gas such as hydrogen or hydride gas depending on the conditions. The pressure at the time of contacting is often around normal pressure, but it is also possible to operate under reduced pressure or under increased pressure such as 1 kg / cm 2 G.
【0011】本発明において浄化剤は通常は有害ガスの
浄化筒内に充填され、固定床として用いられるが移動
床、流動床として用いることも可能である。浄化剤を浄
化筒などに充填したときの充填密度は通常0.4〜1.
2g/ml程度、好ましくは0.5〜1.0g/ml程
度とされる。浄化剤の充填長はガスの流量および有害ガ
スの濃度などによって異なるが、実用上通常は50〜5
00mm程度とされ、浄化筒の内径は筒内を流れるガス
の空筒線速度(LV)が10cm/sec以下程度とな
る大きさとされる。一般的にはこれらは充填層の圧力損
失、空気との接触効率および有害ガスの量などによって
定められる。In the present invention, the purifying agent is usually packed in a column for purifying harmful gas and used as a fixed bed, but it can also be used as a moving bed or a fluidized bed. When the purifying agent is filled in the purifying cylinder or the like, the packing density is usually 0.4 to 1.
The amount is about 2 g / ml, preferably about 0.5 to 1.0 g / ml. The filling length of the purifying agent varies depending on the flow rate of gas and the concentration of harmful gas, etc., but is usually 50 to 5 in practice.
The inner diameter of the purifying cylinder is set to about 100 mm and the empty cylinder linear velocity (LV) of the gas flowing in the cylinder is set to about 10 cm / sec or less. Generally, these are determined by the pressure loss of the packed bed, the contact efficiency with air and the amount of harmful gas.
【0012】[0012]
実施例1〜4 (浄化剤の調製)浄化剤の主原料として二酸化マンガン
50重量%、酸化銅(CuO)22重量%、酸化マグネ
シウム(MgO)12.5重量%、酸化アルミニウム1
2.5重量%、酸化カリウム(K2 O)2重量%で、
1.5mmφ×3〜10mmの押出し成型品である市販
のホプカライトを使用した。このホプカライト1000
gに水酸化カリウム50%水溶液を散布、含浸させた
後、ポリ容器内で酸化銀(II)10gを加えてボール
ミル架台にて回転させながら添着させた。次いで80℃
で4時間乾燥させ、カリウムをK2 Oとして、3.5〜
10重量%の範囲で含有する種々の浄化剤を調製した。 (還元開始温度の測定)得られた浄化剤のそれぞれにつ
いて、内径56mmφの充填筒に740ml充填し、外
壁に熱電対を取り付け、その上からヒーターを巻き、こ
の浄化筒内を窒素で置換した後、水素ガスを1.5L/
min(LV=1cm/sec)で流通させながら室温
(20℃)より順次加熱して昇温してゆき、発熱による
顕著な温度上昇が見られる点、すなわち還元開始温度を
調べた。Examples 1 to 4 (Preparation of Purifying Agent) Manganese dioxide 50% by weight, copper oxide (CuO) 22% by weight, magnesium oxide (MgO) 12.5% by weight, aluminum oxide 1 as main materials of the cleaning agent
2.5% by weight, 2% by weight potassium oxide (K 2 O),
Commercially available Hopcalite, which is an extrusion molded product of 1.5 mmφ × 3 to 10 mm, was used. This Hopcalite 1000
A 50% aqueous solution of potassium hydroxide was sprinkled and impregnated on g, 10 g of silver (II) oxide was added in a poly container, and the mixture was attached while rotating on a ball mill stand. 80 ° C
It is dried for 4 hours, and potassium is changed to K 2 O to 3.5-
Various purifying agents were prepared containing in the range of 10% by weight. (Measurement of reduction initiation temperature) For each of the obtained purifying agents, 740 ml was filled in a filling cylinder having an inner diameter of 56 mmφ, a thermocouple was attached to the outer wall, a heater was wound from above, and the inside of the purification cylinder was replaced with nitrogen. , Hydrogen gas 1.5L /
The temperature was gradually increased by gradually heating from room temperature (20 ° C.) while circulating at min (LV = 1 cm / sec), and a point where a remarkable temperature rise due to heat generation was observed, that is, the reduction initiation temperature was examined.
