JPH04290234A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH04290234A
JPH04290234A JP3053051A JP5305191A JPH04290234A JP H04290234 A JPH04290234 A JP H04290234A JP 3053051 A JP3053051 A JP 3053051A JP 5305191 A JP5305191 A JP 5305191A JP H04290234 A JPH04290234 A JP H04290234A
Authority
JP
Japan
Prior art keywords
type
concentration
layer
emitter
buried layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3053051A
Other languages
Japanese (ja)
Inventor
Masaki Kondo
正樹 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3053051A priority Critical patent/JPH04290234A/en
Publication of JPH04290234A publication Critical patent/JPH04290234A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To lower the concentration of an emitter without causing a punchthrough and without deteriorating a current gain by a method wherein the junction of an N-type epitaxial layer with a P-type buried layer is used as an emitter-base junction. CONSTITUTION:Arsenic or anitmony is introduced into a P-type silicon substrate 1 by an ion implantation operation or a thermal diffusion operation; a high- concentration N-type buried layer 2 is formed; boron ions are introduced to form a P-type buried layer 3; an N-type epitaxial layer 4 is grown. In addition, a high-concentration N-type collector extraction layer 5 and a high-concentration base extraction layer 6 are formed; after that, a high-concentration emitter 7 is formed. When a low-concentration deep subemitter is formed instead of the N-type epitaxial layer 4, the region of the P-type base buried layer is made thin and a high-frequency characteristic can be enhanced.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はバイポーラ集積回路に関
するものである。
FIELD OF THE INVENTION This invention relates to bipolar integrated circuits.

【0002】0002

【従来の技術】従来のNPNバイポーラトランジスタの
深さ方向の不純物分布を図4に示す。
2. Description of the Related Art FIG. 4 shows the impurity distribution in the depth direction of a conventional NPN bipolar transistor.

【0003】表面から1020〜1021cm−3のピ
ーク濃度の高濃度N型エミッタに続いて、イオン注入法
などにより形成された1×1018〜5×1018cm
−3のピーク濃度のP型ベースが形成されている。
Following the high concentration N-type emitter with a peak concentration of 1020 to 1021 cm from the surface, a 1×1018 to 5×1018 cm emitter is formed by ion implantation or the like.
A P-type base with a peak concentration of −3 is formed.

【0004】さらに1015〜1016cm−3の一定
濃度のN型エピタキシャル層4に続く1018〜101
9cm−3のピーク濃度の高濃度N型コレクタ埋込層の
あと1014〜1015cm−3のP型シリコン基板が
形成されている。
Further, the N-type epitaxial layer 4 having a constant concentration of 1015 to 1016 cm-3 is followed by 1018 to 101
A P-type silicon substrate with a thickness of 1014 to 1015 cm-3 is formed after a high concentration N-type collector buried layer with a peak concentration of 9 cm-3.

【0005】従来はこのように、コレクタ−エミッタ間
のパンチスルー防止や電流利得の向上のため、エミッタ
−ベース間は1018cm−3以上の濃度で接合が形成
されている。
Conventionally, in order to prevent punch-through between the collector and emitter and improve current gain, a junction is conventionally formed between the emitter and the base at a concentration of 10 18 cm -3 or more.

【0006】[0006]

【発明が解決しようとする課題】従来のバイポーラトラ
ンジスタにおいては、高濃度N型エミッタとP型ベース
層とが、非常に高濃度で接合を形成している。
In a conventional bipolar transistor, a highly doped N-type emitter and a P-type base layer form a very highly doped junction.

【0007】そのためエミッタ−ベース接合に逆方向電
圧を印加して生じる空乏層内の電界が非常に高くなる。 図5に示すように、ホットキャリアを発生してエミッタ
−ベース接合の表面付近にトラップ準位13を形成して
、エミッタ−ベース接合に順方向バイアスを印加したと
きベース電流にリークを生じる。
[0007] Therefore, the electric field within the depletion layer generated by applying a reverse voltage to the emitter-base junction becomes extremely high. As shown in FIG. 5, hot carriers are generated to form a trap level 13 near the surface of the emitter-base junction, causing a leak in the base current when a forward bias is applied to the emitter-base junction.

【0008】エミッタ−ベース接合に長時間逆方向電圧
(逆バイアス)を印加していると、図6に示すようにコ
レクタ電流の小さい領域から電流利得が低下してくると
いう問題があった。
[0008] When a reverse voltage (reverse bias) is applied to the emitter-base junction for a long time, there is a problem in that the current gain decreases from the region where the collector current is small, as shown in FIG.

