JPH0629470A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPH0629470A
JPH0629470A JP3121892A JP3121892A JPH0629470A JP H0629470 A JPH0629470 A JP H0629470A JP 3121892 A JP3121892 A JP 3121892A JP 3121892 A JP3121892 A JP 3121892A JP H0629470 A JPH0629470 A JP H0629470A
Authority
JP
Japan
Prior art keywords
type
layer
integrated circuit
semiconductor integrated
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3121892A
Other languages
Japanese (ja)
Inventor
Hitoshi Kijima
仁志 木島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3121892A priority Critical patent/JPH0629470A/en
Publication of JPH0629470A publication Critical patent/JPH0629470A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To prevent latch-up due to a parasitic thyristor of a P-N-P-N junction. CONSTITUTION:A Be-doped P-type layer 2 or a B-doped P-type layer 2a in which resistivity becomes 1/2-1/3 of that of a P-type silicon substrate 1 is formed on the substrate 1 by ion implanting. Then, after an N-type buried layer 3 is formed, an N-type epitaxial layer 6 is grown. Thereafter, a P-type diffused layer 7 and an N-type diffused layer 8 are formed, and an element of a semiconductor integrated circuit having an N-P-N transistor, a resistance element and a capacitor is completed. Thus, a resistance value of the substrate (resistance R2) is reduced, and a voltage drop between an emitter and a base of a parasitic N-P-N transistor Q3 is reduced. The transistor Q3 is scarcely operated to prevent generation of latch-up.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体集積回路に関し、
特に寄生サイリスタ作用によるラッチアップを防止した
半導体集積回路に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor integrated circuit,
In particular, the present invention relates to a semiconductor integrated circuit that prevents latch-up due to a parasitic thyristor action.

【0002】[0002]

【従来の技術】従来の半導体集積回路について、図2を
参照して説明する。
2. Description of the Related Art A conventional semiconductor integrated circuit will be described with reference to FIG.

【0003】はじめにP型シリコン基板1にN型埋込層
3を形成したのち、N型エピタキシャル層6を成長させ
る。つぎに素子間分離のため、P型チャネルストッパ4
および選択酸化によりLOCOS膜5を形成する。つぎ
にP型拡散層7およびN型拡散層8を形成して、NPN
トランジスタ、抵抗素子、キャパシタ(コンデンサ)か
らなる半導体集積回路の素子部が完成する。
First, an N type buried layer 3 is formed on a P type silicon substrate 1, and then an N type epitaxial layer 6 is grown. Next, the P-type channel stopper 4 is used for element separation.
Then, the LOCOS film 5 is formed by selective oxidation. Next, the P-type diffusion layer 7 and the N-type diffusion layer 8 are formed, and the NPN
The element portion of the semiconductor integrated circuit including the transistor, the resistance element, and the capacitor is completed.

【0004】[0004]

【発明が解決しようとする課題】図2の半導体集積回路
において、P型半導体層とN型半導体層とが隣接してP
NPN接合となっているところで、ラッチアップと称す
る寄生サイリスタ作用が生じる恐れがある。P型拡散層
7、N型エピタキシャル層6、P型シリコン基板1(抵
抗R2 )、N型埋込層3がPNPN接合となっている。
In the semiconductor integrated circuit of FIG. 2, the P-type semiconductor layer and the N-type semiconductor layer are adjacent to each other and P-type.
A parasitic thyristor action called latch-up may occur at the NPN junction. The P-type diffusion layer 7, the N-type epitaxial layer 6, the P-type silicon substrate 1 (resistor R 2 ) and the N-type buried layer 3 form a PNPN junction.

【0005】図2の等価回路図である図3を参照して、
この寄生サイリスタ作用を説明する。
Referring to FIG. 3 which is an equivalent circuit diagram of FIG.
This parasitic thyristor action will be described.

【0006】PNPトランジスタQ1 とPNPトランジ
スタQ3 とが寄生サイリスタを構成している。
The PNP transistor Q 1 and the PNP transistor Q 3 form a parasitic thyristor.

【0007】トリガーとなるSW(スイッチ)が入る
と、寄生PNPトランジスタQ1 のコレクタ電流がP型
シリコン基板1(抵抗R2 )を通じて接地される。この
とき抵抗R2 の両端で電位差が生じ、寄生NPNトラン
ジスタQ3 を動作させるに十分な電圧になり、N型拡散
層(抵抗R1 )にコレクタ電流が流れる。つぎにN型拡
散層(抵抗R1 )の両端に電位差が生じて、寄生PNP
トランジスタQ1 を動作させるに十分な電圧となる。P
型シリコン基板1にコレクタ電流が流れて電位差が生じ
る。
When a switch (switch) serving as a trigger is turned on, the collector current of the parasitic PNP transistor Q 1 is grounded through the P-type silicon substrate 1 (resistor R 2 ). At this time, a potential difference is generated between both ends of the resistor R 2 , and the voltage is sufficient to operate the parasitic NPN transistor Q 3 , and a collector current flows in the N-type diffusion layer (resistor R 1 ). Next, a potential difference is generated at both ends of the N-type diffusion layer (resistor R 1 ) and the parasitic PNP is generated.
The voltage is sufficient to operate the transistor Q 1 . P
A collector current flows through the silicon substrate 1 to generate a potential difference.

