JPH06290920A - Manufacture of rare earth permanent magnet - Google Patents

Manufacture of rare earth permanent magnet

Info

Publication number
JPH06290920A
JPH06290920A JP5095375A JP9537593A JPH06290920A JP H06290920 A JPH06290920 A JP H06290920A JP 5095375 A JP5095375 A JP 5095375A JP 9537593 A JP9537593 A JP 9537593A JP H06290920 A JPH06290920 A JP H06290920A
Authority
JP
Japan
Prior art keywords
powder
phase
rare earth
main
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5095375A
Other languages
Japanese (ja)
Inventor
Masako Noguchi
雅子 野口
Masahiro Takahashi
昌弘 高橋
Katsuhiko Kojo
勝彦 古城
Shigeo Tanigawa
茂穂 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP5095375A priority Critical patent/JPH06290920A/en
Publication of JPH06290920A publication Critical patent/JPH06290920A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To provide a manufacturing method for a rare-earth permanent magnet using a blending method with which excellent magnetic characteristics can be obtained. CONSTITUTION:(1) Nd-phase coarse powder, obtained by coarsely pulverizing the Nd-phase ingot obtained by melting and casting the raw powder obtained by weighing in such a manner that an Nd composition value is increased, and (2) main phase coarse powder, which is obtained by coarsely pulverizing the main-phase ingot obtained by melting and casting the raw powder obtained by weighing in such a manner that the prescribed low Nd composition value in obtained, are mixed so as to obtain the prescribed Nd composition value. (3) After the mixed powder has been finely pulverized, (4) the finely pulverized powder is molded at 1.0ton/cm<2> in a magnetic field of 10KOe, sintered in vacuum at 1100 deg.C for two hours, a heat treatment is conducted at 900 deg.C for two hours, and after heating at 600 deg.C for one hour, the material is cooled quickly. This sintered material has the residual magnetic flux density Br and the maximum energy product (BH) higher than the sintered material obtained by mixing after the main-phase coarse powder and the Nd-phase coarse powder which are finely pulverized separately, and besides, they are improved in density.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は希土類元素(R)、遷移
金属(T)、ホウ素(B)を主成分とするR−T−B系
金属間化合物磁石(希土類永久磁石)の製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an RTB-based intermetallic compound magnet (rare earth permanent magnet) containing a rare earth element (R), a transition metal (T) and boron (B) as main components. It is a thing.

【0002】[0002]

【従来の技術】一般にR−T−B系磁石の粉末冶金法に
よる製造工程は原料秤量、溶解、粉砕、磁場中配向及び
圧縮成形、焼結及び熱処理の順に進められる。このよう
な製造法では、焼結性を促進するためには比較的高い温
度1070〜1150℃での焼結が必要とされ、焼結温
度を高めると結晶成長して、残留磁束密度Brは増大す
るが、保磁力iHc及び減磁特性の角型性が低下し、一
方焼結温度を低下させると保磁力iHc及び減磁特性の
角型性は向上するが、残留磁束密度Brが低下してしま
い、いずれにしても、最大エネルギー積((BH)ma
x)は不充分なものとなる。
2. Description of the Related Art Generally, the manufacturing process of an RTB magnet by powder metallurgy proceeds in the order of raw material weighing, melting, crushing, orientation in a magnetic field and compression molding, sintering and heat treatment. In such a manufacturing method, sintering at a relatively high temperature of 1070 to 1150 ° C. is required to promote sinterability, and when the sintering temperature is increased, crystal growth occurs and the residual magnetic flux density Br increases. However, the coercive force iHc and the squareness of the demagnetization characteristic are lowered, while the coercive force iHc and the squareness of the demagnetization characteristic are improved when the sintering temperature is lowered, but the residual magnetic flux density Br decreases. In any case, the maximum energy product ((BH) ma
x) is insufficient.

