JPH06312392A - 多関節ロボットの制御装置 - Google Patents
多関節ロボットの制御装置Info
- Publication number
- JPH06312392A JPH06312392A JP12531393A JP12531393A JPH06312392A JP H06312392 A JPH06312392 A JP H06312392A JP 12531393 A JP12531393 A JP 12531393A JP 12531393 A JP12531393 A JP 12531393A JP H06312392 A JPH06312392 A JP H06312392A
- Authority
- JP
- Japan
- Prior art keywords
- robot
- singular point
- joint
- inverse kinematics
- position command
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manipulator (AREA)
- Numerical Control (AREA)
Abstract
(57)【要約】
【目的】特異点付近におけるロボットの動作を安定化し
て制御できる装置を提供する。 【構成】それぞれの特異点に対して逆運動学計算が可能
となる逆運動学計算モデルを設定し、ロボット手先の位
置指令値から特異点までの距離を計算する手段と、ロボ
ット手先が特異点近傍に侵入したことを検出する手段と
を持たせ、ロボット手先が特異点に侵入した時に侵入し
た特異点に設定した逆運動学計算モデルに切替える。ま
た、特異点近傍でのロボットの動作を安定化するため
に、前記特異点での逆運動学計算モデルに対して特異点
からの距離が近いほど大きくなるような重みを与え、非
特異点での逆運動学モデルに対して特異点からの距離が
遠いほど大きくなるような重みを与え、両者によって求
めた値の加重平均をとる。
て制御できる装置を提供する。 【構成】それぞれの特異点に対して逆運動学計算が可能
となる逆運動学計算モデルを設定し、ロボット手先の位
置指令値から特異点までの距離を計算する手段と、ロボ
ット手先が特異点近傍に侵入したことを検出する手段と
を持たせ、ロボット手先が特異点に侵入した時に侵入し
た特異点に設定した逆運動学計算モデルに切替える。ま
た、特異点近傍でのロボットの動作を安定化するため
に、前記特異点での逆運動学計算モデルに対して特異点
からの距離が近いほど大きくなるような重みを与え、非
特異点での逆運動学モデルに対して特異点からの距離が
遠いほど大きくなるような重みを与え、両者によって求
めた値の加重平均をとる。
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、多関節ロボットの制御
装置に関する。
装置に関する。
【0002】
【従来の技術】ロボットの制御は、一般に図2に示すよ
うな方法で行なわれる。すなわち、位置指令生成部から
生成された位置指令値から逆運動学計算を行ない、空間
座標における位置を、ロボットの各駆動軸(関節)の目
標とする関節角に変換し、ロボットの関節に取り付けた
エンコーダなどの検出手段により読み込んだ関節角を、
目標とする関節角になるように制御を行なう。以下、図
3に示すような3自由度のロボットの制御について説明
する。図3のロボットにおいて、基準の座標系を図3の
0座標系とし、第1、第2、第3リンク上にそれぞれ図
3に示した座標系を考える。i座標系はi番目の関節の
回転に伴って移動・回転する。各関節がそれぞれθ1 、
θ2 、θ3 だけ回転したとすると、基準座標系から見た
ロボット手先の座標は、次のようになる。
うな方法で行なわれる。すなわち、位置指令生成部から
生成された位置指令値から逆運動学計算を行ない、空間
座標における位置を、ロボットの各駆動軸(関節)の目
標とする関節角に変換し、ロボットの関節に取り付けた
エンコーダなどの検出手段により読み込んだ関節角を、
目標とする関節角になるように制御を行なう。以下、図
3に示すような3自由度のロボットの制御について説明
する。図3のロボットにおいて、基準の座標系を図3の
0座標系とし、第1、第2、第3リンク上にそれぞれ図
3に示した座標系を考える。i座標系はi番目の関節の
回転に伴って移動・回転する。各関節がそれぞれθ1 、
