JPH06319938A - Method for cleaning harmful gas - Google Patents

Method for cleaning harmful gas

Info

Publication number
JPH06319938A
JPH06319938A JP5132719A JP13271993A JPH06319938A JP H06319938 A JPH06319938 A JP H06319938A JP 5132719 A JP5132719 A JP 5132719A JP 13271993 A JP13271993 A JP 13271993A JP H06319938 A JPH06319938 A JP H06319938A
Authority
JP
Japan
Prior art keywords
acid
gas
ammonia
copper
harmful
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5132719A
Other languages
Japanese (ja)
Inventor
Takashi Shimada
孝 島田
Toshio Okumura
敏雄 奥村
Toshiya Hatakeyama
俊哉 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Original Assignee
Japan Pionics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd filed Critical Japan Pionics Ltd
Priority to JP5132719A priority Critical patent/JPH06319938A/en
Priority to DE69412341T priority patent/DE69412341T2/en
Priority to EP94106928A priority patent/EP0624392B1/en
Priority to TW083104121A priority patent/TW308551B/zh
Priority to KR1019940010252A priority patent/KR100320372B1/en
Publication of JPH06319938A publication Critical patent/JPH06319938A/en
Priority to US08/560,171 priority patent/US5662872A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To efficiently remove a basic gas such as ammonia and amine which is used in a semiconductor manufacturing process and others and contained in exhaust gas and air etc., by the leakage etc., of a bomb by contacting a gas containing the basic gas with a cleaning agent in which a copper salt is carried on an inorganic support such as alumina and silica. CONSTITUTION:A basic gas (for example, ammonia) as a harmful component is contacted with a cleaning agent in which a bivalent copper salt is carried on an inorganic support (for example, alumina) to remove the harmful component from the gas. For the bivalent copper salt, one or two kinds of inorganic acids are selected from carbonic acid, silicic acid, nitric acid, sulfuric acid, phosphoric acid, boric acid, chloric acid, perchloric acid, chlorous acid, and hypochlorous acid. As a result, the basic gas such as ammonia and amine can be removed efficiently which is used in a semiconductor manufacturing process and others and contained in exhaust gas and air, etc., by the leakages, etc., of a bomb.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は有害ガスの除去方法に関
し、さらに詳細にはアンモニアおよびアミン類など半導
体製造工程などで使用される塩基性の有害ガスの浄化方
法に関する。近年、半導体工業やオプトエレクトロニク
ス工業、精密機器工業の発展とともに、アンモニア、ア
ミン類などの塩基性ガスの使用量が増加している。これ
らの塩基性ガスは化学気相成長法などの半導体製造工
程、装飾・保護膜製造、超硬機器製造などに不可欠な物
質であるが、いずれも毒性が高く、刺激臭を放つととも
に人体や環境に悪影響を与える。これらのガスの許容濃
度については例えばアンモニアが25ppm、トリメチ
ルアミンが10ppmなどであり、前述した半導体製造
工程などに使用後、大気に放出するに先だって有害成分
を除去する必要がある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing harmful gases, and more particularly to a method for purifying basic harmful gases such as ammonia and amines used in semiconductor manufacturing processes. In recent years, with the development of the semiconductor industry, the optoelectronics industry, and the precision equipment industry, the amount of basic gases such as ammonia and amines used has been increasing. These basic gases are indispensable substances for semiconductor manufacturing processes such as chemical vapor deposition, decorative / protective film manufacturing, and super hard equipment manufacturing, but they are all highly toxic and give off a pungent odor as well as the human body and environment. Adversely affect. The permissible concentrations of these gases are, for example, 25 ppm of ammonia and 10 ppm of trimethylamine, and it is necessary to remove harmful components before using them in the above-mentioned semiconductor manufacturing process and before releasing them into the atmosphere.

【0002】これらの塩基性ガスは通常は容量が0.1
〜50L程度のガスボンベに充填して市販されている。
ガスボンベはガスが漏洩した場合に直接外部の空気を汚
染することを防止するため、通常はボンベボックスと呼
ばれる換気ダクトに接続されたボンベ収納器内に収納さ
れた状態で半導体プロセスなどへのガスの供給配管に接
続して使用されるが、ボンベボックス内に収納されてい
ても思わぬ事故などにより、例えば5〜10分程度の短
時間でボンベが空になるような急激な漏洩が発生する危
険性が皆無といえず、このような事故に対処しうる万全
の対策が強く要望されている。
These basic gases usually have a volume of 0.1.
It is commercially available by filling a gas cylinder of about 50 L.
In order to prevent the air from directly contaminating the outside air when a gas leaks, the gas cylinder is normally stored in a cylinder container connected to a ventilation duct called a cylinder box, and the gas to the semiconductor process etc. Although it is used by connecting to the supply pipe, there is a risk of sudden leakage such as emptying of the cylinder in a short time of about 5 to 10 minutes due to an unexpected accident, etc. even if it is stored in the cylinder box. There is a strong demand for complete measures that can deal with such accidents.