【0003】そこでこのような問題に対して、特公平1
−19461号によって、異なる組成の合金粉末を混合
した成形体を焼結する方法により高い磁石特性を得る希
土類永久磁石の製造方法、すなわちいわゆるブレンディ
ング法が開示された。このブレンディング法は図2に示
されるように、R214Bを主生成相とするRーTーB
系合金粉末(主相粉末)に、この主相粉末よりもRの
含有率が高く融点の低いR−T−B系合金粉末(R相粉
末)を混合して成形した後、焼結することによ
り磁石特性の向上を実現するものである。このように、
低融点であるR相粉末を混合することにより、焼結温度
を低下させ、残留磁束密度を減少せずに保磁力iHcの
向上が実現され、磁気特性の高い焼結体が得られる。
Therefore, Japanese Patent Publication No.
No. -19461 discloses a method for producing a rare earth permanent magnet, that is, a so-called blending method, which obtains high magnet characteristics by a method of sintering a formed body in which alloy powders having different compositions are mixed. As shown in FIG. 2, this blending method uses R-T-B having R 2 T 14 B as a main production phase.
The R-T-B based alloy powder (R phase powder), which has a higher R content and a lower melting point than the main phase powder, is mixed with the system alloy powder (main phase powder), molded, and then sintered. This improves the magnet characteristics. in this way,
By mixing the R-phase powder having a low melting point, the sintering temperature is lowered, the coercive force iHc is improved without reducing the residual magnetic flux density, and a sintered body having high magnetic properties can be obtained.

【0004】[0004]

【発明が解決しようとする課題】しかし以上の特公平1
−19461号によって開示された従来のブレンディン
グ法については次のような問題があった。すなわち、以
上の従来のブレンディング法では、図3に示されるよう
にインゴットの粉砕過程において主相粉末()とR相
粉末()とを別個に粗粉砕()後さらに微粉砕
()し、その後相互の混合が行われている()。し
たがって、得られる混合粉末を主相粉末とR相粉末が充
分に均質に混合したものとすることは容易でなく、その
結果最終的に得られる焼結体の磁気特性が不充分となる
という問題があった。
[Problems to be Solved by the Invention]
The conventional blending method disclosed by No. -19461 has the following problems. That is, in the above conventional blending method, as shown in FIG. 3, the main phase powder () and the R phase powder () are separately coarsely pulverized () and then finely pulverized () in the ingot pulverization process, and then, They are mixed with each other (). Therefore, it is not easy to make the obtained mixed powder into a sufficiently homogeneous mixture of the main phase powder and the R phase powder, and as a result, the magnetic properties of the finally obtained sintered body become insufficient. was there.

【0005】従って本発明は以上の従来技術における問
題に鑑みてなされたものであって、希土類永久磁石をブ
レンディング法によって製造する過程において、主相粉
末とR相粉末とが均質に混合した混合粉末を容易に得、
磁気特性の良好な焼結体を得ることができる希土類永久
磁石の製造方法を提供することを目的とする。
Therefore, the present invention has been made in view of the above problems in the prior art, and in the process of manufacturing a rare earth permanent magnet by a blending method, a mixed powder in which a main phase powder and an R phase powder are homogeneously mixed. Easy to get,
An object of the present invention is to provide a method for producing a rare earth permanent magnet that can obtain a sintered body having good magnetic properties.

【0006】[0006]

【課題を解決するための手段】本発明者は以上の課題を
達成するべく種々検討した結果、ブレンディング法を行
うにあたって、主相粉末とR相粉末とを別個に微粉砕す
る前に主相粉末とR相粉末とを混合し、その後その混合
粉末を微粉砕するようにすれば主相粉末とR相粉末とが
極めて均質に混合した混合粉末を得ることができ、ブレ
ンディング法によって得られる希土類永久磁石の磁気特
性を向上することができることを見出し本発明に想到し
た。
Means for Solving the Problems As a result of various investigations to achieve the above-mentioned objects, the present inventor has found that, when performing the blending method, the main phase powder and the R phase powder are separately pulverized separately. And R-phase powder are mixed, and then the mixed powder is finely pulverized to obtain a mixed powder in which the main phase powder and the R-phase powder are extremely homogeneously mixed, and the rare earth permanent powder obtained by the blending method is obtained. The inventors have found that the magnetic characteristics of the magnet can be improved, and have arrived at the present invention.