θ2 、θ3 だけ回転したとすると、基準座標系から見た
ロボット手先の座標は、次のようになる。
【0003】
【数1】
【0003】位置指令値として(xr , yr , zr )が
与えられた場合、(1) 式を変形した次のような逆運動学
計算モデルによって目標とする関節角度が求まる。
与えられた場合、(1) 式を変形した次のような逆運動学
計算モデルによって目標とする関節角度が求まる。
【0005】
【数2】
【0006】ところが、ロボットの機構上、目標値によ
っては関節位置が一意に決まらない場合や位置指令値が
ロボットの可動範囲の境界にある場合など、ロボットの
自由度が損なわれる点が存在する。このような点を特異
点と呼び、特異点では逆運動学計算は不可能となる。図
3のロボットでは図4に示した2種類の特異点が存在す
る。つまり、ロボットの手先が第一関節の軸上にある場
合(A)と、第3関節の関節角が0の場合(B)が特異
点となる。図3のロボットでロボット手先が第1関節軸
上にある場合、(2) 式でxr ,yr が共に0となるので
θ1 を求めることができない。また、位置指令値がロボ
ットの可動範囲外にある時は(2) 式でcos θ3 が1より
大きくなるためθ3 、θ2 を求めることができない。こ
の他の逆運動学計算によって計算した場合も同様なこと
が起こる。従来はあらかじめ目標値が特異点に入らない
ようにし、特異点に入った場合には計算を行なうことが
できないためロボットの動作を停止するという方法をと
っていた。
っては関節位置が一意に決まらない場合や位置指令値が
ロボットの可動範囲の境界にある場合など、ロボットの
自由度が損なわれる点が存在する。このような点を特異
点と呼び、特異点では逆運動学計算は不可能となる。図
3のロボットでは図4に示した2種類の特異点が存在す
る。つまり、ロボットの手先が第一関節の軸上にある場
合(A)と、第3関節の関節角が0の場合(B)が特異
点となる。図3のロボットでロボット手先が第1関節軸
上にある場合、(2) 式でxr ,yr が共に0となるので
θ1 を求めることができない。また、位置指令値がロボ
ットの可動範囲外にある時は(2) 式でcos θ3 が1より
大きくなるためθ3 、θ2 を求めることができない。こ
の他の逆運動学計算によって計算した場合も同様なこと
が起こる。従来はあらかじめ目標値が特異点に入らない
ようにし、特異点に入った場合には計算を行なうことが
できないためロボットの動作を停止するという方法をと
っていた。
【0007】
【発明が解決しようとする課題】ところが従来の方法で
は、特異点に入った場合にロボットが停止するので作業
効率が悪く、特異点に入らないようにするために作業空
間を狭くする必要がある。また、特異点に入りにくいよ
うにロボットを配置しなければならい。さらに特異点付
近では関節移動が大きくなるためロボットの動作が安定
しないという問題点があった。そこで、本出願人は特開
昭62−189504号公報に開示される改善策を提案
している。これは、特異点に関与する根本の方の関節軸
の移動指令を固定して、他の関節の位置および姿勢を制
御することにより特異点を通過するようにしたものであ
る。しかし、ある関節軸が固定されるので、動作がぎご
ちないものになるという欠点がある。そこで本発明は、
特異点付近におけるロボットの動作を安定化して制御で
きる装置を提供することを目的とするものである。
は、特異点に入った場合にロボットが停止するので作業
効率が悪く、特異点に入らないようにするために作業空
間を狭くする必要がある。また、特異点に入りにくいよ
うにロボットを配置しなければならい。さらに特異点付
近では関節移動が大きくなるためロボットの動作が安定
しないという問題点があった。そこで、本出願人は特開
昭62−189504号公報に開示される改善策を提案
している。これは、特異点に関与する根本の方の関節軸
の移動指令を固定して、他の関節の位置および姿勢を制
御することにより特異点を通過するようにしたものであ
る。しかし、ある関節軸が固定されるので、動作がぎご
ちないものになるという欠点がある。そこで本発明は、
特異点付近におけるロボットの動作を安定化して制御で
きる装置を提供することを目的とするものである。
【0008】
【課題を解決するための手段】上記課題を解決するた
め、それぞれの特異点に対して逆運動学計算が可能とな
る逆運動学計算モデルを設定し、ロボット手先の位置指