【0003】[0003]

【従来の技術】ガス中に含有される塩基性ガスなどを除
去する方法としては、スクラバー吸収分解させる湿式法
があり、吸収液として主に酸性成分を含む水溶液が用い
られている。また、乾式法では、活性炭や無機化合物系
の多孔質吸着剤を使用する例もある。
2. Description of the Related Art As a method for removing a basic gas contained in a gas, there is a wet method in which a scrubber is absorbed and decomposed, and an aqueous solution mainly containing an acidic component is used as an absorbing liquid. Further, in the dry method, there is an example in which activated carbon or an inorganic compound-based porous adsorbent is used.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、湿式法
は装置が大型化するとともに後処理に困難性があり、装
置の保守費用も大きくなるという欠点がある。さらに、
吸着効率が必ずしも高くなく、高濃度の有害ガスの場合
には完全に処理しきれないのが現状である。さらに、ア
ンモニア系ガスのみではなく、他の有害ガス、例えば半
導体工業ではシランを代表とするシリコン化合物系のガ
スも同時に使用されることから酸化物粉体の発生により
スラッジが生ずるという問題点もある。乾式法として活
性炭による吸着処理の方法があるが、除害能力が低く、
また、シランなどの可燃性ガスが共存する場合には火災
の危険性もある。従って、有害ガスの処理速度および処
理容量が大きく、ボンベの異常などで濃度は比較的低い
が大量のガスが漏洩するような緊急時ばかりでなく、通
常、半導体製造プロセスから排出される濃度の高い有害
ガスなどのいずれに対しても除去性能が優れ、火災など
の危険性がなく、かつ、生成物による浄化筒の閉塞など
が生ずる恐れのない浄化方法が望まれていた。
However, the wet method has the drawbacks that the size of the apparatus becomes large, the post-treatment is difficult, and the maintenance cost of the apparatus becomes high. further,
Under the present circumstances, the adsorption efficiency is not necessarily high, and in the case of a high concentration of harmful gas, it cannot be completely treated. Further, not only ammonia-based gas but also other harmful gas, for example, silicon compound-based gas represented by silane in the semiconductor industry is used at the same time, which causes a problem that sludge is generated due to generation of oxide powder. . There is a method of adsorption treatment with activated carbon as a dry method, but the detoxifying ability is low,
There is also a risk of fire if a combustible gas such as silane coexists. Therefore, the processing speed and processing capacity of harmful gas are large, and the concentration is relatively low due to abnormalities in the cylinder, etc. There has been a demand for a purification method that has excellent removal performance against harmful gases and the like, has no risk of fire, etc., and that does not cause clogging of the purification column due to products.

【0005】[0005]

【課題を解決するための手段】本発明者らはこれらの問
題点を解決するべく鋭意研究を重ねた結果、無機質担体
に銅(II)塩を添着させた浄化剤を用いることによっ
て、種々の状態における有害ガスを極めて効率よく、し
かも安全に除去しうることを見い出し、本発明を完成し
た。すなわち本発明は、有害成分となる塩基性ガスを含
有するガスを、銅(II)塩を無機質担体に担持させて
なる浄化剤と接触させ、該ガスから有害成分を除去する
ことを特徴とする有害ガスの浄化方法である。本発明の
浄化方法は空気、窒素および水素などにアンモニアおよ
びジメチルアミン、トリメチルアミン、モノメチルアミ
ン、ヒドラジン、ジメチルヒドラジンなどのアミン類を
含有する塩基性の有害ガスの浄化に適用される。特に本
発明の浄化方法は多量の有害ガスを迅速に、しかも常温
で除去することができ、例えば、半導体製造プロセスか
らの排出ガスを浄化する場合や、ボンベから急激に漏洩
するなどで有害ガスによって汚染されたガス(通常は空
気)の迅速な浄化などに優れた効果が得られる。
Means for Solving the Problems As a result of intensive studies to solve these problems, the present inventors have found that the use of a purifying agent in which a copper (II) salt is impregnated on an inorganic carrier causes various problems. The present invention has been completed by finding that harmful gas in a state can be removed extremely efficiently and safely. That is, the present invention is characterized in that a gas containing a basic gas which is a harmful component is brought into contact with a purifying agent in which a copper (II) salt is supported on an inorganic carrier to remove the harmful component from the gas. It is a method of purifying harmful gas. The purification method of the present invention is applied to the purification of basic harmful gas containing ammonia and amines such as dimethylamine, trimethylamine, monomethylamine, hydrazine and dimethylhydrazine in air, nitrogen and hydrogen. In particular, the purification method of the present invention can remove a large amount of harmful gas quickly and at room temperature. For example, when purifying exhaust gas from a semiconductor manufacturing process or when gas leaks rapidly from a cylinder, Excellent effects such as rapid purification of polluted gas (usually air) can be obtained.