【0007】すなわち本発明の希土類永久磁石の製造方
法は、希土類元素(R)、遷移金属(T)、ほう素
(B)を主成分とし、希土類元素(R)の含有量が所定
重量パーセントを越えるR−T系合金よりなるR相イン
ゴットを粉砕して得られるR相粉末と前記希土類元素
(R)の含有量が前記所定重量パーセント未満なるR2
141を主体とする主相インゴットを粉砕して得られ
る主相粉末とを混合して全体としての前記希土類元素
(R)の含有量を前記所定重量パーセントとしたR−T
−B系合金粉末を磁場中で成形した後焼結する希土類永
久磁石の製造方法において、前記R相インゴットおよび
前記主相インゴットを別個に粗粉砕した後混合し、その
混合粉末をさらに微粉砕することを特徴とする。
That is, in the method for producing a rare earth permanent magnet of the present invention, the rare earth element (R), the transition metal (T), and the boron (B) are the main components, and the content of the rare earth element (R) is a predetermined weight percentage. R-phase powder obtained by crushing an R-phase ingot made of an RT-based alloy and the content of the rare earth element (R) is less than the predetermined weight percentage R 2
A main phase powder obtained by crushing a main phase ingot composed mainly of T 14 B 1 is mixed to make the content of the rare earth element (R) as a whole R-T
In a method for producing a rare earth permanent magnet, which comprises molding a B-based alloy powder in a magnetic field and then sintering the mixture, the R-phase ingot and the main-phase ingot are separately coarsely pulverized and then mixed, and the mixed powder is further finely pulverized. It is characterized by

【0008】前記粗粉砕により得られる粉末の粒度を1
5〜25μmとし、前記微粉砕により得られる粉末の粒
度は2〜5μmとするのがよい。それにより、効率の良
い粉砕及び混合が可能となる。また粗粉砕はジョークラ
ッシャー、ロールミル等で行うことができ、一方微粉砕
はボールミル、振動ミル、ジェットミル等で行うことが
できる。
The grain size of the powder obtained by the coarse pulverization is 1
The particle size of the powder obtained by the fine pulverization is preferably 2 to 5 μm. This allows efficient grinding and mixing. Coarse crushing can be carried out with a jaw crusher, roll mill or the like, while fine crushing can be carried out with a ball mill, vibration mill, jet mill or the like.

【0009】前記遷移金属(T)は鉄(Fe)とするこ
とができ、さらに前記希土類元素(R)としてネオジム
(Nd)を含むようにすることにより本発明の製造方法
が有効に機能して保磁力iHc、残留磁束密度Br、最
大エネルギー積((BH)max)共に良好な希土類永
久磁石を得ることができる。
The transition metal (T) may be iron (Fe), and by further containing neodymium (Nd) as the rare earth element (R), the production method of the present invention functions effectively. A rare earth permanent magnet having good coercive force iHc, residual magnetic flux density Br, and maximum energy product ((BH) max) can be obtained.

【0010】なお本発明において各インゴットを得るた
めの原料粉末の溶解は真空あるいは不活性雰囲気中でア
ーク又は高周波加熱によって行うことができ、また各イ
ンゴットを粉砕および混合して得られる粉末は磁場中配
向及び圧縮成形され、かかる磁場中配向及び圧縮成形は
金型を用いて磁場中で同時に行われる。さらに粉末を成
形することによって得られる成形体は1000〜110
0℃の温度範囲で、不活性雰囲気又は真空中で焼結され
る。それにより得られた焼結体に対しては必要に応じ3
00〜900℃程度の温度で熱処理が施される。
In the present invention, the raw material powder for obtaining each ingot can be melted by arc or high frequency heating in a vacuum or an inert atmosphere, and the powder obtained by crushing and mixing each ingot is in a magnetic field. Orientation and compression molding are performed simultaneously in the magnetic field using a mold. A molded body obtained by further molding the powder is 1000 to 110.
Sintering is performed in a temperature range of 0 ° C. in an inert atmosphere or vacuum. If necessary, 3 for the resulting sintered body.
The heat treatment is performed at a temperature of about 00 to 900 ° C.