【0013】(浄化能力の測定)次に、新しいそれぞれ
の浄化剤をあらためて内径40mmφの浄化筒に126
ml充填し水素中のホスフィンの除去試験をおこなっ
た。室温20℃でホスフィン1vol%を含む水素ガス
を0.75L/min(LV=1cm/min)で流し
ながら出口ガス中のホスフィンの濃度を冷原子吸光法を
用いて測定し、ホスフィンが検出(28ppb)される
までの時間(有効処理時間)を測定した。これらの結果
を表1に示す。(Measurement of Purifying Ability) Next, each new purifying agent is newly added to a purification cylinder having an inner diameter of 40 mmφ.
The removal test of phosphine in hydrogen was carried out by filling up with ml. The concentration of phosphine in the outlet gas was measured using a cold atomic absorption method while flowing hydrogen gas containing 1 vol% of phosphine at 0.75 L / min (LV = 1 cm / min) at room temperature of 20 ° C., and phosphine was detected (28 ppb ) Was measured (effective treatment time). The results are shown in Table 1.
【0014】比較例1 水酸化カリウム水溶液を含浸させなかった他は実施例に
おけると同様にして調整した浄化剤を用い、同様にして
還元開始温度および有効処理時間を測定した。しかしな
がら、還元開始温度は低く、また、有効処理時間の測定
中に発熱によって温度が100℃を超え、さらに急激な
上昇が見られたのでテストを中止した。結果を表1に示
す。Comparative Example 1 Using a purifying agent prepared in the same manner as in Example except that the aqueous potassium hydroxide solution was not impregnated, the reduction initiation temperature and effective treatment time were measured in the same manner. However, the reduction initiation temperature was low, and the temperature exceeded 100 ° C. due to heat generation during the measurement of the effective treatment time, and a further rapid increase was observed, so the test was stopped. The results are shown in Table 1.
【0015】[0015]
【表1】 表1 K2 O含有量 還元開始温度 有効処理時間 重量% ℃ min 実施例1 3.5 55 675 実施例2 5.0 68 682 実施例3 7.0 95 655 実施例4 10.0 111 588 比較例1 2.0 28 25Table 1 K 2 O content Reduction start temperature Effective treatment time Weight% ℃ min Example 1 3.5 55 675 Example 2 5.0 5.0 68 682 Example 3 7.0 95 655 Example 4 10. 0 111 588 Comparative Example 1 2.0 28 25
【0016】実施例5〜8 (浄化剤)実施例1〜4におけると同様の浄化剤を調製
した。 (浄化能力の測定)これらの浄化剤を用いてホスフィン
の代わりにアルシンを含む水素についてアルシンの除去
能力の測定をおこなった。室温20℃でアルシン1vo
l%を含む水素ガスを0.75L/min(LV=1c
m/min)で流しながら出口ガス中のアルシンの濃度
を冷原子吸光法で測定し、アルシンが検出(25pp
b)されるまでの時間(有効処理時間)を測定した。こ
れらの結果を表2に示す。Examples 5 to 8 (Purifying agent) Purifying agents similar to those in Examples 1 to 4 were prepared. (Measurement of Purifying Ability) Using these purifying agents, the arsine removing ability of hydrogen containing arsine instead of phosphine was measured. Arsine 1 vo at room temperature 20 ° C
0.75 L / min of hydrogen gas containing 1% (LV = 1c
m / min), the concentration of arsine in the outlet gas was measured by the cold atomic absorption method, and arsine was detected (25 pp
The time (b) was measured (effective treatment time). The results are shown in Table 2.
【0017】比較例2 水酸化カリウム水溶液を含浸させなかった他は、実施例
5〜8におけると同様にして調整した浄化剤を用い、同
様にしてアルシンを含む水素ガスについて有効処理時間
を測定した。しかしながら、発熱によって温度が100
℃を超え、さらに急激な上昇が見られたのでテストを中
止した。結果を表2に示す。Comparative Example 2 Using the purifying agent prepared in the same manner as in Examples 5 to 8 except that the aqueous potassium hydroxide solution was not impregnated, the effective treatment time was similarly measured for hydrogen gas containing arsine. . However, the temperature is 100 due to the heat generation.
The test was discontinued because the temperature exceeded ℃ and a sharp rise was observed. The results are shown in Table 2.
