JP6908820B2 - Formic acid treatment method and formic acid treatment equipment - Google Patents

Formic acid treatment method and formic acid treatment equipment Download PDF

Info

Publication number
JP6908820B2
JP6908820B2 JP2016230852A JP2016230852A JP6908820B2 JP 6908820 B2 JP6908820 B2 JP 6908820B2 JP 2016230852 A JP2016230852 A JP 2016230852A JP 2016230852 A JP2016230852 A JP 2016230852A JP 6908820 B2 JP6908820 B2 JP 6908820B2
Authority
JP
Japan
Prior art keywords
formic acid
treatment
activated carbon
gas
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016230852A
Other languages
Japanese (ja)
Other versions
JP2017119271A (en
Inventor
裕三 渡壁
裕三 渡壁
久治 中野
久治 中野
知之 平岡
知之 平岡
正弘 田井中
正弘 田井中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Publication of JP2017119271A publication Critical patent/JP2017119271A/en
Application granted granted Critical
Publication of JP6908820B2 publication Critical patent/JP6908820B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Gas Separation By Absorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は、ギ酸の蒸気を含むガスを、乾式処理により無害化する方法及び装置に関する。 The present invention relates to a method and an apparatus for detoxifying a gas containing formic acid vapor by a dry treatment.

ギ酸は、農業、繊維工業、有機合成化学、半導体デバイス製造業など、幅広い分野で使用されている。近年、真空リフロー半田付け装置において、半田表面の酸化物を還元するために、ギ酸を用いる手法が開発され、急速に発展しつつある。通常、真空リフロー半田付け装置の排気は、1体積%以上のギ酸を含む。しかしながら、ギ酸の蒸気は目や皮膚に対して有害であり、推奨される暴露許容濃度(TLV)は5体積ppmである。したがって、ギ酸の蒸気を含むガスは、大気に排出する前に、無害化処理される必要がある。さらに、ギ酸による配管の腐食の防止や、周辺環境の悪臭の防止には、排気中のギ酸濃度をさらに低くすること、例えば0.5体積ppm以下にすることが求められていた。 Formic acid is used in a wide range of fields such as agriculture, textile industry, synthetic organic chemistry, and semiconductor device manufacturing. In recent years, in vacuum reflow soldering equipment, a method using formic acid for reducing oxides on the solder surface has been developed and is rapidly developing. Generally, the exhaust of a vacuum reflow soldering device contains 1% by volume or more of formic acid. However, formic acid vapor is harmful to the eyes and skin, and the recommended permissible exposure concentration (TLV) is 5 volume ppm. Therefore, the gas containing formic acid vapor needs to be detoxified before being discharged to the atmosphere. Further, in order to prevent the corrosion of pipes due to formic acid and the prevention of foul odors in the surrounding environment, it has been required to further reduce the concentration of formic acid in the exhaust gas, for example, 0.5 volume ppm or less.

これまで、排気中のギ酸の蒸気の処理方法としては、バーナー中に流通させて燃焼除害する方法や、触媒存在下で加熱して熱分解処理する方法や、触媒を用いずに200℃以上に加熱して熱分解処理する方法(特許文献1)があるが、いずれも大型の装置が必要であり、小規模な事業者が真空リフロー半田付け装置を導入することの妨げとなっていた。 Until now, as a method for treating the vapor of formic acid in the exhaust, a method of circulating it in a burner for combustion aggravation, a method of heating in the presence of a catalyst for thermal decomposition treatment, and a method of performing thermal decomposition treatment at 200 ° C. or higher without using a catalyst. There is a method of thermal decomposition treatment by heating (Patent Document 1), but all of them require a large-scale device, which hinders a small-scale business operator from introducing a vacuum reflow soldering device.

また、ギ酸の蒸気の処理方法として、ギ酸の蒸気を含む排ガスを、水やアルコールに接触させてギ酸を溶解させて湿式処理する方法もある(特許文献2)が、大型の装置と廃液処理が必要であり、さらに、水溶液中のギ酸濃度が90質量%を超えると劇物に該当するため、廃液の取り扱いに制限を受ける場合もあり、やはり小規模事業者には向いていない。 Further, as a method for treating formic acid vapor, there is also a method in which exhaust gas containing formic acid vapor is brought into contact with water or alcohol to dissolve formic acid for wet treatment (Patent Document 2). Furthermore, if the concentration of formic acid in the aqueous solution exceeds 90% by mass, it is classified as a deleterious substance, and therefore the handling of waste liquid may be restricted, which is also not suitable for small businesses.

取り扱いが容易な酸性ガスの除害方法として、固体への吸着を利用する乾式処理方法が知られている。例えば、硫黄酸化物、塩化水素等の酸性ガスの乾式処理方法として、アルカリ金属やアルカリ土類金属の水酸化物が広く用いられており、コストと取り扱いの容易さから、水酸化カルシウムが主に用いられている(特許文献3)。ハロゲン系ガス及び酸性ガスを処理対象とする例としては、消石灰の造粒体からなる吸着剤(特許文献4)や、酸化性ガス及び酸性ガスを処理対象とするソーダライムとゼオライトと活性炭の混合物の造粒体からなる処理剤(特許文献5)等が挙げられる。特許文献5では、実施例と比較例においてギ酸の蒸気を処理しているがTLV以下にまでは処理していない。また、KCOを含有する活性炭を用いて、ガス中のギ酸蒸気の濃度を100ppmから10ppmまで処理している(特許文献6)。 As an easy-to-handle acid gas abatement method, a dry treatment method using adsorption to a solid is known. For example, hydroxides of alkali metals and alkaline earth metals are widely used as a dry treatment method for acidic gases such as sulfur oxides and hydrogen chloride, and calcium hydroxide is mainly used because of its cost and ease of handling. It is used (Patent Document 3). Examples of treatment targets for halogen-based gas and acid gas include an adsorbent made of granulated material of slaked lime (Patent Document 4), and a mixture of soda lime, zeolite and activated carbon for treatment of oxidizing gas and acid gas. Examples thereof include a treatment agent made of the granulated material (Patent Document 5). In Patent Document 5, formic acid vapor is treated in Examples and Comparative Examples, but not below TLV. Further, the concentration of formic acid vapor in the gas is treated from 100 ppm to 10 ppm by using activated carbon containing K 2 CO 3 (Patent Document 6).

乾式処理で使用する固体材料は、ガス中に含まれる酸性ガスを、物理吸着又は化学吸着により固定して、ガス中から除去する。物理吸着は、酸性ガスが固体材料にファンデルワールス力により吸着されている状態で、その結合は比較的弱く、温度や圧力の制御で可逆的に吸着・脱離が生じる。化学吸着は、酸性ガスが固体材料と化学反応にて吸着されている状態で、その結合は強固で、一旦吸着したガスを脱離することは困難である。 For the solid material used in the dry treatment, the acid gas contained in the gas is fixed by physical adsorption or chemical adsorption and removed from the gas. Physical adsorption is a state in which acid gas is adsorbed on a solid material by van der Waals force, and the bond is relatively weak, and adsorption / desorption occurs reversibly by controlling temperature and pressure. Chemisorption is a state in which an acid gas is adsorbed by a chemical reaction with a solid material, and the bond is strong, and it is difficult to desorb the once adsorbed gas.