【0011】[0011]

【実施例】以下に本発明の実施例を図面を参照して説明
する。 実施例1 純度95%以上のFe、Nd、Bを使用し、アルゴン雰
囲気中で高周波加熱により、表1、2に示す各種Nd組
成値のインゴットを得た。表1は主相インゴットの組成
を示し、表2はNd相インゴットの組成を示す。
Embodiments of the present invention will be described below with reference to the drawings. Example 1 Fe, Nd and B having a purity of 95% or more were used and high frequency heating was performed in an argon atmosphere to obtain ingots having various Nd composition values shown in Tables 1 and 2. Table 1 shows the composition of the main phase ingot, and Table 2 shows the composition of the Nd phase ingot.

【0012】[0012]

【表1】(主相インゴット) [Table 1] (Main phase ingot)

【0013】[0013]

【表2】(Nd相インゴット) [Table 2] (Nd phase ingot)

【0014】かかるインゴットを用いて図1に示すフロ
ーチャートにしたがって、希土類永久磁石を製造した。
図1に示されるように先ずNd組成値が高くなるように
秤量して得られた原料粉末を溶解鋳造して得られたNd
相インゴットを粗粉砕し()、Nd相粗粉末を得た。
一方、上記工程とは独立に、Nd組成値が低くなるよう
に秤量して得られた原料粉末を溶解鋳造して得られた主
相インゴットを粗粉砕し()主相粗粉末を得た。次に
これらNd相粗粉末と主相粗粉末を所定のNd組成値と
なるように混合し()、その混合粉末をさらに微粉砕
した()。その微粉砕して得られた混合粉末を用いて
10KOeの磁界中1.0ton/cm2の圧力で成形した
圧粉体を、焼結温度を1100℃に設定して2時間真空
中焼結し、その後得られた焼結体を900℃で2時間熱
処理後さらに600℃で1時間加熱した後、急冷した。
A rare earth permanent magnet was manufactured using the ingot according to the flowchart shown in FIG.
As shown in FIG. 1, Nd obtained by melting and casting raw material powder obtained by first weighing the Nd composition value to be high.
The phase ingot was coarsely crushed () to obtain Nd phase coarse powder.
On the other hand, independently of the above steps, the main phase ingot obtained by melting and casting the raw material powder obtained by weighing so as to have a low Nd composition value was coarsely pulverized to obtain () main phase coarse powder. Next, the Nd phase coarse powder and the main phase coarse powder were mixed so as to have a predetermined Nd composition value (), and the mixed powder was further pulverized (). Using the mixed powder obtained by pulverization, a green compact molded under a pressure of 1.0 ton / cm 2 in a magnetic field of 10 KOe was sintered in vacuum for 2 hours at a sintering temperature of 1100 ° C. Then, the obtained sintered body was heat-treated at 900 ° C. for 2 hours, further heated at 600 ° C. for 1 hour, and then rapidly cooled.

【0015】表3に主相粉末およびNd相粉末の配合組
み合わせおよび配合比率(wt%)を示す。また、表4に
混合により得られた各混合粉末の配合組成を示す。
Table 3 shows the combination and mixing ratio (wt%) of the main phase powder and the Nd phase powder. Further, Table 4 shows the composition of each mixed powder obtained by mixing.

【0016】[0016]

【表3】
(wt%)
[Table 3]
(Wt%)

【0017】[0017]

【表4】 [Table 4]

【0018】比較例 粗粉砕後、Nd相と主相とを別個に微粉砕し、その後混
合した他は実施例と同様にして焼結体を得た。
Comparative Example A sintered body was obtained in the same manner as in Example except that the Nd phase and the main phase were separately finely pulverized after coarse pulverization and then mixed.