令値から特異点までの距離を計算する手段と、ロボット
手先が特異点近傍に侵入したことを検出する手段とを持
たせ、ロボット手先が特異点に侵入した時に侵入した特
異点に設定した逆運動学計算モデルに切替える。また、
特異点近傍でのロボットの動作を安定化するために、前
記特異点での逆運動学計算モデルに対して特異点からの
距離が近いほど大きくなるような重みを与え、非特異点
での逆運動学モデルに対して特異点からの距離が遠いほ
ど大きくなるような重みを与え、両者によって求めた値
の加重平均をとる。
め、それぞれの特異点に対して逆運動学計算が可能とな
る逆運動学計算モデルを設定し、ロボット手先の位置指
令値から特異点までの距離を計算する手段と、ロボット
手先が特異点近傍に侵入したことを検出する手段とを持
たせ、ロボット手先が特異点に侵入した時に侵入した特
異点に設定した逆運動学計算モデルに切替える。また、
特異点近傍でのロボットの動作を安定化するために、前
記特異点での逆運動学計算モデルに対して特異点からの
距離が近いほど大きくなるような重みを与え、非特異点
での逆運動学モデルに対して特異点からの距離が遠いほ
ど大きくなるような重みを与え、両者によって求めた値
の加重平均をとる。
【0009】
【作用】上記手段により、特異点に侵入したことを検出
して特異点における逆運動学モデルに切替えることによ
って特異点におけるロボットの動作が可能となり、また
特異点近傍で特異点での逆運動学計算モデルと非特異点
での逆運動学計算モデルの計算結果の加重平均をとるこ
とにより、特異点付近におけるロボットの動作を安定化
させることができる。
して特異点における逆運動学モデルに切替えることによ
って特異点におけるロボットの動作が可能となり、また
特異点近傍で特異点での逆運動学計算モデルと非特異点
での逆運動学計算モデルの計算結果の加重平均をとるこ
とにより、特異点付近におけるロボットの動作を安定化
させることができる。
【0010】
【実施例】以下、図3のロボットに本発明を適用した実
施例について説明する。図1に本発明の実施例を示す。
図1は位置指令生成部より生成された位置指令から逆運
動学計算モデルにより目標とする関節角を求めて制御を
行なう図2の従来例に本発明を適用した例である。図に
おいて1は位置指令生成部、2はロボットの機構が持つ
特異点の中で前記位置指令値に最も近接する特異点の位
置と前記位置指令値との距離を計算する手段、3は特異
点近傍に手先が侵入したことを検出する特異点検出手
段、4は侵入した特異点とその侵入経路に応じて逆運動
学の計算モデルを切替える手段、5は逆運動学の計算モ
デル、6は侵入特異点に設定した逆運動学計算モデルか
ら求めた関節角度と非特異点での逆運動学計算モデルか
ら求めた関節角度の加重平均を求める手段である。以上
の構成により、位置指令値から特異点までの距離が求め
られ、どの特異点に最も近いかを判断し、特異点検出手
段により特異点に侵入したかを判断して逆運動学計算モ
デルを切替え、また位置指令値から特異点までの距離に
よって逆運動学計算モデルの計算結果に対する加重係数
G0 ,G1 ,G2 ,G3 を決定し加重平均をとって目標
とする関節角を決定する。図3のロボットにおいて特異
点となる位置は、ロボット手先が第1関節の軸上に来た
場合と第3関節の角度が0になった場合である。ここで
は前者を内部特異点、後者を外部特異点、この二つの特
異点が重なる位置を二重特異点と呼ぶ。ロボット手先が
内部特異点にある場合、第1関節の自由度が失われる。
この時の逆運動学計算モデルを次のように定義する。
施例について説明する。図1に本発明の実施例を示す。
図1は位置指令生成部より生成された位置指令から逆運
動学計算モデルにより目標とする関節角を求めて制御を
行なう図2の従来例に本発明を適用した例である。図に
おいて1は位置指令生成部、2はロボットの機構が持つ
特異点の中で前記位置指令値に最も近接する特異点の位
置と前記位置指令値との距離を計算する手段、3は特異
点近傍に手先が侵入したことを検出する特異点検出手
段、4は侵入した特異点とその侵入経路に応じて逆運動
学の計算モデルを切替える手段、5は逆運動学の計算モ
デル、6は侵入特異点に設定した逆運動学計算モデルか
ら求めた関節角度と非特異点での逆運動学計算モデルか
ら求めた関節角度の加重平均を求める手段である。以上
の構成により、位置指令値から特異点までの距離が求め