【0018】[0018]
【表2】 表2 K2 O含有量 有効処理時間 重量% min 実施例1 3.5 880 実施例2 5.0 894 実施例3 7.0 855 実施例4 10.0 752 比較例1 2.0 45Table 2 K 2 O content Effective treatment time Weight% min Example 1 3.5 880 Example 2 5.0 894 Example 3 7.0 855 Example 4 10.0 752 Comparative Example 1 2. 0 45
【0019】実施例9〜11 (浄化剤)実施例3におけると同様のK2 Oを7.0重
量%を含む浄化剤を調製した。 (浄化能力の測定)この浄化剤を内径40mmφの浄化
筒に126ml充填し、シラン、セレン化水素またはジ
ボランを含む水素についてそれぞれ除去能力を測定し
た。室温20℃で上記の水素化物ガス1vol%を含む
水素をそれぞれ0.75L/min(LV=1cm/m
in)で流しながら出口ガス中の水素化物ガスを測定
し、各水素化物ガスが検出され始めるまでの時間(有効
処理時間)を求めた。各水素化物ガスの分析は隔膜電極
法によりシラン(検知下限5ppm)およびジボラン
(0.1ppm)を、また、セレン化水素については検
知管(光明理化学(株)製、1ppm)をそれぞれ用い
ておこなった。これらの結果を表3に示す。Examples 9 to 11 (Purifying agent) A purifying agent containing 7.0% by weight of K 2 O similar to that in Example 3 was prepared. (Measurement of Purifying Ability) 126 ml of this purifying agent was filled in a purifying cylinder having an inner diameter of 40 mmφ, and the removing ability of silane, hydrogen selenide or hydrogen containing diborane was measured. At room temperature of 20 ° C., hydrogen containing 1 vol% of the above hydride gas was 0.75 L / min (LV = 1 cm / m).
in), the hydride gas in the outlet gas was measured, and the time (effective treatment time) until each hydride gas was detected was determined. Analysis of each hydride gas was carried out by the diaphragm electrode method using silane (detection lower limit 5 ppm) and diborane (0.1 ppm), and for hydrogen selenide, using a detection tube (1 ppm, manufactured by Komei Rikagaku Co., Ltd.). It was The results are shown in Table 3.
【0020】[0020]
【表3】 表3 水素化物ガス 有効処理時間 の種類 min 実施例9 シラン 401 実施例10 セレン化水素 772 実施例11 ジボラン 413Table 3 Table 3 Kind of effective treatment time of hydride gas min Example 9 Silane 401 Example 10 Hydrogen selenide 772 Example 11 Diborane 413
【0021】[0021]
【発明の効果】本発明によれば、ガス中に含有される有
害ガスとしてアルシン、ホスフィン、シラン、ジボラン
およびセレン化水素など、特に大量に比較的高濃度の水
素化物ガスを効率良く、かつ、極めて迅速に除去するこ
とができる。しかも、還元反応による異常発熱などを生
ずることがなく、半導体製造装置からの有害ガスを安全
に処理することができる。INDUSTRIAL APPLICABILITY According to the present invention, as a harmful gas contained in a gas, a large amount of a relatively high concentration hydride gas such as arsine, phosphine, silane, diborane and hydrogen selenide is efficiently and It can be removed very quickly. Moreover, abnormal heat generation due to the reduction reaction does not occur, and the harmful gas from the semiconductor manufacturing apparatus can be safely treated.
Claims (7)
を、二酸化マンガンおよび酸化銅を主成分とし、かつ、
カリウム成分を含有する組成物に、銀化合物を添着せし
めてなる浄化剤と接触させることを特徴とする有害ガス
の浄化方法。1. A gas containing a hydride gas, which is a harmful component, containing manganese dioxide and copper oxide as main components, and
A method for purifying harmful gas, which comprises bringing a composition containing a potassium component into contact with a purifying agent obtained by impregnating a silver compound.
せた量が50重量%以上である請求項1に記載の浄化方
法。2. The purifying method according to claim 1, wherein the total amount of manganese dioxide and copper oxide in the purifying agent is 50% by weight or more.
あり、その含有量がK2 Oとして2.5〜15重量%で
ある請求項1に記載の浄化方法。3. The purifying method according to claim 1, wherein the potassium component in the purifying agent is potassium oxide, and the content thereof is 2.5 to 15% by weight as K 2 O.
0.01〜10重量%である請求項1に記載の浄化方
法。4. The purification method according to claim 1, wherein the amount of the silver compound impregnated in the purification agent is 0.01 to 10% by weight as Ag.