特開2007−125578号公報JP-A-2007-125578 特開2001−244618号公報Japanese Unexamined Patent Publication No. 2001-244618 特開2002−029738号公報Japanese Unexamined Patent Publication No. 2002-029738 特開2005−177576号公報Japanese Unexamined Patent Publication No. 2005-177576 特開2004−181300号公報Japanese Unexamined Patent Publication No. 2004-181300 特開平9−86914号公報Japanese Unexamined Patent Publication No. 9-86914

しかしながら、本発明者らが、様々な既存の処理剤を検討したところ、排気ガス中のギ酸の処理量が十分でない場合や、排気ガス中のギ酸濃度を0.5体積ppm以下に低減することが難しいという問題点があった。 However, as a result of examining various existing treatment agents, the present inventors have found that the amount of formic acid treated in the exhaust gas is not sufficient, or the concentration of formic acid in the exhaust gas is reduced to 0.5 volume ppm or less. There was a problem that it was difficult.

特許文献3と4に記載のような、水酸化カルシウムのみを排気ガスの処理剤に用いた場合、濃度数体積%の高濃度のギ酸を含有するガスを流通させると、十分にギ酸を吸着せず、吸着材をすぐに破過してしまうという現象が見られた。 When only calcium hydroxide is used as an exhaust gas treatment agent as described in Patent Documents 3 and 4, formic acid is sufficiently adsorbed when a gas containing a high concentration of formic acid having a concentration of several volume% is circulated. However, the phenomenon that the adsorbent was immediately broken was observed.

さらに、特許文献5に記載のような、活性炭とソーダライムを組み合わせた処理剤を用いた場合、高濃度のギ酸を含有するガスを流通させると、ある程度ギ酸を吸着することができたが、処理後の排気ガス中のギ酸濃度は、0.5体積ppmを超えてしまった。 Further, when a treatment agent containing a combination of activated carbon and soda lime as described in Patent Document 5 was used, formic acid could be adsorbed to some extent when a gas containing a high concentration of formic acid was circulated. The concentration of formic acid in the exhaust gas after that exceeded 0.5 volume ppm.

本発明は、ギ酸の蒸気を含むガスを通しても、従来の処理剤に比べて大量にギ酸を処理できる上に、処理後のギ酸濃度を0.5体積ppm以下まで低減可能なギ酸の乾式処理方法を提供することを目的とする。 The present invention is a dry treatment method for formic acid, which can treat a large amount of formic acid as compared with a conventional treatment agent even through a gas containing vapor of formic acid, and can reduce the concentration of formic acid after treatment to 0.5 volume ppm or less. The purpose is to provide.

本発明者らは上記の課題を解決すべく鋭意研究を重ねた結果、ギ酸の蒸気を含むガスを、炭素質吸着剤と水酸化カルシウムを併用する処理剤で一次処理をした後、多孔質吸着剤を用いて二次処理をすることにより、処理剤の単位体積あたりの処理量を増やすことができ、さらに、ギ酸濃度を0.5体積ppm以下までギ酸を除去できることを見出し、本発明を完成させるに至った。 As a result of intensive research to solve the above problems, the present inventors first treated the gas containing formic acid vapor with a treatment agent using a carbonaceous adsorbent and calcium hydroxide in combination, and then subjected to porous adsorption. The present invention was completed by finding that the amount of treatment per unit volume of the treatment agent can be increased and formic acid can be removed to a formic acid concentration of 0.5 volume ppm or less by performing the secondary treatment using the agent. I came to let you.

すなわち、本発明は、ギ酸を含むガスから、ギ酸を除去する処理方法であって、前記ガスに含まれるギ酸を、炭素質吸着剤と水酸化カルシウムを含む第一処理剤を用いて処理する第一処理工程と、前記第一処理工程後のガスを、さらに多孔質吸着剤を用いて処理する第二処理工程と、を有するギ酸の処理方法を提供する。 That is, the present invention is a treatment method for removing formic acid from a gas containing formic acid, wherein the formic acid contained in the gas is treated with a first treatment agent containing a carbonaceous adsorbent and calcium hydroxide. Provided is a method for treating formic acid, which comprises one treatment step and a second treatment step of further treating the gas after the first treatment step with a porous adsorbent.

本発明により、ギ酸の蒸気を含むガスを通しても、従来の処理剤に比べて大量にギ酸を処理できる上に、ギ酸濃度を0.5体積ppm以下まで低減可能なギ酸の乾式処理方法を提供することができる。 INDUSTRIAL APPLICABILITY The present invention provides a dry treatment method for formic acid, which can treat a large amount of formic acid as compared with a conventional treatment agent and can reduce the concentration of formic acid to 0.5 volume ppm or less even through a gas containing vapor of formic acid. be able to.

本発明に係るギ酸処理装置1を示す図である。It is a figure which shows the formic acid processing apparatus 1 which concerns on this invention.

以下、本発明の実施の形態を図に基づいて説明する。図1は、本発明に係るギ酸処理装置11を示す図である。ギ酸処理装置11は、ギ酸使用装置17からの排気ガスを処理する第一処理部13と、第一処理部13で処理されたガスをさらに処理する第二処理部15とを有する。第一処理部13と第二処理部15はそれぞれガス入口及びガス出口を有する処理剤充填容器からなる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a formic acid treatment apparatus 11 according to the present invention. The formic acid treatment device 11 has a first treatment unit 13 that treats the exhaust gas from the formic acid-using device 17, and a second treatment unit 15 that further treats the gas treated by the first treatment unit 13. The first treatment unit 13 and the second treatment unit 15 are composed of a treatment agent-filled container having a gas inlet and a gas outlet, respectively.

なお、ギ酸処理装置11が処理する排ガスに含まれるギ酸濃度は特に限定されないが、通常は少なくともTLVである5体積ppmを超えている。また、ギ酸処理装置11は、ギ酸濃度が1体積%以上のガスにも対処可能である。一方で、ギ酸処理装置11が処理する排ガスに含まれるギ酸濃度は、通常は10体積%以下と考えられる。ただし、本発明の方法によれば、上限は特に限定されず、実用的には20体積%程度でもよい。
ギ酸処理装置11が処理する排ガスは、100%のギ酸蒸気ではなく、所定濃度のギ酸を含むガスである。排ガスを構成するギ酸以外のガスとしては、空気だけでなく、窒素ガスやアルゴンガス、ネオンガス、ヘリウムガスなどの不活性ガスや、水素ガスや一酸化炭素ガスなどの還元性ガスや、それらが混合されたものが考えられる。
The concentration of formic acid contained in the exhaust gas treated by the formic acid treatment apparatus 11 is not particularly limited, but usually exceeds at least 5 volume ppm, which is TLV. Further, the formic acid treatment apparatus 11 can deal with a gas having a formic acid concentration of 1% by volume or more. On the other hand, the concentration of formic acid contained in the exhaust gas treated by the formic acid treatment apparatus 11 is usually considered to be 10% by volume or less. However, according to the method of the present invention, the upper limit is not particularly limited, and practically, it may be about 20% by volume.
The exhaust gas treated by the formic acid treatment apparatus 11 is not 100% formic acid vapor but a gas containing a predetermined concentration of formic acid. The gases other than formic acid that make up the exhaust gas are not only air, but also inert gases such as nitrogen gas, argon gas, neon gas, and helium gas, reducing gases such as hydrogen gas and carbon monoxide gas, and a mixture thereof. It is possible that it was done.