【0009】[0009]

【課題を解決するための手段】本発明の半導体装置は、
一導電型の半導体基板上にコレクタとなる逆導電型の第
1埋込層が形成され、該第1埋込層の一部にベースとな
る一導電型の第2埋込層が形成され、全面に逆導電型の
エピタキシャル層が形成されたバイポーラトランジスタ
を含むものである。
[Means for Solving the Problems] A semiconductor device of the present invention includes:
A first buried layer of an opposite conductivity type serving as a collector is formed on a semiconductor substrate of one conductivity type, and a second buried layer of one conductivity type serving as a base is formed in a part of the first buried layer; It includes a bipolar transistor in which an epitaxial layer of opposite conductivity type is formed over the entire surface.

【0010】0010

【実施例】本発明の第1の実施例について、図1(a)
,(b)を参照して説明する。
[Example] Regarding the first example of the present invention, FIG. 1(a)
, (b).

【0011】図1(b)に示すように、表面濃度102
0〜1021cm−3の高濃度N型エミッタにサブエミ
ッタとなるN型エピタキシャル層が続いている。そのあ
と1017〜1018cm−3のピーク濃度のP型ベー
ス、1018〜1019cm−3のN型埋込層からなる
コレクタ、1014〜1015cm−3のP型シリコン
基板が形成されている。
As shown in FIG. 1(b), the surface concentration 102
An N-type epitaxial layer serving as a sub-emitter follows the N-type emitter with a high concentration of 0 to 1021 cm-3. Thereafter, a P-type base with a peak concentration of 1017 to 1018 cm-3, a collector consisting of an N-type buried layer of 1018 to 1019 cm-3, and a P-type silicon substrate with a peak concentration of 1014 to 1015 cm-3 are formed.

【0012】図1(a)に示すように、P型シリコン基
板1にイオン注入または熱拡散により砒素またはアンチ
モンを導入して高濃度N型埋込層2を形成し、硼素を導
入してP型埋込層3を形成し、N型エピタキシャル層4
を成長する。
As shown in FIG. 1(a), arsenic or antimony is introduced into a P-type silicon substrate 1 by ion implantation or thermal diffusion to form a high concentration N-type buried layer 2, and boron is introduced to form a P-type buried layer 2. A type buried layer 3 is formed, and an N type epitaxial layer 4 is formed.
grow.

【0013】さらに高濃度N型コレクタ引き出し層5お
よび高濃度ベース引き出し層6を形成してから、高濃度
N型エミッタ7を形成する。
Further, after forming a highly doped N-type collector lead-out layer 5 and a heavily-doped base lead-out layer 6, a highly doped N-type emitter 7 is formed.

【0014】つぎに本発明の第2の実施例について、図
2を参照して説明する。これはN型エピタキシャル層の
代りに、低濃度で深いサブエミッタを形成することによ
り、P型ベース埋込層の領域を薄くして高周波特性を向
上させることができる。
Next, a second embodiment of the present invention will be explained with reference to FIG. By forming a deep, low-concentration sub-emitter instead of the N-type epitaxial layer, the region of the P-type base buried layer can be made thinner and the high frequency characteristics can be improved.

【0015】つぎに本発明の第3の実施例について、図
3を参照して説明する。
Next, a third embodiment of the present invention will be described with reference to FIG.

【0016】これは高濃度P型エミッタ12を形成して
、N型エピタキシャル層4をベースとし、P型埋込層3
およびP型引き出し層6をコレクタとするPNPトラン
ジスタを付加して、コンプリメンタリ回路を構成したも
のである。P型絶縁分離層9およびフィールド酸化膜8
により、素子間分離を図っている。
In this case, a heavily doped P-type emitter 12 is formed, an N-type epitaxial layer 4 is used as a base, and a P-type buried layer 3 is formed.
A complementary circuit is constructed by adding a PNP transistor having the P-type extraction layer 6 as a collector. P-type insulation isolation layer 9 and field oxide film 8
This enables isolation between elements.

【0017】[0017]

【発明の効果】エミッタ−ベース接合としてN型エピタ
キシャル層とP型埋込層との接合を用いることにより、
パンチスルーや電流利得の劣化を起すことなくエミッタ
濃度を下げることができた。
[Effect of the invention] By using a junction between an N-type epitaxial layer and a P-type buried layer as an emitter-base junction,
The emitter concentration could be lowered without causing punch-through or deterioration of current gain.

【0018】エミッタ−ベース間に逆方向電圧を印加し
たときの強電界によるホットキャリアのトラップが原因
とされている電流利得の劣化を解消した。
[0018] Deterioration in current gain caused by trapping of hot carriers due to a strong electric field when a reverse voltage is applied between the emitter and base has been eliminated.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の第1の実施例を示す断面図および不純
物分布のグラフである。
FIG. 1 is a cross-sectional view and a graph of impurity distribution showing a first embodiment of the present invention.