【0006】本発明において、銅(II)塩をシリカ、
アルミナ、チタニア、ジルコニアなどの無機質担体に担
持させた浄化剤が使用される。銅(II)塩としては、
無機酸または有機酸の銅塩である。無機酸の塩としては
オキソ酸の塩およびハロゲン化物などであり、オキソ酸
の塩では、例えば、炭酸、硅酸、硝酸、硫酸、燐酸、ひ
酸、ほう酸、塩素酸、過塩素酸、亜塩素酸、次亜塩素酸
などの銅(II)塩、また、ハロゲン化物では、例えば
塩化銅(II)、臭化銅(II)、よう化銅(II)な
どが挙げられる。また有機酸としては、蟻酸、酢酸、プ
ロピオン酸、オレイン酸、ステアリン酸などの脂肪族モ
ノカルボン酸、蓚酸、アジピン酸、セバシン酸などの脂
肪族ジカルボン酸、乳酸、酒石酸の様なオキシ酸、安息
香酸、トルイル酸などの芳香族やナフテン酸のような種
々の酸の銅(II)塩が挙げられる。これらの内でも硝
酸銅、硫酸銅、塩化銅、臭化銅および酢酸銅などが水溶
性であり、扱い易さの点で好適である。また、銅(I
I)塩では、無水物から多水和物まで種々の水和物が知
られているが、取り扱い易さ、空気中での安定性のよさ
および浄化能力に影響を及ぼさないことなどから水和物
が一般的に好ましい。
In the present invention, copper (II) salt is silica,
A purifying agent carried on an inorganic carrier such as alumina, titania or zirconia is used. As the copper (II) salt,
It is a copper salt of an inorganic acid or an organic acid. Examples of the inorganic acid salts include oxo acid salts and halides. Examples of the oxo acid salts include carbonic acid, silicic acid, nitric acid, sulfuric acid, phosphoric acid, arsenic acid, boric acid, chloric acid, perchloric acid, and chlorous acid. Copper (II) salts such as acids and hypochlorous acid, and examples of halides include copper (II) chloride, copper (II) bromide, and copper (II) iodide. Examples of organic acids include aliphatic monocarboxylic acids such as formic acid, acetic acid, propionic acid, oleic acid and stearic acid, aliphatic dicarboxylic acids such as oxalic acid, adipic acid and sebacic acid, oxy acids such as lactic acid and tartaric acid, and benzoic acid. Acids, aromatics such as toluic acid, and copper (II) salts of various acids such as naphthenic acid. Among these, copper nitrate, copper sulfate, copper chloride, copper bromide, copper acetate and the like are water-soluble and are preferable in terms of easy handling. In addition, copper (I
As the salt I), various hydrates from anhydrate to polyhydrate are known, but they are hydrated because they are easy to handle, have good stability in air, and do not affect purification ability. Are generally preferred.

【0007】無機質担体としては、シリカ、アルミナ、
チタニア、ジルコニアなど広い範囲から選択することが
でき、例えば、シリカゲル、シリカアルミナ、アルミナ
などが好ましい。これらの内でも比表面積の小さいもの
がシランなど他の有害ガスを吸着せず、従って、アンモ
ニア、アミンなど塩基性ガスの除去能力に悪影響を及ぼ
さない点で好ましく、中でもαーアルミナが特に好まし
い。αーアルミナとしては市販品として一般的な0.1
〜15%のシリカを含有し、1〜100m2 /g程度の
比表面積を有するものを用いてもよいが、好ましくは比
表面積が1m2 /g以下、より好ましくは0.001〜
0.5m2 /gのものがよい。
As the inorganic carrier, silica, alumina,
It can be selected from a wide range such as titania and zirconia, and for example, silica gel, silica alumina, alumina and the like are preferable. Among these, those having a small specific surface area are preferable because they do not adsorb other harmful gases such as silane and therefore do not adversely affect the ability to remove basic gases such as ammonia and amine, and α-alumina is particularly preferable. As α-alumina, a commercially available 0.1
Containing 15% of silica, 1 to 100 m 2 / g approximately may be used those having a specific surface area, preferably a specific surface area of 1 m 2 / g or less, more preferably 0.001
It is preferably 0.5 m 2 / g.