られ、どの特異点に最も近いかを判断し、特異点検出手
段により特異点に侵入したかを判断して逆運動学計算モ
デルを切替え、また位置指令値から特異点までの距離に
よって逆運動学計算モデルの計算結果に対する加重係数
G0 ,G1 ,G2 ,G3 を決定し加重平均をとって目標
とする関節角を決定する。図3のロボットにおいて特異
点となる位置は、ロボット手先が第1関節の軸上に来た
場合と第3関節の角度が0になった場合である。ここで
は前者を内部特異点、後者を外部特異点、この二つの特
異点が重なる位置を二重特異点と呼ぶ。ロボット手先が
内部特異点にある場合、第1関節の自由度が失われる。
この時の逆運動学計算モデルを次のように定義する。
【0011】
【数3】
【0012】ただし、θ1nは読み込んだ第1関節の角度
である。また、外部特異点ではロボット手先の3座標系
のX3方向の自由度が失われる。この時の逆運動学計算
モデルを次のように定義する。
である。また、外部特異点ではロボット手先の3座標系
のX3方向の自由度が失われる。この時の逆運動学計算
モデルを次のように定義する。
【0013】
【数4】
【0014】また、二重特異点では上記の2つの自由度
が失われる。この時の逆運動学計算モデルを次のように
定義する。
が失われる。この時の逆運動学計算モデルを次のように
定義する。
【0015】
【数5】
【0016】これらの逆運動学計算モデルは、特異点に
おけるロボットの関節構成を図5(A)〜(C)に示す
ようなロボットとみなして解いたものである。また、位
置指令値から特異点までの距離は、位置指令値を(x,
y,z)とすると、次の(6) 式により求めることができ
る。
おけるロボットの関節構成を図5(A)〜(C)に示す
ようなロボットとみなして解いたものである。また、位
置指令値から特異点までの距離は、位置指令値を(x,
y,z)とすると、次の(6) 式により求めることができ
る。
【0017】
【数6】
【0018】この特異点までの距離を監視することでロ
ボットの手先の特異点侵入を検出することができる。距
離がほぼ0となった場合に逆運動学計算モデルを(3) 式
や(4)式、(5) 式に切替えて、逆運動学計算を行なう。
それぞれの特異点近傍における特異点、非特異点領域お
よび加重変動領域を図6に示す。また、非特異点および
特異点での逆運動学計算モデルの計算結果に対する加重
係数を図7に示す。二重特異点近傍での加重係数は、内
部特異点、外部特異点それぞれで求めた加重係数から求
めることができる。
ボットの手先の特異点侵入を検出することができる。距
離がほぼ0となった場合に逆運動学計算モデルを(3) 式
や(4)式、(5) 式に切替えて、逆運動学計算を行なう。
それぞれの特異点近傍における特異点、非特異点領域お
よび加重変動領域を図6に示す。また、非特異点および
特異点での逆運動学計算モデルの計算結果に対する加重
係数を図7に示す。二重特異点近傍での加重係数は、内
部特異点、外部特異点それぞれで求めた加重係数から求
めることができる。
【0019】本手法の一例として、特異点付近でのロボ
ット手先の軌道が修正される様子を図8、図9を使って
説明する。図8は内部特異点近傍を通る例、図9は外部
特異点を通過する例である。図8に示す目標軌道が与え
られた場合、ロボット手先が内部特異点付近を通る時に
第1関節の回転角の変化量が大きくなるが、図8の修正
された目標軌道を通ることによって第1関節の回転角の
変化量は小さくて済む。図10にロボット手先が図8の
目標軌道および修正された軌道を通る場合の第1関節回
転角の変化の様子を示す。また図9のように外部特異点
に入り可動範囲を越えるような目標軌道に対しては、
(2) 式から明らかなように逆運動学計算が不可能である
が、(4) 式に示す逆運動学計算モデルを用いることによ
って計算が可能となり、図9のような修正された軌道を
通る。また図11に示すようなロボット手先の姿勢の3
自由度に対しても同様に本発明を適用することによっ
て、特異点における計算が可能になり、特異点近傍の不
安定な動作を防ぐことができる。図11に示すロボット
における特異点はθ2 が0となった場合で、この時
θ1 、θ3 の関節角を求めることができないが、特異点
における逆運動学計算モデルにθ1 を固定とするような
モデルを設定することによって計算が可能となる。また
特異点付近ではθ1 、θ3 の関節の移動が大きくなり動