第一処理部13では、排気ガスが第一処理剤と接触し、排気ガス中のギ酸が第一処理剤により除去される。例えば、第一処理部13は、内部に第一処理剤が充填された管状反応器などである。なお、第一処理部13内にガスを均一にするような攪拌羽根や邪魔板が設けられていてもよい。 In the first treatment unit 13, the exhaust gas comes into contact with the first treatment agent, and formic acid in the exhaust gas is removed by the first treatment agent. For example, the first treatment unit 13 is a tubular reactor or the like in which the first treatment agent is filled. In addition, a stirring blade or a baffle plate may be provided in the first processing unit 13 to make the gas uniform.

第一処理部と第二処理部は、特に加熱する必要はない。また、第一処理部と第二処理部では、導入される排気ガスの温度が0〜100℃であることが好ましく、通常は常温付近である。 The first processing unit and the second processing unit do not need to be particularly heated. Further, in the first treatment section and the second treatment section, the temperature of the exhaust gas introduced is preferably 0 to 100 ° C., and is usually around room temperature.

第一処理剤は、炭素質吸着剤と水酸化カルシウムとを含む。炭素質吸着剤としては、多孔質な炭素材料であれば特に限定されないが、そのBET比表面積が500m/g以上であることが好ましく、1000m/g以上であることがより好ましく、1500m/gであることがさらに好ましい。例えば、炭素質吸着剤としては、活性炭を用いることができる。なお、活性炭としては、金属成分を含む活性炭、いわゆる金属添着活性炭を用いることができ、例えば、酸化銅及び酸化亜鉛を添着させた活性炭を用いることができる。金属添着活性炭は、活性炭表面に金属又はその化合物が付着しており、活性炭に対する金属の濃度は、金属換算で1〜10質量%程度である。 The first treatment agent contains a carbonaceous adsorbent and calcium hydroxide. The carbonaceous adsorbent is not particularly limited as long as it is a porous carbon material, but its BET specific surface area is preferably 500 m 2 / g or more, more preferably 1000 m 2 / g or more, and 1500 m 2 It is more preferably / g. For example, activated carbon can be used as the carbonaceous adsorbent. As the activated carbon, an activated carbon containing a metal component, a so-called metal-impregnated activated carbon, can be used. For example, an activated carbon impregnated with copper oxide and zinc oxide can be used. The metal-impregnated activated carbon has a metal or a compound thereof attached to the surface of the activated carbon, and the concentration of the metal with respect to the activated carbon is about 1 to 10% by mass in terms of metal.

第一処理剤は、水酸化カルシウムを含む材料として、ソーダライムを用いることが好ましい。ソーダライムは、ソーダ石灰とも呼ばれ、水酸化カルシウムを主成分とし、アルカリ金属水酸化物と水分を含む材料である。ソーダライムは、水酸化カルシウムを50質量%以上含むことが好ましく、70質量%以上含むことがより好ましい。ソーダライムとしては、粒子径100μm〜5mmで、比表面積1〜100m/g程度の粉状または粒状のものを使用できる。 As the first treatment agent, it is preferable to use soda lime as a material containing calcium hydroxide. Soda lime, also called soda lime, is a material containing calcium hydroxide as a main component, alkali metal hydroxide and water. The soda lime preferably contains 50% by mass or more of calcium hydroxide, and more preferably 70% by mass or more. As the soda lime, powdery or granular soda lime having a particle size of 100 μm to 5 mm and a specific surface area of about 1 to 100 m 2 / g can be used.

第一処理剤は、水酸化カルシウムと炭素質吸着剤の両方を含めば、形態は特に限定されず、水酸化カルシウムと炭素質吸着剤の混合品を用いることができる。第一処理剤に含まれる水酸化カルシウムと炭素質吸着剤の割合は、質量比で、水酸化カルシウム:炭素質吸着剤=1:0.1〜0.5であることが好ましく、1:0.2〜0.4であることがより好ましい。 The form of the first treatment agent is not particularly limited as long as it contains both calcium hydroxide and a carbonaceous adsorbent, and a mixed product of calcium hydroxide and a carbonaceous adsorbent can be used. The ratio of calcium hydroxide to carbonaceous adsorbent contained in the first treatment agent is preferably calcium hydroxide: carbonaceous adsorbent = 1: 0.1 to 0.5 in terms of mass ratio, preferably 1: 0. .2 to 0.4 is more preferable.

第一処理工程では、水酸化カルシウムと炭素質吸着剤を併用することで、水酸化カルシウムと炭素質吸着剤をそれぞれ単独で用いるよりも、大量のギ酸を処理できる。水酸化カルシウムは、ギ酸と反応し、ギ酸カルシウムを生成することでギ酸を処理剤に固定することができるが、その反応速度が遅いため、通常の排気ガスの滞留時間では、一部の水酸化カルシウムしか有効に使用できなかった。さらに、炭素質吸着剤は、物理吸着によりガス状のギ酸を細孔に保持できるが、その単位体積あたりの吸着量は、ギ酸カルシウムとして固定できる水酸化カルシウムには及ばない。水酸化カルシウムと炭素質吸着剤を併用することで、まずは吸着速度の速い炭素質吸着剤がギ酸を吸着し、その後、炭素質吸着剤から徐々に放出されるギ酸を水酸化カルシウムが固定するため、大量のギ酸の吸着が可能となったと考えられる。 In the first treatment step, by using calcium hydroxide and a carbon adsorbent in combination, a large amount of formic acid can be treated as compared with using calcium hydroxide and a carbon adsorbent alone. Calcium hydroxide reacts with formic acid to generate calcium formate, which can fix formic acid to the treatment agent. Only calcium could be used effectively. Further, the carbonaceous adsorbent can retain gaseous formic acid in the pores by physical adsorption, but the amount of adsorption per unit volume is less than that of calcium hydroxide which can be fixed as calcium formate. By using calcium hydroxide and a carbonaceous adsorbent together, the carbonic acid adsorbent with a high adsorption rate first adsorbs formic acid, and then calcium hydroxide fixes the formic acid gradually released from the carbonic acid adsorbent. It is considered that a large amount of formic acid can be adsorbed.