【図2】本発明の第2の実施例を示す不純物分布のグラ
フである。
FIG. 2 is a graph of impurity distribution showing a second example of the present invention.

【図3】本発明の第3の実施例を示す断面図である。FIG. 3 is a sectional view showing a third embodiment of the present invention.

【図4】従来技術によるNPNトランジスタの不純物分
布のグラフである。
FIG. 4 is a graph of impurity distribution of an NPN transistor according to the prior art.

【図5】従来技術の問題点を示す断面図である。FIG. 5 is a cross-sectional view showing problems in the prior art.

【図6】従来技術によるNPNトランジスタの電流利得
の劣化を示すグラフである。
FIG. 6 is a graph showing the deterioration of current gain of an NPN transistor according to the prior art.

【符号の説明】[Explanation of symbols]

1    P型シリコン基板 2    高濃度N型埋込層 3    P型埋込層 4    N型エピタキシャル層 5    コレクタ引き出し層 6    ベース引き出し層 7    高濃度N型エミッタ 8    フィールド酸化膜 9    P型絶縁層 10    高濃度P型エミッタ 11    P型ベース 12    酸化シリコン膜 13    トラップ準位 1 P-type silicon substrate 2 High concentration N-type buried layer 3 P-type buried layer 4 N-type epitaxial layer 5 Collector drawer layer 6 Base drawer layer 7 High concentration N type emitter 8 Field oxide film 9 P-type insulation layer 10 High concentration P type emitter 11 P type base 12 Silicon oxide film 13 Trap level

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  一導電型の半導体基板上にコレクタと
なる逆導電型の第1埋込層が形成され、該第1埋込層の
一部にベースとなる一導電型の第2埋込層が形成され、
全面に逆導電型のエピタキシャル層が形成されたバイポ
ーラトランジスタを含む半導体装置。
1. A first buried layer of an opposite conductivity type serving as a collector is formed on a semiconductor substrate of one conductivity type, and a second buried layer of one conductivity type serving as a base is formed in a part of the first buried layer. layers are formed,
A semiconductor device that includes a bipolar transistor in which an epitaxial layer of opposite conductivity type is formed over the entire surface.
JP3053051A 1991-03-19 1991-03-19 Semiconductor device Pending JPH04290234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3053051A JPH04290234A (en) 1991-03-19 1991-03-19 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3053051A JPH04290234A (en) 1991-03-19 1991-03-19 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH04290234A true JPH04290234A (en) 1992-10-14

Family

ID=12932066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3053051A Pending JPH04290234A (en) 1991-03-19 1991-03-19 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH04290234A (en)

Similar Documents

Publication Publication Date Title
KR100570910B1 (en) Silicon Germanium Heterostructure Bipolar Transistors with Indium-doped Base
JP2703798B2 (en) Method of forming an integrated circuit having PNP and NPN transistors having mutually perpendicular and vertical current flow on a substrate of N-type semiconductor material
KR920001655A (en) Self-aligned Collector Structure for Bipolar Transistors and Method of Injecting The Same
US6459140B1 (en) Indium-enhanced bipolar transistor
US5411898A (en) Method of manufacturing a complementary bipolar transistor
US4669179A (en) Integrated circuit fabrication process for forming a bipolar transistor having extrinsic base regions
JPH08195399A (en) Insulated vertical pnp transistor dispensing with embedded layer
JPH0574789A (en) Manufacture of semiconductor device
JPH04290234A (en) Semiconductor device
JP2004079726A (en) Semiconductor device and manufacturing method therefor
JPH0499328A (en) Bipolar transistor
JPS63175463A (en) Manufacture of bipolar mos integrated circuit
JPH10189755A (en) Semiconductor device and its manufacturing method
JPS6241427B2 (en)
JPH0521442A (en) Semiconductor device
KR19990065744A (en) Bipolar transistor having a diode between a collector and an emitter and a manufacturing method thereof
JP2638431B2 (en) Bipolar transistor
JPH0834214B2 (en) Method for manufacturing semiconductor device
JPH07273127A (en) Semiconductor device
JP3135615B2 (en) Semiconductor device and manufacturing method thereof
KR940002396B1 (en) Manufacturing method of high speed complementary biopolar transistor
JP2943280B2 (en) Method for manufacturing semiconductor device
JP2888652B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JPH07335662A (en) Semiconductor device and its manufacture
JPH09275154A (en) Semiconductor device and its manufacturing method