作が不安定になることがあるが、特異点での逆運動学計
算モデルと非特異点での逆運動学計算モデルとの加重平
均をとることによって安定した動作が可能となる。
ット手先の軌道が修正される様子を図8、図9を使って
説明する。図8は内部特異点近傍を通る例、図9は外部
特異点を通過する例である。図8に示す目標軌道が与え
られた場合、ロボット手先が内部特異点付近を通る時に
第1関節の回転角の変化量が大きくなるが、図8の修正
された目標軌道を通ることによって第1関節の回転角の
変化量は小さくて済む。図10にロボット手先が図8の
目標軌道および修正された軌道を通る場合の第1関節回
転角の変化の様子を示す。また図9のように外部特異点
に入り可動範囲を越えるような目標軌道に対しては、
(2) 式から明らかなように逆運動学計算が不可能である
が、(4) 式に示す逆運動学計算モデルを用いることによ
って計算が可能となり、図9のような修正された軌道を
通る。また図11に示すようなロボット手先の姿勢の3
自由度に対しても同様に本発明を適用することによっ
て、特異点における計算が可能になり、特異点近傍の不
安定な動作を防ぐことができる。図11に示すロボット
における特異点はθ2 が0となった場合で、この時
θ1 、θ3 の関節角を求めることができないが、特異点
における逆運動学計算モデルにθ1 を固定とするような
モデルを設定することによって計算が可能となる。また
特異点付近ではθ1 、θ3 の関節の移動が大きくなり動
作が不安定になることがあるが、特異点での逆運動学計
算モデルと非特異点での逆運動学計算モデルとの加重平
均をとることによって安定した動作が可能となる。
【0020】
【発明の効果】以上述べたように本発明によれば、ロボ
ットが特異点に入った時に特異点での逆運動学モデルを
定義してこれを用いて計算することにより特異点での動
作を可能とし、特異点付近で特異点と非特異点での逆運
動学計算結果の特異点からの距離に対する加重を与え加
重平均をとることによって特異点付近でのロボットの動
作を安定化することができる。
ットが特異点に入った時に特異点での逆運動学モデルを
定義してこれを用いて計算することにより特異点での動
作を可能とし、特異点付近で特異点と非特異点での逆運
動学計算結果の特異点からの距離に対する加重を与え加
重平均をとることによって特異点付近でのロボットの動
作を安定化することができる。
【図1】本発明の実施例を示す図
【図2】従来例の制御ブロック図
【図3】3自由度ロボットの例を示す図
【図4】特異点の説明図
【図5】特異点における逆運動学モデルの例を示す図
【図6】非特異点と特異点を説明する図
【図7】加重係数の例を説明する図
【図8】目標軌道と実軌道の例(内部特異点)を示す図
【図9】目標軌道と実軌道の例(外部特異点)を示す図
【図10】図8の目標軌道と実軌道の関節角変化を示す
図
図
【図11】ロボット手先の3自由度の例を示す図
1 位置指令生成部 2 ロボットの機構が持つ特異点の中で前記位置指令値
に最も近接する特異点の位置と前記位置指令値との距離
を計算する手段 3 特異点近傍に手先が侵入したことを検出する特異点
検出手段 4 侵入した特異点とその侵入経路に応じて逆運動学の
計算モデルを切替える手段 5 逆運動学の計算モデル 6 侵入特異点に設定した逆運動学計算モデルから求め
た関節角度と非特異点での逆運動学計算モデルから求め
た関節角度の加重平均を求める手段
に最も近接する特異点の位置と前記位置指令値との距離
を計算する手段 3 特異点近傍に手先が侵入したことを検出する特異点
検出手段 4 侵入した特異点とその侵入経路に応じて逆運動学の
計算モデルを切替える手段 5 逆運動学の計算モデル 6 侵入特異点に設定した逆運動学計算モデルから求め
た関節角度と非特異点での逆運動学計算モデルから求め
た関節角度の加重平均を求める手段
Claims (2)
- 【請求項1】 作業座標系における手先の位置及び姿勢
の指令を生成する位置指令生成部と、前記位置指令生成
部より生成された位置指令を各関節の角度に変換する逆
運動学変換部とを持つ多関節ロボットの制御装置におい
て、 前記逆運動学変換部は、ロボットの機構が持つ特異点の
中で前記位置指令値に最も近接する特異点の位置と前記
位置指令値との距離を計算する手段と、特異点近傍に手
先が侵入したことを検出する特異点検出手段と、侵入し
た特異点とその侵入経路に応じて逆運動学の計算モデル