【0008】無機質担体に担持される銅(II)塩の量
には特に制限はなく、塩基性ガスの種類、濃度などによ
って選択されるが、例えば、α−アルミナ100重量部
に対して銅塩として3〜100重量部、好ましくは10
〜80重量部程度である。銅塩が3重量部より少ないと
浄化効率が低くなり、一方、100重量部を越えるとα
−アルミナに充分に保持されず、かつ、高価にもなる。
本発明において、有害成分の除去効率をより高める目的
で浄化剤に銅(II)塩の結晶水に加え、ある程度の遊
離水分を保有せしめることが望ましい。遊離水分の保有
量としては通常は、浄化剤全重量に対し、1〜50重量
%、好ましくは5〜30重量%である。浄化剤は、例え
ば銅塩を温水に溶解し、これをα−アルミナなどの担体
に含浸させた後、30〜100℃程度で所定の水分含有
量になるまで乾燥することによって製造することができ
る。
The amount of the copper (II) salt supported on the inorganic carrier is not particularly limited and is selected depending on the kind and concentration of the basic gas. For example, the copper salt is based on 100 parts by weight of α-alumina. As 3 to 100 parts by weight, preferably 10
It is about 80 parts by weight. If the amount of copper salt is less than 3 parts by weight, the purification efficiency is low, while if it exceeds 100 parts by weight, α
-Not well retained on alumina and expensive.
In the present invention, it is desirable to add a certain amount of free water to the purifying agent in addition to the water of crystallization of the copper (II) salt for the purpose of further increasing the efficiency of removing harmful components. The amount of free water retained is usually 1 to 50% by weight, preferably 5 to 30% by weight, based on the total weight of the cleaning agent. The purifying agent can be produced, for example, by dissolving a copper salt in warm water, impregnating it with a carrier such as α-alumina, and then drying it at about 30 to 100 ° C. until a predetermined water content is reached. .

【0009】本発明が適用される有害ガスの濃度は、通
常は1%以下、好ましくは1000ppm以下である。
また、浄化剤とガスとの接触温度は0〜90℃程度であ
り、通常は室温(10〜50℃)で操作され、特に加熱
や冷却を必要としない。なお接触開始後は反応熱によっ
て、有害ガスの濃度に応じて温度上昇が見られる。接触
時の圧力は、通常は常圧であるが、減圧乃至1kg/c
2 Gのような加圧下で操作することも可能である。本
発明が適用される空気、窒素および水素などのガスは乾
燥状態または湿潤状態であっても結露を生じない程度で
あればよいが、一般的には通常の大気に相当する30〜
100%の相対湿度で使用されることが多く、このよう
な場合には浄化剤中の遊離水分が5〜30重量%程度の
ものが好適である。また、空気中などの炭酸ガスによっ
て悪影響を受けることもない。
The concentration of harmful gas to which the present invention is applied is usually 1% or less, preferably 1000 ppm or less.
Further, the contact temperature between the purifying agent and the gas is about 0 to 90 ° C., which is usually operated at room temperature (10 to 50 ° C.), and heating or cooling is not particularly required. After the contact is initiated, the reaction heat causes a temperature rise depending on the concentration of the harmful gas. The pressure at the time of contact is usually atmospheric pressure, but reduced pressure to 1 kg / c
It is also possible to operate under pressure such as m 2 G. The gas to which the present invention is applied, such as air, nitrogen and hydrogen, may be in a dry state or a wet state as long as it does not cause dew condensation.
It is often used at a relative humidity of 100%, and in such a case, the free water in the purifying agent is preferably about 5 to 30% by weight. Further, it is not adversely affected by carbon dioxide gas in the air.