また、水酸化カルシウムは、ギ酸を化学吸着してギ酸カルシウムとして固定するため、使用後の処理剤を大気中においてもギ酸を放出せず、処理剤の交換作業中に使用後の処理剤からギ酸が漏出することがない。さらに、水酸化カルシウムは吸湿しても吸着能力が衰えないため、入口ガスに水分が含まれていても、環境中の水分を吸湿しても問題を生じない。 In addition, since calcium hydroxide chemically adsorbs formic acid and fixes it as calcium formate, it does not release formic acid even in the air after use, and formic acid is removed from the used treatment agent during the treatment agent replacement work. Does not leak. Further, since calcium hydroxide does not deteriorate its adsorption capacity even if it absorbs moisture, there is no problem even if the inlet gas contains moisture or if it absorbs moisture in the environment.

第二処理部15では、第一処理部13の出口ガスが多孔質吸着剤と接触し、出口ガス中のギ酸が多孔質吸着剤により除去されるようになっている。例えば、第二処理部15は、内部に多孔質吸着剤が充填された管状反応器などである。なお、第二処理部15内にガスの組成を均一にするような攪拌羽根や邪魔板が設けられていてもよい。 In the second treatment unit 15, the outlet gas of the first treatment unit 13 comes into contact with the porous adsorbent, and formic acid in the outlet gas is removed by the porous adsorbent. For example, the second processing unit 15 is a tubular reactor or the like filled with a porous adsorbent. In addition, a stirring blade or a baffle plate may be provided in the second processing unit 15 so as to make the composition of the gas uniform.

多孔質吸着剤は、ギ酸を物理吸着可能な、比表面積の高い多孔質材料であれば特に限定はされないが、炭素質吸着剤や、無機系吸着剤を用いることができ、具体的には、活性炭やゼオライト、シリカゲルを使用することができる。 The porous adsorbent is not particularly limited as long as it is a porous material capable of physically adsorbing formic acid and having a high specific surface area, but a carbonic adsorbent or an inorganic adsorbent can be used. Activated carbon, zeolite, and silica gel can be used.

多孔質吸着剤として使用できるゼオライト、シリカゲルとしては、そのBET比表面積が100m/g以上であることが好ましく、200m/g以上であることがより好ましく、300m/g以上であることがさらに好ましい。例えば、ゼオライトとしては、A型、B型、X型、Y型などの各種の構造のゼオライトを用いることができる。なお、ゼオライトを使用する場合、ゼオライトにpH指示薬を添加してもよい。ギ酸の吸着に伴うpH指示薬の変色により、ゼオライトのpHを目視により確認でき、交換時期を確認することができる。 The zeolite and silica gel that can be used as the porous adsorbent preferably have a BET specific surface area of 100 m 2 / g or more, more preferably 200 m 2 / g or more, and more preferably 300 m 2 / g or more. More preferred. For example, as the zeolite, zeolite having various structures such as A type, B type, X type, and Y type can be used. When zeolite is used, a pH indicator may be added to the zeolite. The pH of the zeolite can be visually confirmed and the replacement time can be confirmed by the discoloration of the pH indicator due to the adsorption of formic acid.

多孔質吸着剤として用いられる活性炭は、そのBET比表面積が500m/g以上であることが好ましく、1000m/g以上であることがより好ましく、1500m/gであることがさらに好ましい。なお、活性炭としては、酸性ガスであるギ酸を吸着しやすいように、金属成分を添着させた活性炭、例えば、酸化銅及び酸化亜鉛を添着させた活性炭を用いることができる。金属添着活性炭は、活性炭表面に金属又はその化合物が付着しており、活性炭に対する金属の濃度は、金属換算で1〜10質量%程度である。 The activated carbon used as the porous adsorbent preferably has a BET specific surface area of 500 m 2 / g or more, more preferably 1000 m 2 / g or more, and further preferably 1500 m 2 / g. As the activated carbon, an activated carbon impregnated with a metal component, for example, an activated carbon impregnated with copper oxide and zinc oxide can be used so as to easily adsorb formic acid, which is an acid gas. The metal-impregnated activated carbon has a metal or a compound thereof attached to the surface of the activated carbon, and the concentration of the metal with respect to the activated carbon is about 1 to 10% by mass in terms of metal.

第二処理部15は、ギ酸の濃度が低濃度でも高速に吸着可能な物理吸着を利用してギ酸を処理するため、ギ酸を0.5体積ppm以下にまで低減することができる。また、第一処理部13の出口ガス中のギ酸濃度は、ppmレベルにまで低下しているため、第二処理部15でギ酸に由来した一酸化炭素が生成しても、非常に少ない量となり特に問題を生じない。また、第二処理部15の多孔質吸着剤は少量のギ酸を吸着すればよく、吸着能力を長期間にわたって維持することができる。 Since the second treatment unit 15 treats formic acid by utilizing physical adsorption capable of adsorbing formic acid at a high speed even if the concentration of formic acid is low, the formic acid can be reduced to 0.5 volume ppm or less. Further, since the concentration of formic acid in the outlet gas of the first treatment unit 13 is lowered to the ppm level, even if carbon monoxide derived from formic acid is generated in the second treatment unit 15, the amount is very small. No particular problem occurs. Further, the porous adsorbent of the second treatment unit 15 only needs to adsorb a small amount of formic acid, and the adsorbing ability can be maintained for a long period of time.

なお、第一処理部13で用いる第一処理剤と、第二処理部15で用いる多孔質吸着剤のいずれについても、その形状は特に限定されず、粉末状でも粒状でも造粒されたペレット状でもよい。 The shape of both the first treatment agent used in the first treatment unit 13 and the porous adsorbent used in the second treatment unit 15 is not particularly limited, and the shape is not particularly limited, and the pellet form is granulated in either powder or granular form. It may be.

また、ギ酸処理装置11は、ギ酸の蒸気を含むガスを乾式で処理するため、燃焼除害や触媒加熱除害で必要な熱源が不要であり、省エネルギーであるとともに、装置を小型化することが可能である。また、使用している処理剤は、一般的に使用されている安価な材料であり、高価な貴金属系触媒等を使用する必要がなく、ギ酸処理装置11が安価であるし、ランニングコストも安価である。 Further, since the formic acid treatment apparatus 11 processes the gas containing the vapor of formic acid in a dry manner, it does not require a heat source required for combustion abatement or catalyst heating abatement, which saves energy and makes the apparatus smaller. It is possible. Further, the treatment agent used is an inexpensive material that is generally used, it is not necessary to use an expensive precious metal catalyst or the like, the formic acid treatment apparatus 11 is inexpensive, and the running cost is also low. Is.