【0019】表5に実施例および比較例によって得られ
た焼結体についてその磁気特性および密度を調査した結
果を示す。
Table 5 shows the results of examining the magnetic properties and the density of the sintered bodies obtained in the examples and the comparative examples.

【0020】[0020]

【表5】 [Table 5]

【0021】表5に示されるように主相粗粉末とNd相
粗粉末とを混合後微粉砕して得られた実施例の焼結体
は、主相粗粉末とNd相粗粉末とを別個に微粉砕した後
混合して得られた比較例の焼結体に比して、残留磁束密
度Br、最大エネルギ−積(BH)maxが高く、さらに
密度も向上している。
As shown in Table 5, the main phase coarse powder and the Nd phase coarse powder were separated from each other in the sintered body of the example obtained by mixing the main phase coarse powder and the Nd phase coarse powder and then finely pulverizing them. The residual magnetic flux density Br and the maximum energy product (BH) max are higher and the density is improved as compared with the sintered body of the comparative example obtained by finely pulverizing and mixing.

【0022】なお、上記実施例では、R−T−B系磁石
として、Nd−Dy−Fe−B系磁石の場合についての
み述べたが、希土類元素(R)としてNd、Dy以外の
他の希土類元素を用いても本発明による製造方法によ
り、磁気特性を向上することができる。また、R−T系
合金として、R−T−B合金の例を示したが、R−T合
金、またはR−T−C合金を用いてもよい。
In the above embodiments, only the case of the Nd-Dy-Fe-B system magnet was described as the R-T-B system magnet, but the rare earth element (R) other than Nd and Dy is used. Even if an element is used, the magnetic characteristics can be improved by the manufacturing method according to the present invention. Moreover, although the example of the RTB alloy is shown as the RT alloy, the RT alloy or the RTC alloy may be used.

【0023】[0023]

【発明の効果】以上のように本発明の希土類永久磁石の
製造方法によれば、希土類永久磁石をブレンディング法
によって製造する過程において、主相インゴット及びR
相インゴットを別個に粗粉砕した後混合し、その混合粉
末をさらに微粉砕するようにしたので、主相粉末とR相
粉末とを充分に均質に混合して、磁気特性の良好な焼結
体を得ることができ、永久磁石の磁気特性を改善するこ
とができる。
As described above, according to the method for producing a rare earth permanent magnet of the present invention, in the process of producing a rare earth permanent magnet by the blending method, the main phase ingot and R
Since the phase ingots were separately roughly crushed and then mixed, and the mixed powder was further finely crushed, the main phase powder and the R phase powder were sufficiently homogeneously mixed, and a sintered body having good magnetic properties was obtained. Can be obtained, and the magnetic characteristics of the permanent magnet can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例の希土類永久磁石の製造方
法のフローチャートを示す図である。
FIG. 1 is a diagram showing a flowchart of a method for manufacturing a rare earth permanent magnet according to an embodiment of the present invention.

【図2】 従来の希土類永久磁石の製造方法の実施例の
フローチャートを示す図である。
FIG. 2 is a diagram showing a flowchart of an embodiment of a conventional method for manufacturing a rare earth permanent magnet.