【0010】本発明の処理対象となるガス中に含有され
るアンモニア系塩基性ガスの濃度および流速には特に制
限はないが、一般に濃度が高いほど流速を小さくするこ
とが望ましい。除去可能な有害ガスの濃度は通常は1%
以下であるが、流量が小さい場合にはさらに高濃度のア
ンモニア系塩基性ガスの処理も可能である。浄化筒は有
害ガス濃度、処理対象ガスの量などに応じて設計される
が、有害ガス濃度が0.1%以下のような比較的低濃度
では空筒線速度(LV)は0.5〜50cm/sec、
有害ガス濃度が0.1〜1%程度ではLVは0.05〜
20cm/sec、濃度が1%以上の様な高濃度では1
0cm/sec以下の範囲で設計することが好ましい。
従って、半導体製造工程プロセスから定常的に排出され
る濃度の高い有害ガスの様な場合には10cm/sec
以下、有害ガスがガスボンベから急激に漏洩し、多量の
空気などで希釈されるような場合には、LVは0.5〜
50cm/secが一般的な基準となる。
There is no particular limitation on the concentration and flow rate of the ammonia-based basic gas contained in the gas to be treated in the present invention, but it is generally desirable to decrease the flow rate as the concentration increases. The concentration of removable harmful gas is usually 1%
As described below, when the flow rate is small, it is possible to treat a higher concentration of ammonia-based basic gas. The purifying cylinder is designed according to the harmful gas concentration, the amount of gas to be treated, etc., but at a relatively low concentration of the harmful gas concentration of 0.1% or less, the hollow cylinder linear velocity (LV) is 0.5 to. 50 cm / sec,
When the harmful gas concentration is 0.1 to 1%, the LV is 0.05 to
1 at high concentration such as 20 cm / sec and concentration of 1% or more
It is preferable to design in the range of 0 cm / sec or less.
Therefore, in the case of a high concentration of harmful gas that is constantly discharged from the semiconductor manufacturing process, 10 cm / sec
Below, when harmful gas suddenly leaks from a gas cylinder and is diluted with a large amount of air, the LV is 0.5 to
50 cm / sec is a general standard.

【0011】浄化剤は、通常は有害ガスの浄化筒に充填
され、固定床として用いられるが移動床、流動床として
用いることも可能である。通常は浄化剤は浄化筒内に充
填され、アンモニア系塩基性ガスを含有するガスは浄化
筒内に流され、浄化剤と接触させることにより、有害分
であるアンモニア系塩基性ガスが除去される。本発明に
おいて浄化剤が浄化筒に充填されたときの充填密度は
1.0〜1.5g/ml程度である。
The purifying agent is usually packed in a column for purifying harmful gas and used as a fixed bed, but it can also be used as a moving bed or a fluidized bed. Normally, the purifying agent is filled in the purifying cylinder, and the gas containing the ammonia-based basic gas is caused to flow in the purifying cylinder, and the harmful ammonia-based basic gas is removed by contacting with the purifying agent. . In the present invention, the packing density when the cleaning agent is packed in the cleaning column is about 1.0 to 1.5 g / ml.

【0012】浄化剤は、例えば図1及び図2のフローシ
ートで示されたような浄化筒1に充填されて使用され
る。そして図1のように半導体製造装置2からの排ガス
の浄化をおこなう場合には、それらの製造装置2より導
かれたダクト6と接続して使用される。また、ガスボン
ベからの漏洩ガスの処理などに使用する場合には、図2
のように浄化筒1は有害ガスのボンベ3が収納されたボ
ンベボックス4と空気を連続的に吸引換気するためのブ
ロアー5とを接続する換気用のダクト6の間に介在させ
て使用される。浄化剤は有害ガスの濃度が1%を超える
ような高濃度では発熱が大きくなるため、除熱手段が必
要となる場合がある。しかしながら、図2のような設備
では通常、有害ガスの急激な漏洩が生じても空気もしく
は窒素などの希釈ガスとの混合によって、その濃度が1
%以下に希釈されるに充分な容量のブロアーが設けられ
ている。浄化筒内の浄化剤の充填長はガスの流量および
有害ガスの濃度などによって異なるが、実用上通常は5
0〜500mm程度とされ、浄化筒の内径は筒内を流れ
るガスの空筒線速度(LV)で0.5〜50cm/se
c程度となるように設計され、充填層の圧力損失、ガス
の接触効率および有害ガスの濃度などに応じて定められ
る。
The purifying agent is used by being filled in the purifying cylinder 1 as shown in the flow sheets of FIGS. 1 and 2, for example. When purifying the exhaust gas from the semiconductor manufacturing apparatus 2 as shown in FIG. 1, the exhaust gas is connected to the duct 6 led from the manufacturing apparatus 2 and used. In addition, when it is used to treat the leaked gas from the gas cylinder,
As described above, the purification cylinder 1 is used by interposing it between a ventilation box 6 that connects a cylinder box 4 in which a cylinder 3 of harmful gas is stored and a blower 5 for continuously sucking and ventilating air. . The purifying agent generates a large amount of heat when the concentration of the harmful gas exceeds 1%, and thus heat removal means may be required. However, in the equipment as shown in FIG. 2, even if the harmful gas is suddenly leaked, its concentration becomes 1 by mixing with air or a diluting gas such as nitrogen.
A blower of sufficient volume is provided to dilute below 100%. The filling length of the purifying agent in the purifying cylinder varies depending on the flow rate of gas and the concentration of harmful gas, but is usually 5 in practice.
The purification cylinder has an inner diameter of 0.5 to 50 cm / se at an empty cylinder linear velocity (LV) of the gas flowing in the cylinder.
It is designed to be about c and is determined according to the pressure loss of the packed bed, the gas contact efficiency, the concentration of harmful gas, and the like.