【0008】さらに寄生NPNトランジスタQ3 が動作
して、N型拡散層(抵抗R1 )にコレクタ電流が流れ
る。これらの繰り返しにより電源Vから接地に大電流が
流れ続けて、半導体集積回路を破壊するという問題があ
った。
Further, the parasitic NPN transistor Q 3 operates and a collector current flows through the N type diffusion layer (resistor R 1 ). Due to these repetitions, a large current continues to flow from the power supply V to the ground, and there is a problem that the semiconductor integrated circuit is destroyed.

【0009】[0009]

【課題を解決するための手段】本発明の半導体集積回路
においては、P型シリコン基板の一主面上に全面にわた
って高濃度P型半導体層が形成され、前記高濃度P型半
導体層の上にN型エピタキシャル層が形成されている。
In a semiconductor integrated circuit according to the present invention, a high concentration P type semiconductor layer is formed over the entire main surface of a P type silicon substrate, and the high concentration P type semiconductor layer is formed on the high concentration P type semiconductor layer. An N type epitaxial layer is formed.

【0010】[0010]

【実施例】本発明の第1の実施例について、図1(a)
を参照して説明する。
EXAMPLE FIG. 1A shows a first example of the present invention.
Will be described with reference to.

【0011】はじめにP型シリコン基板1に2族のベリ
リウム(Be)をイオン注入して、抵抗率がP型シリコ
ン基板1の1/2〜1/3となるBeドープP型層2を
形成する。つぎにN型埋込層3を形成したのち、N型エ
ピタキシャル層6を成長させる。つぎにP型拡散層7お
よびN型拡散層8を形成して、NPNトランジスタ、抵
抗素子、キャパシタからなる半導体集積回路の素子部が
完成する。
First, group 2 beryllium (Be) is ion-implanted into the P-type silicon substrate 1 to form a Be-doped P-type layer 2 having a resistivity of 1/2 to 1/3 that of the P-type silicon substrate 1. . Next, after forming the N-type buried layer 3, the N-type epitaxial layer 6 is grown. Next, the P-type diffusion layer 7 and the N-type diffusion layer 8 are formed to complete the element portion of the semiconductor integrated circuit including the NPN transistor, the resistance element, and the capacitor.

【0012】P型シリコン基板1には3族のボロンが小
量ドープされているので高抵抗である。一方、Beドー
プP型層2にはボロンの2倍のキャリアをもつ2族のベ
リリウムがイオン注入されているので、抵抗率を低くす
ることができる。
Since the P-type silicon substrate 1 is lightly doped with group III boron, it has a high resistance. On the other hand, the Be-doped P-type layer 2 is ion-implanted with beryllium of Group 2 having twice the carrier of boron, so that the resistivity can be lowered.

【0013】BeドープP型層2がP型シリコン基板1
に並列接続されて、抵抗R2 の抵抗値が小さくなり、寄
生NPNトランジスタQ3 のエミッタ−ベース間の電圧
降下が小さくなる。寄生NPNトランジスタQ3 が動作
しにくくなり、ラッチアップの発生を防ぐことができ
る。
The Be-doped P-type layer 2 is a P-type silicon substrate 1.
Connected in parallel with each other, the resistance value of the resistor R 2 becomes small and the voltage drop between the emitter and the base of the parasitic NPN transistor Q 3 becomes small. The parasitic NPN transistor Q 3 becomes difficult to operate, and the occurrence of latch-up can be prevented.

【0014】つぎに本発明の第2の実施例について、図
1(b)を参照して説明する。
Next, a second embodiment of the present invention will be described with reference to FIG.

【0015】本実施例では、P型シリコン基板1に3族
のボロンを高濃度にイオン注入して、抵抗率がP型シリ
コン基板1の1/2〜1/3となるBドープP型層2a
を形成した。
In this embodiment, a B-doped P-type layer having a resistivity of 1/2 to 1/3 that of the P-type silicon substrate 1 is obtained by ion-implanting group III boron into the P-type silicon substrate 1 at a high concentration. 2a
Was formed.