なお、第一処理部13と第二処理部15は、図1では装置内に一つしか設けられていないが、それぞれ複数を設けてもよい。複数ある場合、複数に同時にガスを流通してもよく、一方を交換する場合にも他方にガスを流通させることで、処理を中断しないで済む。 Although only one first processing unit 13 and one second processing unit 15 are provided in the apparatus in FIG. 1, a plurality of each may be provided. When there are a plurality of gas, the gas may be circulated to the plurality at the same time, and even when one is exchanged, the gas is circulated to the other so that the processing is not interrupted.

ギ酸使用装置17は、ギ酸を何らかの処理で使用し、排気中にギ酸を含む装置であれば特に限定されないが、半田表面の酸化物を還元するためのガスとしてギ酸を用いる真空リフロー半田付け装置であることが好ましい。真空リフロー半田付け装置で使用するガスとしては、窒素ガスやアルゴンガス、ネオンガス、ヘリウムガスなどの不活性ガスや、水素ガスや一酸化炭素ガスなどの還元性ガスで希釈されたギ酸を使用することができる。さらに、ガス中にはギ酸以外に、酢酸、プロピオン酸、酪酸などのカルボン酸、メタノール、エタノールなどのアルコールを含んでもよい。 The formic acid-using device 17 is not particularly limited as long as it is a device that uses formic acid for some treatment and contains formic acid in the exhaust gas, but is a vacuum reflow soldering device that uses formic acid as a gas for reducing the oxide on the solder surface. It is preferable to have. As the gas used in the vacuum reflow soldering device, use an inert gas such as nitrogen gas, argon gas, neon gas, or helium gas, or formic acid diluted with a reducing gas such as hydrogen gas or carbon monoxide gas. Can be done. Further, in addition to formic acid, the gas may contain carboxylic acids such as acetic acid, propionic acid and butyric acid, and alcohols such as methanol and ethanol.

ギ酸処理装置11は、ギ酸使用装置17の排ガス以外にも、副生物などとして目的外に生成したギ酸が混入してしまったガスからギ酸を除去することや、何らかの目的に使用するガスにギ酸が混入してしまった場合にそのガスからギ酸を除去することにも使用できる。 In addition to the exhaust gas of the formic acid-using device 17, the formic acid treatment device 11 removes formic acid from a gas in which formic acid generated unintendedly as a by-product or the like is mixed, or formic acid is added to the gas used for some purpose. It can also be used to remove formic acid from the gas if it gets mixed.

以下、参考例と実施例により本発明をさらに詳細に説明するが、本発明は以下の実施例によってその範囲を限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Reference Examples and Examples, but the scope of the present invention is not limited to the following Examples.

本発明者らは、まず一般的な処理剤のギ酸吸着能を調べるため、参考例1〜11を行った。 First, the present inventors performed Reference Examples 1 to 11 in order to investigate the formic acid adsorption ability of a general treatment agent.

[参考例1〜6]
外径1インチのステンレス鋼管に、充填高200mmで、処理剤を充填した。そこに、窒素ガスで希釈したギ酸濃度5体積%の処理ガスを1L/minの速度で流通させた。出口ガスのギ酸濃度を監視し、5体積ppmを超えた時点で処理を終了し、処理開始から処理終了までの処理時間を測定し、ギ酸の処理量を計算した。その結果を表1に示す。
[Reference Examples 1 to 6]
A stainless steel pipe having an outer diameter of 1 inch was filled with a treatment agent at a filling height of 200 mm. A treatment gas having a formic acid concentration of 5% by volume diluted with nitrogen gas was circulated there at a rate of 1 L / min. The formic acid concentration in the outlet gas was monitored, the treatment was terminated when the volume exceeded 5 volume ppm, the treatment time from the start of the treatment to the end of the treatment was measured, and the amount of formic acid treated was calculated. The results are shown in Table 1.

ゼオライトA:X型、カチオン=Ca、形状=1.5mmΦ、ペレット状
吸湿ゼオライトA:水分を25質量%添加したゼオライトA
ソーダライム:水酸化カルシウム79質量%、水酸化カリウム2質量%、水酸化ナトリウム質量1%、その他水分)
乾燥ソーダライム:前述のソーダライムを乾燥し、水分量を1質量%以下にしたもの
活性炭A:粒状活性炭、破砕状、粒径=8〜24メッシュ(2.36mm〜0.7mm)
活性炭入りソーダライム:粉末活性炭を20質量%含むソーダライム、ペレット状
Zeolite A: X type, cation = Ca, shape = 1.5 mmΦ, pellet-shaped moisture-absorbing zeolite A: Zeolite A with 25% by mass of water added
Soda lime: 79% by mass of calcium hydroxide, 2% by mass of potassium hydroxide, 1% by mass of sodium hydroxide, other water)
Dried soda lime: The above-mentioned soda lime is dried to reduce the water content to 1% by mass or less. Activated carbon A: Granular activated carbon, crushed, particle size = 8 to 24 mesh (2.36 mm to 0.7 mm)
Soda lime with activated carbon: Soda lime containing 20% by mass of powdered activated carbon, pelletized

Figure 0006908820
Figure 0006908820

処理剤にゼオライトを用いた参考例1では、ある程度のギ酸の処理能力を発揮した。また、出口ガスの一酸化炭素は、暴露許容濃度の25体積ppm未満であった。しかし、真空リフロー半田付け装置の排ガスに水分が含まれる場合や、大気中の水分を吸湿することを想定し、吸湿ゼオライトAを用いた参考例2では、ほとんどギ酸を処理できなかった。以上のことから、ゼオライト単独をギ酸処理剤として用いる場合は、水分に弱く、真空リフロー半田付け装置の排気ガスを処理するという用途には向いていないと考えられる。 In Reference Example 1 in which zeolite was used as the treatment agent, a certain degree of formic acid treatment ability was exhibited. The carbon monoxide in the outlet gas was less than the permissible exposure concentration of 25 parts by volume ppm. However, assuming that the exhaust gas of the vacuum reflow soldering apparatus contains moisture or absorbs moisture in the atmosphere, in Reference Example 2 using the hygroscopic zeolite A, formic acid could hardly be treated. From the above, it is considered that when zeolite alone is used as a formic acid treatment agent, it is vulnerable to moisture and is not suitable for the purpose of treating the exhaust gas of a vacuum reflow soldering device.

ソーダライムを用いた参考例3では、期待したほどのギ酸の処理能力が得られなかった。処理後の処理剤を分析したところ、ギ酸カルシウムが生成していたが、水酸化カルシウムも残存していた。一方で、ソーダライムを乾燥して用いた参考例4では、ほとんどギ酸を処理できず、ソーダライムは乾燥に弱いことが分かった。ガスを流通させる場合に、ソーダライム中の水分が蒸発してソーダライムが乾燥してしまう場合も考えられるため、ソーダライム単独を用いる場合は、乾燥により処理ができなくなってしまう場合も考えられる。 In Reference Example 3 using soda lime, the expected formic acid processing capacity was not obtained. Analysis of the treatment agent after the treatment revealed that calcium formate was produced, but calcium hydroxide also remained. On the other hand, in Reference Example 4 in which soda lime was dried and used, formic acid could hardly be treated, and it was found that soda lime was vulnerable to drying. When the gas is circulated, the water content in the soda lime may evaporate and the soda lime may be dried. Therefore, when the soda lime alone is used, the treatment may not be possible due to the drying.