【0013】[0013]

【実施例】 実施例1〜4 浄化剤の調製 硫酸銅5水和物25〜250gを400〜800mlの
温水に溶解し、これにバット中でα−アルミナ86wt
%、シリカ12wt%で比表面積0.005〜0.04
0m2 /g、充填密度1.1g/ml、直径3/16イ
ンチの球状α−アルミナ(ノートン社製)500gと混
合した後、100℃にて乾燥させ、硫酸銅の含有量およ
び遊離水分含有量の異なる4種類の浄化剤を得た。この
4種類の浄化剤を用いてそれぞれ有害ガスの浄化試験を
おこなった。浄化剤85mlを内径19mm、長さ50
0mmの石英ガラス製の浄化筒に充填し、アンモニアを
1%含有する乾燥窒素を20℃、常圧下で170ml/
min(LV=1.0cm/sec)の流量で流通させ
た。浄化筒の出口ガスの一部をサンプリングし、ガス検
知管(ガステック社製、検知下限2ppm)およびガス
検知器(バイオニクス機器(株)製、TG−2400B
A)で測定し、アンモニアが許容濃度の上限(25pp
m)に到達するまでの時間(有効処理時間)を測定し
た。その結果を表1に示す。
EXAMPLES Examples 1 to 4 Preparation of Purifying Agent 25 to 250 g of copper sulfate pentahydrate is dissolved in 400 to 800 ml of warm water, and in this vat, α-alumina 86 wt.
%, Silica 12 wt% specific surface area 0.005-0.04
After mixing with 500 g of spherical α-alumina (manufactured by Norton) having a particle density of 0 m 2 / g, a packing density of 1.1 g / ml and a diameter of 3/16 inch, the mixture was dried at 100 ° C. to contain copper sulfate and free water. Four types of purifying agents with different amounts were obtained. A purification test for harmful gas was conducted using each of these four types of purifying agents. Purifying agent 85 ml, inner diameter 19 mm, length 50
A 0 mm quartz glass purifying cylinder was filled with dry nitrogen containing 1% of ammonia at 20 ° C. and 170 ml / atmospheric pressure.
It was circulated at a flow rate of min (LV = 1.0 cm / sec). TG-2400B, a gas detector tube (manufactured by Gastec Co., detection lower limit 2 ppm) and a gas detector (manufactured by Bionics Instruments Co., Ltd., TG-2400B) by sampling part of the outlet gas of the purification column
A), ammonia is the upper limit of the permissible concentration (25 pp
The time required to reach m) (effective treatment time) was measured. The results are shown in Table 1.

【0014】[0014]

【表1】 表1 実施例 硫酸銅 遊離水分 有害ガス 空筒線速度 有効処理時間 含有率 含有率 の濃度 LV (wt%)(wt%) (%) (cm/sec) (min) 1 5 3 1 1.0 4150 2 10 〃 〃 〃 5405 3 20 5 〃 〃 7023 4 50 〃 〃 〃 7865[Table 1] Table 1 Example Copper sulphate Free water Hazardous gas Empty cylinder linear velocity Effective treatment time Content rate Content rate concentration LV (wt%) (wt%) (%) (cm / sec) (min) 1 5 3 1 1.0 4150 2 10 〃 〃 〃 5405 3 20 5 〃 〃 7023 4 50 〃 〃 〃 7865

【0015】実施例5〜8 実施例3と同じ浄化剤を用い、アンモニア濃度およびガ
スの流通速度(LV)を種々変えた他は実施例1と同様
にして浄化試験をおこなった。その結果を表2に示す。
Examples 5 to 8 Purification tests were conducted in the same manner as in Example 1 except that the same purifying agent as in Example 3 was used and the ammonia concentration and the gas flow rate (LV) were variously changed. The results are shown in Table 2.