を切替える手段と、侵入特異点に設定した逆運動学計算
モデルから求めた関節角度と非特異点での逆運動学計算
モデルから求めた関節角度の加重平均を求める手段とか
らなることを特徴とする多関節ロボットの制御装置。 - 【請求項2】 前記加重平均を求める手段において、位
置指令値と特異点との距離に応じて加重平均の重み係数
を変化させることを特徴とする請求項1記載の多関節ロ
ボット制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12531393A JPH06312392A (ja) | 1993-04-28 | 1993-04-28 | 多関節ロボットの制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12531393A JPH06312392A (ja) | 1993-04-28 | 1993-04-28 | 多関節ロボットの制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06312392A true JPH06312392A (ja) | 1994-11-08 |
Family
ID=14907020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12531393A Pending JPH06312392A (ja) | 1993-04-28 | 1993-04-28 | 多関節ロボットの制御装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06312392A (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103481288A (zh) * | 2013-08-27 | 2014-01-01 | 浙江工业大学 | 一种5关节机器人末端工具位姿控制方法 |
JP2014014901A (ja) * | 2012-07-09 | 2014-01-30 | Toshiba Corp | ロボット制御装置 |
JP2014076498A (ja) * | 2012-10-09 | 2014-05-01 | Sinfonia Technology Co Ltd | 多関節ロボット及び半導体ウェハ搬送装置 |
EP1877728B1 (en) | 2005-04-25 | 2015-04-01 | Renishaw plc | Method of path planning |
KR20160132896A (ko) * | 2014-03-17 | 2016-11-21 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 원격조작 수술 시스템 및 역기구학을 이용한 조인트 한계에서의 제어 방법 |
JP2017136658A (ja) * | 2016-02-02 | 2017-08-10 | 三菱重工業株式会社 | 作動機構の制御装置 |
CN115305980A (zh) * | 2022-08-16 | 2022-11-08 | 湖南中联重科智能高空作业机械有限公司 | 用于控制折叠臂式臂架的方法、处理器、装置及工程设备 |
-
1993
- 1993-04-28 JP JP12531393A patent/JPH06312392A/ja active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1877728B1 (en) | 2005-04-25 | 2015-04-01 | Renishaw plc | Method of path planning |
JP2014014901A (ja) * | 2012-07-09 | 2014-01-30 | Toshiba Corp | ロボット制御装置 |
JP2014076498A (ja) * | 2012-10-09 | 2014-05-01 | Sinfonia Technology Co Ltd | 多関節ロボット及び半導体ウェハ搬送装置 |
CN103481288A (zh) * | 2013-08-27 | 2014-01-01 | 浙江工业大学 | 一种5关节机器人末端工具位姿控制方法 |