活性炭を用いた参考例5では、ゼオライトやソーダライムに比べても多量のギ酸を処理できたが、出口ガスに25体積ppm以上の一酸化炭素が検出された。これは、活性炭を構成するカーボンによるギ酸の還元や、活性炭中に微量に含まれる金属不純物の触媒効果によりギ酸の分解(例えば、HCOOH→CO+HOなど)により、一酸化炭素が生成したと考えられる。また、活性炭は物理吸着によりギ酸を吸着しているため、環境の変化によりギ酸を放出する恐れがあり、気温の変化や処理剤の交換時にギ酸を漏出してしまう恐れがあるという問題点がある。したがって、第一処理部として活性炭を使用すると、第二処理部にて一酸化炭素の処理も行う必要がある上に、活性炭が比較的早く破過してしまう為に頻繁に交換する必要が生じてしまう。 In Reference Example 5 using activated carbon, a larger amount of formic acid could be treated than with zeolite or soda lime, but carbon monoxide of 25% by volume or more was detected in the outlet gas. It is considered that carbon monoxide was generated by the reduction of formic acid by the carbon constituting the activated carbon and the decomposition of formic acid (for example, HCOOH → CO + H 2 O) by the catalytic effect of a trace amount of metal impurities contained in the activated carbon. Be done. In addition, since activated carbon adsorbs formic acid by physical adsorption, there is a problem that formic acid may be released due to changes in the environment, and formic acid may leak out when the temperature changes or the treatment agent is replaced. .. Therefore, when activated carbon is used as the first treatment section, it is necessary to treat carbon monoxide in the second treatment section, and the activated carbon breaks down relatively quickly, so it is necessary to replace it frequently. It ends up.

活性炭入りソーダライムを用いた参考例6では、同じ体積の参考例1〜5に比べて、大量のギ酸を処理できた。しかしながら、出口ガスに0.5〜4体積ppmのギ酸が残存し、ギ酸濃度0.5体積ppm未満の出口ガスを得ることが難しかった。更なるギ酸濃度の低減を目指すため、二段目の処理方法を模索することとした。 In Reference Example 6 using soda lime containing activated carbon, a large amount of formic acid could be treated as compared with Reference Examples 1 to 5 having the same volume. However, 0.5 to 4 parts by volume of formic acid remained in the outlet gas, and it was difficult to obtain an outlet gas having a formic acid concentration of less than 0.5 parts by volume. In order to further reduce the formic acid concentration, we decided to search for a second-stage treatment method.

[参考例7〜11]
外径1/2インチのステンレス鋼管に、充填高40mmで、処理剤を入れた。そこに、窒素ガスで希釈したギ酸濃度0.2体積%の処理ガスを10L/minの速度で流通させた。出口ガスのギ酸濃度を監視し、5体積ppmを超えた時点で処理を終了し、処理開始から処理終了までの処理時間を測定し、ギ酸の処理量を計算した。その結果を表2に示す。
[Reference Examples 7 to 11]
A treatment agent was placed in a stainless steel pipe having an outer diameter of 1/2 inch with a filling height of 40 mm. A treatment gas having a formic acid concentration of 0.2% by volume diluted with nitrogen gas was circulated there at a rate of 10 L / min. The formic acid concentration in the outlet gas was monitored, the treatment was terminated when the volume exceeded 5 volume ppm, the treatment time from the start of the treatment to the end of the treatment was measured, and the amount of formic acid treated was calculated. The results are shown in Table 2.

ゼオライトA:X型、カチオン=Ca、形状=1.5mmΦ、ペレット状
ゼオライトB:X型、カチオン=Na、形状=1.6mmΦ、ペレット状
ゼオライトC:ゼオライトBに対して、pH指示薬(ブロモクレゾールグリーン)を加えたもの。
活性炭A:粒状活性炭、破砕状、粒径=8〜24メッシュ(2.36mm〜0.7mm)
吸湿活性炭:上記活性炭Aに水分を20質量%添加したもの。
Zeolite A: X type, cation = Ca, shape = 1.5 mmΦ, pellet form Zeolite B: X type, cation = Na, shape = 1.6 mmΦ, pellet form Zeolite C: pH indicator (bromocresol) for zeolite B Green) is added.
Activated carbon A: Granular activated carbon, crushed, particle size = 8 to 24 mesh (2.36 mm to 0.7 mm)
Moisture-absorbing activated carbon: 20% by mass of water added to the above activated carbon A.

Figure 0006908820
Figure 0006908820

参考例7〜11においては、第一処理部の出口ガスを想定し、ギ酸濃度0.2体積%のガスを導入したため、各ゼオライト、各活性炭のいずれもある程度の吸着能力を発揮した。また、それぞれの出口ガスは、初期にはいずれも0.5体積ppm以下であった。また、参考例9においては、pH指示薬を添加したが、特に問題なくギ酸の処理が可能で、出口ガスのギ酸濃度が5体積ppmを超える際にはゼオライトが既に変色しており、pH変化を目視で確認可能であった。 In Reference Examples 7 to 11, since the outlet gas of the first treatment section was assumed and the gas having a formic acid concentration of 0.2% by volume was introduced, both the zeolite and each activated carbon exhibited a certain level of adsorption capacity. In addition, each outlet gas was initially 0.5 volume ppm or less. Further, in Reference Example 9, a pH indicator was added, but formic acid can be treated without any particular problem, and when the formic acid concentration of the outlet gas exceeds 5 parts by volume ppm, the zeolite is already discolored and the pH is changed. It was possible to confirm visually.

[実施例1〜3、比較例1〜4]
第一処理部と第二処理部に表3に記載の処理剤を用いて、ギ酸の処理を行った。
第一処理部として、外径1インチのステンレス鋼管に、充填高200mmで、処理剤を入れた。また、第二処理部として、外径1/2インチのステンレス鋼管に、充填高40mmで、処理剤を入れた。第一処理部には、窒素ガスで希釈したギ酸濃度5体積%の処理ガスを1L/minの速度で流通させた。第一処理部の出口ガスを第二処理部に流通させ、第二処理部の出口ガスのギ酸濃度を監視し、0.5体積ppmを超えた時点の処理時間を測定し、さらに5体積ppmを超えた時点で処理を終了し、処理開始から処理終了までの処理時間からギ酸の処理量を計算した。その結果を表3に示す。
[Examples 1 to 3 and Comparative Examples 1 to 4]
Formic acid was treated with the treatment agents shown in Table 3 in the first treatment section and the second treatment section.
As the first treatment section, a treatment agent was placed in a stainless steel pipe having an outer diameter of 1 inch with a filling height of 200 mm. Further, as the second processing portion, a processing agent was put into a stainless steel pipe having an outer diameter of 1/2 inch with a filling height of 40 mm. A treatment gas having a formic acid concentration of 5% by volume diluted with nitrogen gas was circulated through the first treatment section at a rate of 1 L / min. The outlet gas of the first treatment section is circulated to the second treatment section, the formic acid concentration of the outlet gas of the second treatment section is monitored, the treatment time at the time when it exceeds 0.5 volume ppm is measured, and 5 volume ppm is further measured. The treatment was terminated when the above amount was exceeded, and the amount of formic acid processed was calculated from the treatment time from the start of the treatment to the end of the treatment. The results are shown in Table 3.