【図3】 従来の希土類永久磁石の製造方法のフローチ
ャートを更に詳細に示す他の図である。
FIG. 3 is another diagram showing in more detail a flowchart of a conventional method for manufacturing a rare earth permanent magnet.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/053 // H01F 7/02 Z (72)発明者 谷川 茂穂 埼玉県熊谷市三ヶ尻5200番地 日立金属株 式会社熊谷工場内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical indication location H01F 1/053 // H01F 7/02 Z (72) Inventor Shigeho Tanigawa 5200 Mikkaji, Kumagaya, Saitama Prefecture Hitachi Metals Co., Ltd. Kumagaya Factory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 希土類元素(R)、遷移金属(T)、ほ
う素(B)を主成分とし、希土類元素(R)の含有量が
所定重量パーセントを越えるR−T系合金よりなるR相
インゴットを粉砕して得られるR相粉末と前記希土類元
素(R)の含有量が前記所定重量パーセント未満なるR
2141を主体とする主相インゴットを粉砕して得られ
る主相粉末とを混合して全体としての前記希土類元素
(R)の含有量を前記所定重量パーセントとしたR−T
−B系合金粉末を磁場中で成形した後焼結する希土類永
久磁石の製造方法において、前記R相インゴットおよび
前記主相インゴットを別個に粗粉砕した後混合し、その
混合粉末をさらに微粉砕することを特徴とする希土類永
久磁石の製造方法。
1. An R-phase composed of an RT alloy which contains a rare earth element (R), a transition metal (T), and a boron (B) as a main component, and the content of the rare earth element (R) exceeds a predetermined weight percentage. The R-phase powder obtained by crushing an ingot and the content of the rare earth element (R) are less than the predetermined weight percent R
2 T 14 R-T the content was predetermined percent by weight of said rare earth element of the B 1 as a whole by mixing a main phase powder obtained by pulverizing a main phase ingot mainly (R)
In a method for producing a rare earth permanent magnet, which comprises molding a B-based alloy powder in a magnetic field and then sintering the mixture, the R-phase ingot and the main-phase ingot are separately coarsely pulverized and then mixed, and the mixed powder is further finely pulverized. A method of manufacturing a rare earth permanent magnet, characterized in that
JP5095375A 1993-03-30 1993-03-30 Manufacture of rare earth permanent magnet Pending JPH06290920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5095375A JPH06290920A (en) 1993-03-30 1993-03-30 Manufacture of rare earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5095375A JPH06290920A (en) 1993-03-30 1993-03-30 Manufacture of rare earth permanent magnet

Publications (1)

Publication Number Publication Date
JPH06290920A true JPH06290920A (en) 1994-10-18

Family

ID=14135898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5095375A Pending JPH06290920A (en) 1993-03-30 1993-03-30 Manufacture of rare earth permanent magnet

Country Status (1)

Country Link
JP (1) JPH06290920A (en)

Similar Documents

Publication Publication Date Title
EP0239031B2 (en) Method of manufacturing magnetic powder for a magnetically anisotropic bond magnet
JP2746818B2 (en) Manufacturing method of rare earth sintered permanent magnet
JP2000234151A (en) Rare earth-iron-boron system rare earth permanent magnet material
JPH0621324B2 (en) Rare earth permanent magnet alloy composition
JPS6181606A (en) Preparation of rare earth magnet
JPH10106875A (en) Manufacturing method of rare-earth magnet
JPH0354806A (en) Manufacture of rare-earth permanent magnet
JPS6181603A (en) Preparation of rare earth magnet
KR900006533B1 (en) Anisotropic magnetic materials and magnets made with it and making method for it
JPS6181607A (en) Preparation of rare earth magnet
JP3178848B2 (en) Manufacturing method of permanent magnet
JP3171415B2 (en) Rare earth-Fe-Co-Al-Nb-Ga-B based sintered magnet
JP2571403B2 (en) Manufacturing method of rare earth magnet material
JPH06290920A (en) Manufacture of rare earth permanent magnet
JP2874392B2 (en) Production method of rare earth cobalt 1-5 permanent magnet alloy
JP5235264B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP2868062B2 (en) Manufacturing method of permanent magnet
JPH07211570A (en) Manufacture of rare-earth permanent magnet
JP2827643B2 (en) Method for producing rare earth-Fe-B based magnet alloy powder
JPH10135020A (en) Radial anisotropic bond magnet
JPH06290921A (en) Manufacture of rare earth permanent magnet
KR100394992B1 (en) Fabricating Method of NdFeB Type Sintered Magnet
JPH06283318A (en) Manufacture of rare-earth permanent magnet
JP3253006B2 (en) RE-T-M-B sintered magnet with excellent magnetic properties
JP3053344B2 (en) Rare earth magnet manufacturing method