【0016】[0016]

【発明の効果】P型シリコン基板に、抵抗率が1/2〜
1/3のP型層を形成する。その結果、半導体集積回路
に存在する寄生PNPN接合における寄生NPNトラン
ジスタのエミッタ−ベース間が低抵抗となり、電圧降下
が小さくなる。寄生NPNトランジスタが動作しにくく
なり、ラッチアップを防止することができる。
The p-type silicon substrate has a resistivity of 1/2 to
A 1/3 P-type layer is formed. As a result, the resistance between the emitter and the base of the parasitic NPN transistor in the parasitic PNPN junction existing in the semiconductor integrated circuit becomes low, and the voltage drop becomes small. The parasitic NPN transistor becomes difficult to operate, and latch-up can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明の第1の実施例を示す断面図で
ある。(b)は本発明の第2の実施例を示す断面図であ
る。
FIG. 1A is a sectional view showing a first embodiment of the present invention. (B) is a sectional view showing a second embodiment of the present invention.

【図2】従来の半導体集積回路を示す断面図である。FIG. 2 is a sectional view showing a conventional semiconductor integrated circuit.

【図3】半導体集積回路の寄生サイリスタ構造を示す等
価回路図である。
FIG. 3 is an equivalent circuit diagram showing a parasitic thyristor structure of a semiconductor integrated circuit.

【符号の説明】[Explanation of symbols]

1 P型シリコン基板 2 BeドープP型層 2a BドープP型層 3 N型埋込層 4 P型チャネルストッパ 5 LOCOS膜 6 N型エピタキシャル層 7 P型拡散層 8 N型拡散層 Q1 ,Q2 寄生PNPトランジスタ Q3 寄生NPNトランジスタ R1 N型拡散層抵抗 R2 P型シリコン基板抵抗 V 電源 SW スイッチ1 P-type silicon substrate 2 Be-doped P-type layer 2a B-doped P-type layer 3 N-type buried layer 4 P-type channel stopper 5 LOCOS film 6 N-type epitaxial layer 7 P-type diffusion layer 8 N-type diffusion layer Q 1 , Q 2 Parasitic PNP transistor Q 3 Parasitic NPN transistor R 1 N-type diffusion layer resistance R 2 P-type silicon substrate resistance V Power supply SW switch

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 P型シリコン基板の一主面上に全面にわ
たって高濃度P型半導体層が形成され、前記高濃度P型
半導体層の上にN型エピタキシャル層が形成された半導
体集積回路。
1. A semiconductor integrated circuit in which a high-concentration P-type semiconductor layer is formed over the entire main surface of a P-type silicon substrate, and an N-type epitaxial layer is formed on the high-concentration P-type semiconductor layer.
【請求項2】 ベリリウムを不純物とする高濃度P型半
導体層が形成された請求項1記載の半導体集積回路。
2. The semiconductor integrated circuit according to claim 1, wherein a high-concentration P-type semiconductor layer containing beryllium as an impurity is formed.
JP3121892A 1992-02-19 1992-02-19 Semiconductor integrated circuit Withdrawn JPH0629470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3121892A JPH0629470A (en) 1992-02-19 1992-02-19 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3121892A JPH0629470A (en) 1992-02-19 1992-02-19 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH0629470A true JPH0629470A (en) 1994-02-04

Family

ID=12325300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3121892A Withdrawn JPH0629470A (en) 1992-02-19 1992-02-19 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH0629470A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7462530B2 (en) * 2001-06-28 2008-12-09 Renesas Technology Corp. Method for manufacturing a semiconductor device having an element isolation region

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7462530B2 (en) * 2001-06-28 2008-12-09 Renesas Technology Corp. Method for manufacturing a semiconductor device having an element isolation region
US7960796B2 (en) 2001-06-28 2011-06-14 Renesas Electronics Corporation Semiconductor device having element isolation region

Similar Documents

Publication Publication Date Title
US6590273B2 (en) Semiconductor integrated circuit device and manufacturing method thereof
JP3306273B2 (en) Semiconductor integrated circuit and manufacturing method thereof
US20020079555A1 (en) Semiconductor integrated circuit device and manufacturing method thereof
JPH07297373A (en) Integrated driver circuit device for inductive load element
JP2748988B2 (en) Semiconductor device and manufacturing method thereof
US6815799B2 (en) Semiconductor integrated circuit device
EP0043007A2 (en) Saturation-limited bipolar transistor circuit structure and method of making
US4180827A (en) NPN/PNP Fabrication process with improved alignment
JPH0629470A (en) Semiconductor integrated circuit
JPS6230703B2 (en)
JP2763432B2 (en) Semiconductor device
JP2777054B2 (en) Semiconductor device
JP2648027B2 (en) IIL type semiconductor device
JPS6060753A (en) Semiconductor device
JP3249355B2 (en) Semiconductor integrated circuit and manufacturing method thereof
JP2833913B2 (en) Bipolar integrated circuit device
JP3135615B2 (en) Semiconductor device and manufacturing method thereof
JPH07273127A (en) Semiconductor device
KR940008215B1 (en) Transistor device with both sides characteristic
JPH07302800A (en) Semiconductor device
EP0582076A1 (en) Emitter coupled logic semiconductor device
JPS6364058B2 (en)
JPS6132823B2 (en)
JPH04290234A (en) Semiconductor device
JPH08153800A (en) Semiconductor integrated circuit device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518