【0016】[0016]

【表2】 表2 実施例 硫酸銅 遊離水分 有害ガス 空筒線速度 有効処理時間 含有率 含有率 の濃度 LV (wt%)(wt%) (%) (cm/sec) (min) 5 20 5 1.0 10.0 360 6 〃 〃 〃 0.5 14023 7 〃 〃 0.1 10.0 7150 8 〃 〃 〃 1.0 72010[Table 2] Table 2 Example Copper sulphate Free water Hazardous gas Empty cylinder linear velocity Effective treatment time Content rate Content rate concentration LV (wt%) (wt%) (%) (cm / sec) (min) 5 205 1.0 10.0 360 6 〃 〃 〃 0.5 14023 7 〃 〃 0.1 10.0 10.0 7150 8 〃 〃 〃 1.0 72010

【0017】実施例9、10 実施例3と同じ浄化剤を用い、アンモニアの代りにトリ
メチルアミンを1%含有する窒素について流通速度(L
V)を変え、実施例1と同様にして浄化試験をおこない
トリメチルアミンの濃度が許容濃度上限(10ppm)
に達するまでの時間を測定した。その結果を表3に示
す。
Examples 9 and 10 Using the same purifying agent as in Example 3, with nitrogen containing 1% of trimethylamine instead of ammonia, the flow rate (L
V) was changed, and a purification test was conducted in the same manner as in Example 1, and the concentration of trimethylamine was the upper limit of allowable concentration (10 ppm).
The time to reach was measured. The results are shown in Table 3.

【0018】[0018]

【表3】 表3 実施例 硫酸銅 遊離水分 有害ガス 空筒線速度 有効処理時間 含有率 含有率 の濃度 LV (wt%)(wt%) (%) (cm/sec) (min) 9 20 5 1 10.0 350 10 〃 〃 〃 1.0 4503[Table 3] Table 3 Examples Copper sulphate Free water Hazardous gas Empty cylinder linear velocity Effective treatment time Content rate Content concentration LV (wt%) (wt%) (%) (cm / sec) (min) 9 205 1 10.0 350 10 〃 〃 〃 1.0 4503

【0019】実施例11〜13 他のガスが共存する場合の塩基性ガスの浄化能力に及ぼ
す影響を見るために、実施例3と同じ浄化剤を用い、モ
ノシラン1%を含む窒素を流通速度を一定にして100
分、1000分、5000分流した後、それぞれの浄化
剤について、実施例1と同様にしてアンモニアの浄化能
力を測定した。その結果を表4に示す。
Examples 11 to 13 In order to see the effect on the purifying ability of basic gas when other gases coexist, the same purifying agent as in Example 3 was used, and the flow rate of nitrogen containing 1% of monosilane was changed. Constant 100
Minutes, 1000 minutes, 5000 minutes, and then, the purifying ability of ammonia was measured for each purifying agent in the same manner as in Example 1. The results are shown in Table 4.

【0020】[0020]

【表4】 表4 実施例 モノシラン流通時間 アンモニアの有効処理時間 (min) (min) 11 100 7095 12 1000 7008 13 5000 7025Table 4 Table 4 Example Monosilane flow time Effective treatment time of ammonia (min) (min) 11 100 7095 12 1000 7008 13 5000 7000 2525

【0021】[0021]

【発明の効果】本発明のガスの浄化方法によれば、ガス
中に含有されるアンモニア、トリメチルアミンなどのア
ンモニア系塩基性ガスを効率よく除去することができ
る。高濃度、低濃度に係わらず、有害ガスを効率よく、
しかも極めて迅速に除去することができる。また、シラ
ンなど他のガスが共存しても火災の発生や浄化能力に悪
影響を及ぼすことがなく、半導体製造プロセスの排気ガ
スの浄化や、ガスボンベから有害ガスが急激に漏洩する
などの緊急時の除害に優れた効果が得られる。
According to the gas purification method of the present invention, ammonia-based basic gases such as ammonia and trimethylamine contained in the gas can be efficiently removed. Efficiently removes harmful gas regardless of high or low concentration
Moreover, it can be removed extremely quickly. In addition, even if other gases such as silane coexist, it does not adversely affect the occurrence of fire and the purification performance, and it can be used in the purification of exhaust gas in semiconductor manufacturing processes and in the event of an emergency such as a sudden leak of harmful gas from a gas cylinder. An excellent effect of detoxification is obtained.

【0022】[0022]

【図面の簡単な説明】[Brief description of drawings]

【図1】 有害ガスの浄化方法の例を示すフローシー
ト。
FIG. 1 is a flow sheet showing an example of a method for purifying harmful gas.

【図2】 図1とは異なる態様の浄化方法の例を示すフ
ローシート。
FIG. 2 is a flow sheet showing an example of a purification method of a mode different from that of FIG.