KR20160132896A (ko) * | 2014-03-17 | 2016-11-21 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 원격조작 수술 시스템 및 역기구학을 이용한 조인트 한계에서의 제어 방법 |
JP2017512553A (ja) * | 2014-03-17 | 2017-05-25 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | 逆運動学を用いた関節制限における制御の遠隔操作手術システム及び方法 |
US10617480B2 (en) | 2014-03-17 | 2020-04-14 | Intuitive Surgical Operations, Inc. | Tele-operative surgical systems and methods of control at joint limits using inverse kinematics |
JP2017136658A (ja) * | 2016-02-02 | 2017-08-10 | 三菱重工業株式会社 | 作動機構の制御装置 |
CN115305980A (zh) * | 2022-08-16 | 2022-11-08 | 湖南中联重科智能高空作业机械有限公司 | 用于控制折叠臂式臂架的方法、处理器、装置及工程设备 |
CN115305980B (zh) * | 2022-08-16 | 2023-09-15 | 湖南中联重科智能高空作业机械有限公司 | 用于控制折叠臂式臂架的方法、处理器、装置及工程设备 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0086950B1 (en) | Method of controlling an industrial robot | |
US4590577A (en) | Welding robot controlling method | |
US20070030271A1 (en) | Robot controller and robot control method using spline interpolation | |
JPH11277468A (ja) | ロボットの制御装置 | |
KR100253898B1 (ko) | 한 평면내 다자유도 스카라형 로봇의 궤적 제어장치 및 궤적제어방법 및 한 평면내 다자유도 스카라형 로봇의 궤적 제어프로그램을 기록한 컴퓨터 판독 가능한 기록매체 | |
US5495090A (en) | Welding robot | |
JP2020171989A (ja) | ロボット教示システム | |
JPH06312392A (ja) | 多関節ロボットの制御装置 | |
JP3937108B2 (ja) | ロボットの制御方法およびロボット | |
JPH0693209B2 (ja) | ロボツトの円弧補間姿勢制御装置 | |
JP3748454B2 (ja) | 産業用ロボットの制御装置 | |
JPH06332535A (ja) | ロボットの制御装置 | |
JPH07185817A (ja) | 多軸ロボットのウィービング制御方法 | |
JPH02218569A (ja) | 関節型ロボットのptp教示に対する特異点通過補間方法 | |
JP4232196B2 (ja) | ロボットの直接教示装置およびロボットシステム | |
JP2686293B2 (ja) | 3次元レーザ加工方法 | |
JP3930956B2 (ja) | 一平面内多自由度スカラ型ロボットの軌跡制御装置および軌跡制御方法、並びに、一平面内多自由度スカラ型ロボットの軌跡制御プログラムを記録したコンピュータ読み取り可能な記録媒体 | |
JP3749319B2 (ja) | 建設機械の軌跡制御装置 | |
JPS63305407A (ja) | ロボットの軌跡制御方式 | |
JPH0631664A (ja) | 倣い制御ロボットの制御装置 | |
KR0155281B1 (ko) | 다관절 로보트의 직선보간방법 | |
JPH0713642A (ja) | マニピュレータのコンプライアンス制御装置 | |
JPH0343171A (ja) | 多関節ロボット制御装置 | |
WO2020170306A1 (ja) | ロボット制御装置 | |
JPH0772910A (ja) | 多関節ロボットの制御方法 |