活性炭入ソーダライム:粉末活性炭を20質量%含むソーダライム、ペレット状
乾燥活性炭入ソーダライム:上記活性炭入ソーダライムを乾燥し、水分量を1質量%以下にしたもの
活性炭A:粒状活性炭、破砕状、粒径=8〜24メッシュ(2.36mm〜0.7mm)
ゼオライトA:X型、カチオン=Ca、形状=1.5mmΦ、ペレット状
ソーダライム:水酸化カルシウム79質量%、水酸化カリウム2質量%、水酸化ナトリウム1質量%、その他水分)
Activated carbon-containing soda lime: Soda lime containing 20% by mass of powdered activated carbon, pelletized dry activated carbon-containing soda lime: The above-mentioned activated carbon-containing soda lime dried to a water content of 1% by mass or less Activated carbon A: Granular activated carbon, crushed , Particle size = 8 to 24 mesh (2.36 mm to 0.7 mm)
Zeolite A: X type, cation = Ca, shape = 1.5 mmΦ, pelletized soda lime: calcium hydroxide 79% by mass, potassium hydroxide 2% by mass, sodium hydroxide 1% by mass, other moisture)

[実施例4]
処理ガスとして、水素ガスで希釈したギ酸濃度5体積%のガスを用いた以外は、実施例1と同様にして、ギ酸の処理を行った。
[Example 4]
Formic acid treatment was carried out in the same manner as in Example 1 except that a gas having a formic acid concentration of 5% by volume diluted with hydrogen gas was used as the treatment gas.

Figure 0006908820
Figure 0006908820

表3に示すとおり、実施例1〜3では、活性炭入りソーダライムによる第一処理とゼオライト又は活性炭による第二処理を組み合わせることで、第一処理及び第二処理とも活性炭入りソーダライムのみを用いた比較例1に比べて、同体積でも5体積ppm以下処理可能時間を延ばすことができ、大量にギ酸を処理できるとともに、長期間にわたってギ酸濃度0.5体積ppm以下の清浄な出口ガスを得ることができた。 As shown in Table 3, in Examples 1 to 3, by combining the first treatment with soda lime containing activated carbon and the second treatment with zeolite or activated carbon, only soda lime containing activated carbon was used in both the first treatment and the second treatment. Compared with Comparative Example 1, the processable time can be extended by 5 volumes ppm or less even with the same volume, a large amount of formic acid can be processed, and a clean outlet gas having a fore acid concentration of 0.5 volume ppm or less can be obtained for a long period of time. Was done.

また、比較例2と4では、第一処理及び第二処理とも物理吸着を利用する活性炭やゼオライトで処理するため、0.5体積ppm以下にまで処理可能であったが、同じ体積の処理剤を用いたにもかかわらず、実施例1〜3に比べると、短期間で出口ガスのギ酸濃度が0.5体積ppmを超えたうえに、5体積ppm以下処理可能時間も短く、処理可能量が少なかった。また、比較例2では、高濃度のギ酸が活性炭と接触したことによる一酸化炭素の生成が確認された。 Further, in Comparative Examples 2 and 4, since both the first treatment and the second treatment were treated with activated carbon or zeolite utilizing physical adsorption, it was possible to treat up to 0.5 volume ppm or less, but the treatment agent having the same volume. In spite of the use of, the foric acid concentration of the outlet gas exceeded 0.5 volume ppm in a short period of time, and the processable time was 5 volume ppm or less, which was shorter than that of Examples 1 to 3, and the processable amount. Was few. Further, in Comparative Example 2, it was confirmed that carbon monoxide was produced by contacting high-concentration formic acid with activated carbon.

また、比較例1と比較例3では、第一処理及び第二処理とも化学吸着を利用する活性炭入ソーダライムとソーダライムをそれぞれ利用するため、0.5体積ppm以下の低濃度にまでギ酸を処理できなかったため、0.5体積ppm以下処理可能時間は0分となった。 Further, in Comparative Example 1 and Comparative Example 3, since soda lime containing activated carbon and soda lime that utilize chemisorption are used in both the first treatment and the second treatment, foric acid is added to a low concentration of 0.5 volume ppm or less. Since the treatment could not be performed, the treatment time of 0.5 volume ppm or less was 0 minutes.

そのため、活性炭による第一処理と活性炭入りソーダライムによる第二処理を組み合わせた比較例5では、実施例1〜3とは異なり、短期間で出口ガスのギ酸濃度が0.5体積ppmを超えたうえに、5体積ppm以下処理可能時間も短く、処理可能量が少なかった。また、高濃度のギ酸が活性炭と接触したことによる一酸化炭素の生成が確認された。 Therefore, in Comparative Example 5 in which the first treatment with activated carbon and the second treatment with soda lime containing activated carbon were combined, the formic acid concentration of the outlet gas exceeded 0.5 volume ppm in a short period of time, unlike Examples 1 to 3. In addition, the processable time of 5 volumes ppm or less was short, and the processable amount was small. In addition, it was confirmed that carbon monoxide was produced when high-concentration formic acid came into contact with activated carbon.

なお、実施例・比較例で使用した活性炭入りソーダライムは粉末活性炭を含むが、活性炭の割合が20質量%と少ないため、活性炭による物理吸着よりも、化学吸着が支配的であったため、比較例1では0.5体積ppm以下の低濃度にまでギ酸を処理できなかったと考えられる。 The soda lime containing activated carbon used in Examples and Comparative Examples contains powdered activated carbon, but since the proportion of activated carbon is as small as 20% by mass, chemical adsorption is dominant over physical adsorption by activated carbon. In No. 1, it is considered that the formic acid could not be treated to a low concentration of 0.5 volume ppm or less.

ギ酸の希釈ガスが水素である実施例4は、希釈ガスが窒素である実施例1と同等のギ酸処理を行うことができた。 In Example 4 in which the diluting gas of formic acid was hydrogen, the same formic acid treatment as in Example 1 in which the diluting gas was nitrogen could be performed.