スである請求項1に記載の浄化方法5. The purification method according to claim 1, wherein the harmful gas is a hydrogen-based gas or a gas containing hydrogen.
ラン、ジボランおよびセレン化水素から選ばれる1種ま
たは2種以上である請求項1に記載の浄化方法。6. The purification method according to claim 1, wherein the hydride gas is one or more selected from arsine, phosphine, silane, diborane and hydrogen selenide.
温度が100℃以下である請求項に記載の浄化方法。7. The purifying method according to claim 1, wherein the contact temperature between the gas containing a hydride gas and the purifying agent is 100 ° C. or lower.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4308649A JPH06154535A (en) | 1992-11-18 | 1992-11-18 | Method for purifying harmful gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4308649A JPH06154535A (en) | 1992-11-18 | 1992-11-18 | Method for purifying harmful gas |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06154535A true JPH06154535A (en) | 1994-06-03 |
Family
ID=17983613
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4308649A Pending JPH06154535A (en) | 1992-11-18 | 1992-11-18 | Method for purifying harmful gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06154535A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010097562A (en) * | 2000-04-24 | 2001-11-08 | 하문수 | The catalyst for removing hydrocompound gas and its processing method |
JP2002102653A (en) * | 2000-09-28 | 2002-04-09 | Japan Pionics Co Ltd | Method for cleaning harmful gas and cleaning agent |
EP1205564A2 (en) | 2000-11-14 | 2002-05-15 | Japan Pionics Co., Ltd. | Method of recovering a copper and/or a manganese component from a particulate gas cleaning agent |
US6540814B2 (en) * | 1997-01-17 | 2003-04-01 | Advanced Technology Materials, Inc | Integrated ion implant scrubber system |
-
1992
- 1992-11-18 JP JP4308649A patent/JPH06154535A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6540814B2 (en) * | 1997-01-17 | 2003-04-01 | Advanced Technology Materials, Inc | Integrated ion implant scrubber system |
KR20010097562A (en) * | 2000-04-24 | 2001-11-08 | 하문수 | The catalyst for removing hydrocompound gas and its processing method |
JP2002102653A (en) * | 2000-09-28 | 2002-04-09 | Japan Pionics Co Ltd | Method for cleaning harmful gas and cleaning agent |
JP4493824B2 (en) * | 2000-09-28 | 2010-06-30 | 日本パイオニクス株式会社 | Purification method and cleaning agent for harmful gas |
EP1205564A2 (en) | 2000-11-14 | 2002-05-15 | Japan Pionics Co., Ltd. | Method of recovering a copper and/or a manganese component from a particulate gas cleaning agent |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH07308538A (en) | Cleaner for harmful gas | |
JP3716030B2 (en) | How to clean harmful gases | |
JP2000254438A (en) | Treatment, treating agent and treating device for halogen fluoride-containing waste gas | |
EP0624392B1 (en) | Process for cleaning harmful gas | |
JP3340510B2 (en) | Hazardous gas purification method | |
JPH05237324A (en) | Method for purifying harmful gas | |
JP2581642B2 (en) | Etching exhaust gas abatement agent and exhaust gas treatment method | |
JPH06154535A (en) | Method for purifying harmful gas | |
JPH10235185A (en) | Agent for purifying toxic gas and process therefor | |
JPH09234336A (en) | Purification of harmful gas | |
JP3260825B2 (en) | How to purify harmful gases | |
KR100684201B1 (en) | Method for the abatement of waste gas comprising fluorine and its adsorption column device | |
JP3701741B2 (en) | Hazardous gas purification agent | |
JPH0457368B2 (en) | ||
JP3340528B2 (en) | Hazardous gas purification method | |
JPH01254230A (en) | Gas cleaning method | |
JPS62286520A (en) | Method for purifying exhaust gas | |
JPH07275646A (en) | Harmful gas purifying agent | |
JPS62286521A (en) | Method for purifying exhaust gas | |
JP2003071290A (en) | Detoxifier for removing special gas and method for removing special gas | |
JPH06327931A (en) | Purifying method of waste gas | |
JPH08281063A (en) | Purification method of harmful gas | |
JPH10249144A (en) | Method of purifying harmful gas | |
JPH0910545A (en) | Cleaning of noxious gas | |
JPH09873A (en) | Purifying process for toxic gas |