【符号の説明】[Explanation of symbols]

1 浄化筒 2 半導体製造装置 3 ガスボンベ 4 ボンベボックス 5 ブロアー 6 ダクト 1 Purification Cylinder 2 Semiconductor Manufacturing Equipment 3 Gas Cylinder 4 Cylinder Box 5 Blower 6 Duct

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】有害成分となる塩基性ガスを含有するガス
を、銅(II)塩を無機質担体に担持させてなる浄化剤
と接触させ、該ガスから有害成分を除去することを特徴
とする有害ガスの浄化方法。
1. A gas containing a basic gas, which is a harmful component, is brought into contact with a purifying agent comprising a copper (II) salt supported on an inorganic carrier to remove the harmful component from the gas. How to purify harmful gas.
【請求項2】塩基性ガスがアンモニア、モノメチルアミ
ン、ジメチルアミン、トリメチルアミン、ヒドラジン、
ジメチルヒドラジンから選ばれる1種または2種以上で
ある請求項1に記載の浄化方法。
2. The basic gas is ammonia, monomethylamine, dimethylamine, trimethylamine, hydrazine,
The purification method according to claim 1, which is one kind or two or more kinds selected from dimethylhydrazine.
【請求項3】銅(II)塩が、炭酸、硅酸、硝酸、硫
酸、燐酸、ほう酸、塩素酸、過塩素酸、亜塩素酸、次亜
塩素酸の無機酸塩から選ばれる1種または2種以上であ
る請求項1に記載の浄化方法。
3. A copper (II) salt selected from the group consisting of carbonic acid, silicic acid, nitric acid, sulfuric acid, phosphoric acid, boric acid, chloric acid, perchloric acid, chlorous acid and hypochlorous acid. The purification method according to claim 1, which comprises two or more kinds.
【請求項4】無機質担体が、シリカ、アルミナ、チタニ
ア、ジルコニアから選ばれる1種または2種以上である
請求項1に記載の浄化方法。
4. The purification method according to claim 1, wherein the inorganic carrier is one or more selected from silica, alumina, titania and zirconia.
JP5132719A 1993-05-11 1993-05-11 Method for cleaning harmful gas Pending JPH06319938A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP5132719A JPH06319938A (en) 1993-05-11 1993-05-11 Method for cleaning harmful gas
DE69412341T DE69412341T2 (en) 1993-05-11 1994-05-04 Process for cleaning harmful gas
EP94106928A EP0624392B1 (en) 1993-05-11 1994-05-04 Process for cleaning harmful gas
TW083104121A TW308551B (en) 1993-05-11 1994-05-06
KR1019940010252A KR100320372B1 (en) 1993-05-11 1994-05-11 Hazardous Gas Purification Method
US08/560,171 US5662872A (en) 1993-05-11 1995-11-17 Process for cleaning harmful gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5132719A JPH06319938A (en) 1993-05-11 1993-05-11 Method for cleaning harmful gas

Publications (1)

Publication Number Publication Date
JPH06319938A true JPH06319938A (en) 1994-11-22

Family

ID=15087984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5132719A Pending JPH06319938A (en) 1993-05-11 1993-05-11 Method for cleaning harmful gas

Country Status (1)

Country Link
JP (1) JPH06319938A (en)

Similar Documents

Publication Publication Date Title
KR100320372B1 (en) Hazardous Gas Purification Method
US4273751A (en) Removal of acidica contaminants from gas streams by caustic impregnated activated carbon
JP3073321B2 (en) How to purify harmful gases
JP2581642B2 (en) Etching exhaust gas abatement agent and exhaust gas treatment method
US5756060A (en) Process for cleaning harmful gas
JP3340510B2 (en) Hazardous gas purification method
US3980755A (en) System for removing chloromethyl ether and bis-chloromethyl ether from air contaminated therewith
JPH06319939A (en) Method fort cleaning harmful gas
JPH06319938A (en) Method for cleaning harmful gas
KR920007856B1 (en) Method of removing gassy acidic halogen compound
US4813410A (en) Gas mask filter for the removal of low level ethylene oxide contaminants from air comprising dried cationic exchange resins
KR100684201B1 (en) Method for the abatement of waste gas comprising fluorine and its adsorption column device
JP3260825B2 (en) How to purify harmful gases
JPH05154333A (en) Method for purifying harmful gas
JPH0268140A (en) Adsorbent for removal of iodine in gas
JPS61101231A (en) Removal of fluorine gas
JP2009082785A (en) Method and apparatus for treating gas containing harmful substance
JP6812612B2 (en) Ethylene oxide removal method
JP4304020B2 (en) Treatment agent and treatment method for exhaust gas containing acid gas and / or hydrocarbon
JP3340528B2 (en) Hazardous gas purification method
JPH09873A (en) Purifying process for toxic gas
JPH06154535A (en) Method for purifying harmful gas
JPH0910545A (en) Cleaning of noxious gas
JPS63283752A (en) Catalyst for removing harmful gas
JP3362918B2 (en) Exhaust gas purification method