11 ギ酸処理装置
13 第一処理部
15 第二処理部
17 ギ酸使用装置
11 Formic acid treatment equipment 13 First treatment unit 15 Second treatment unit 17 Formic acid treatment equipment

Claims (7)

ギ酸を1体積%以上含むガスから、ギ酸を除去してギ酸濃度を0.5体積ppm以下まで低減する処理方法であって、
前記ガスに含まれるギ酸を、水酸化カルシウムと活性炭質量比で、水酸化カルシウム:活性炭=1:0.1〜0.5で併用した第一処理剤を用いてギ酸をギ酸カルシウムとして固定処理する第一処理工程と、
前記第一処理工程後のガス中のギ酸を、さらに活性炭、ゼオライト、又はシリカゲルからなる多孔質吸着剤を用いて吸着処理する第二処理工程と、
を有ることを特徴とするギ酸の処理方法。
A treatment method for removing formic acid from a gas containing 1% by volume or more of formic acid to reduce the formic acid concentration to 0.5% by volume or less.
Formic acid contained in the gas is fixed as calcium formate using a first treatment agent in which calcium hydroxide and activated carbon are used in a mass ratio of calcium hydroxide: activated carbon = 1: 0.1 to 0.5. The first processing process to be performed and
A second treatment step of adsorbing formic acid in the gas after the first treatment step using a porous adsorbent composed of activated carbon, zeolite, or silica gel.
Processing method of formic acid, characterized that you have a.
前記第一処理剤に含まれる前記活性炭が、金属添着活性炭であることを特徴とする請求項1に記載のギ酸の処理方法。 The method for treating formic acid according to claim 1 , wherein the activated carbon contained in the first treatment agent is a metal-impregnated activated carbon. 前記第一処理剤が、活性炭入りソーダライムであることを特徴とする請求項1又は2に記載のギ酸の処理方法。 Wherein the first treatment agent, treatment method formic acid according to claim 1 or 2, characterized in that the activated charcoal soda lime. 前記第二処理工程で用いられる前記活性炭、金属添着活性炭であることを特徴とする請求項1〜3のいずれかに記載のギ酸の処理方法。 The method for treating formic acid according to any one of claims 1 to 3, wherein the activated carbon used in the second treatment step is a metal-impregnated activated carbon. 前記第二処理工程で用いられる前記ゼオライトが、pH指示薬を含有するゼオライトであることを特徴とする請求項1〜3のいずれかに記載のギ酸の処理方法。 The method for treating formic acid according to any one of claims 1 to 3, wherein the zeolite used in the second treatment step is a zeolite containing a pH indicator. ギ酸使用装置からギ酸を1体積%以上含む排気が供給され、水酸化カルシウムと活性炭質量比で、水酸化カルシウム:活性炭=1:0.1〜0.5で併用した第一処理剤を有する第一処理部と、
前記第一処理部の出口ガスが供給され、活性炭、ゼオライト、又はシリカゲルからなる多孔質吸着剤を有する第二処理部と、
を有し、
前記排気からギ酸を除去してギ酸濃度を0.5体積ppm以下まで低減する、排気中のギ酸の処理装置。
Exhaust containing 1% by volume or more of formic acid is supplied from the device using formic acid, and has a first treatment agent in which calcium hydroxide and activated carbon are used in combination in a mass ratio of calcium hydroxide: activated carbon = 1: 0.1 to 0.5. First processing unit and
The outlet gas of the first treatment section is supplied, and the second treatment section having a porous adsorbent made of activated carbon, zeolite, or silica gel, and the second treatment section.
Have,
A device for treating formic acid in an exhaust gas that removes formic acid from the exhaust gas to reduce the formic acid concentration to 0.5 volume ppm or less.
真空リフロー半田付け装置に備えられたものである、請求項6に記載のギ酸の処理装置。 The formic acid processing apparatus according to claim 6 , which is provided in the vacuum reflow soldering apparatus.
JP2016230852A 2015-12-24 2016-11-29 Formic acid treatment method and formic acid treatment equipment Active JP6908820B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015251508 2015-12-24
JP2015251508 2015-12-24

Publications (2)

Publication Number Publication Date
JP2017119271A JP2017119271A (en) 2017-07-06
JP6908820B2 true JP6908820B2 (en) 2021-07-28

Family

ID=59271396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016230852A Active JP6908820B2 (en) 2015-12-24 2016-11-29 Formic acid treatment method and formic acid treatment equipment

Country Status (2)

Country Link
JP (1) JP6908820B2 (en)
TW (1) TWI630950B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109420814A (en) * 2017-08-22 2019-03-05 伊利诺斯工具制品有限公司 A kind of reflow soldering and Gas recovering method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7316732B2 (en) * 2005-07-14 2008-01-08 Access Business Group International Llc Air treatment filter and related method
CN101502744B (en) * 2008-12-03 2013-06-05 北京博奇电力科技有限公司 Method for removing acid gases in flue gas using red mud as absorbing agent
JP5720455B2 (en) * 2011-07-14 2015-05-20 栗田工業株式会社 Acid gas treatment method

Also Published As

Publication number Publication date
JP2017119271A (en) 2017-07-06
TWI630950B (en) 2018-08-01
TW201726231A (en) 2017-08-01

Similar Documents

Publication Publication Date Title
AU2019204609B2 (en) Sorbents for removal of mercury
JP5740070B2 (en) Adsorbent to remove mercury from flue gas
JP5553966B2 (en) Mercury adsorbent and smoke treatment method using the adsorbent
US9308518B2 (en) Enhanced sorbent formulation for removal of mercury from flue gas
CA2671051C (en) Dry-scrubbing media compositions and methods of production and use
CN105771902A (en) Preparation method and application of sulfhydryl activated carbon mercury removal agent
JP6975537B2 (en) Halogen gas remover, its manufacturing method, halogen gas removing method using it, and halogen gas removing system
JP2581642B2 (en) Etching exhaust gas abatement agent and exhaust gas treatment method
JP6908820B2 (en) Formic acid treatment method and formic acid treatment equipment
JP2001017831A (en) Treating agent for halogen gas
AU2010272565A1 (en) Solid mineral composition, method for preparing same and use thereof for reducing heavy metals in flue gas
CN106943864A (en) A kind of method that carbon material selective absorbing purifies acetylene
KR100684201B1 (en) Method for the abatement of waste gas comprising fluorine and its adsorption column device
JP6812612B2 (en) Ethylene oxide removal method
JP2016112535A (en) Method for generating hydrogen arsenide adsorption active carbon
JPH1076138A (en) Treatment of waste gas containing halogen compound
JP2000225320A (en) Method for treating high temperature gas and active carbon
WO2004050217A1 (en) Method for removing harmful substance in bent gas
JP6812613B2 (en) Ethylene oxide removal method
JP2008302338A (en) Detoxifying agent for metal hydride-containing exhaust gas, and detoxifying method for metal hydride-containing exhaust gas
JP3515766B2 (en) Removal method of carbon disulfide
JP5867825B2 (en) Exhaust gas treatment method and exhaust gas treatment apparatus
PL244193B1 (en) Method for regeneration of active carbons
JPH06327931A (en) Purifying method of waste gas
JP2005185876A (en) Treatment method and treatment device for halogen based gas

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190709

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210614

R150 Certificate of patent or registration of utility model

Ref document number: 6908820

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150