JPH06287682A - High strength uoe line pipe excellent in sulfide stress cracking resistance in weld zone - Google Patents

High strength uoe line pipe excellent in sulfide stress cracking resistance in weld zone

Info

Publication number
JPH06287682A
JPH06287682A JP7477693A JP7477693A JPH06287682A JP H06287682 A JPH06287682 A JP H06287682A JP 7477693 A JP7477693 A JP 7477693A JP 7477693 A JP7477693 A JP 7477693A JP H06287682 A JPH06287682 A JP H06287682A
Authority
JP
Japan
Prior art keywords
stress cracking
sulfide stress
cracking resistance
sulfide
line pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7477693A
Other languages
Japanese (ja)
Inventor
Akihiko Takahashi
明彦 高橋
Hiroyuki Ogawa
洋之 小川
Takuya Hara
卓也 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7477693A priority Critical patent/JPH06287682A/en
Publication of JPH06287682A publication Critical patent/JPH06287682A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To obtain a high strength UOE line pipe excellent in sulfide stress cracking resistance in the weld zone by specifying the compsn. constituted of C, Si, Mn, P, S, Nb, Al, Ca, Ti and Fe. CONSTITUTION:This line pipe has a compsn. contg., by weight, 0.03 to 0.09% C, 0.1 to 0.6% Si, 1.1 to 1.5% Mn, <=0.015% P, <=0.0010% S, 0.010 to 0.050% Nb, 0.005 to 0.03% Al, 0.002 to 0.004% Ca and 0.005 to 0.025% Ti and furthermore contg., at need, one or more kinds among 0.01 to 0.1% V, 0.1 to 1.0% Ni, 0.1 to 1.0% Cu, 0.1 to 1.0% Cr and 0.1 to 0.5% Mo, and the balance iron with inevitable impurities and also satisfying the inequalities: Ca(1-980)/S>1.7 and 0.07<Ca/Al<0.17, and in which the form of oxides contg. Ca causing the generation of sulfide stress cracking is controlled, which sulfide stress cracking resistance is obtd. even in the softened zone.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、湿潤な硫化水素環境に
おいて優れた溶接部の耐硫化物応力割れ性を有する、A
PIグレードX60からX70のラインパイプに関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alloy having excellent resistance to sulfide stress cracking of welds in a wet hydrogen sulfide environment.
It relates to PI grades X60 to X70 linepipes.

【0002】[0002]

【従来の技術】近年生産される石油、天然ガス中に硫化
水素を含む場合が非常に多くなっているため、これらの
石油、天然ガスを輸送するラインパイプは海水等の水が
共存した硫化水素環境(サワー環境)に曝される可能性
が高くなっている。サワー環境中では、鋼表面の腐食に
よる鋼中への水素の侵入が硫化水素の触媒作用により促
進される。一方、操業中のラインパイプには内部を通過
する流体の圧力により周方向の応力、即ちフープ応力が
作用する。
2. Description of the Related Art Since oil and natural gas produced in recent years contain hydrogen sulfide very often, the line pipes for transporting these oil and natural gas are hydrogen sulfide in the presence of water such as seawater. It is more likely to be exposed to the environment (sour environment). In the sour environment, hydrogen penetration into the steel due to corrosion of the steel surface is promoted by the catalytic action of hydrogen sulfide. On the other hand, a stress in the circumferential direction, that is, a hoop stress acts on the line pipe during operation by the pressure of the fluid passing through the inside.

【0003】このような環境条件のもとで生じるライン
パイプの破壊原因として硫化物応力割れが知られてい
る。特に溶接部の硬度の高い部分で生じる硫化物応力割
れが多く経験されてきた。そこで、硫化物応力割れの防
止方法としては、溶接部の最高硬さを規制することが一
般的となっており、通常はビッカース硬度で248以下
とするように求められることが多い。この要求に対応す
るために、鋼管製造メーカーは鋼管材の炭素等量を下
げ、それによる強度低下を補うために制御圧延、加速冷
却からなる加工熱処理法、いわゆるTMCPにより素材
を製造している。TMCP技術の導入は、溶接部の硬化
防止の他、金属組織制御により鋼管母材の耐硫化物応力
割れ性を向上した。
[0003] Sulfide stress cracking is known as a cause of line pipe failure that occurs under such environmental conditions. In particular, sulfide stress cracking that occurs in the high hardness portion of the weld has been frequently experienced. Therefore, as a method for preventing sulfide stress cracking, it is general to regulate the maximum hardness of the welded portion, and it is usually required to set the Vickers hardness to 248 or less. In order to meet this demand, steel pipe manufacturers reduce the carbon equivalent of the steel pipe material and manufacture the material by a so-called TMCP, which is a thermomechanical treatment method including controlled rolling and accelerated cooling, in order to compensate for the strength reduction. The introduction of TMCP technology has improved the sulfide stress cracking resistance of the steel pipe base material by controlling the metallographic structure in addition to preventing the hardening of the weld.

【0004】しかし、TMCP鋼では、低炭素等量故に
必然的に溶接熱影響部(HAZ)に母材よりも強度の低
い軟化領域が生じる。特に溶接入熱の大きいUOE鋼管
では、軟化度が大きい。ラインパイプの耐硫化物応力割
れ性を評価する手法として、NACE規格TM0177
−90があるが、この場合、負荷応力の設定基準は母材
の強度に基づいて決定されるため、軟化部を含むTMC
P鋼では応力条件が厳しくなる軟化部で優先的に割れが
生じることが知られている。また、最近英国を中心とし
て、ラインパイプの耐硫化物応力割れ性評価試験として
実管で試験を行う試験法、通称CAPCIS試験が規格
化されようとしている。CAPCIS試験ではHAZ軟
化部を含めて評価される上、評価手段として超音波探傷
が採られるため軟化部に生じた微小な内部割れも問題視
され得るという厳しいものである。
However, in the TMCP steel, a softening region having a lower strength than the base metal is inevitably formed in the weld heat affected zone (HAZ) because of the low carbon equivalent. In particular, a UOE steel pipe having a high welding heat input has a high degree of softening. As a method for evaluating the sulfide stress crack resistance of line pipes, NACE standard TM0177 is used.
-90, but in this case, the setting criterion for the load stress is determined based on the strength of the base material, so TMC including the softened portion is included.
It is known that in P steel, cracking occurs preferentially in the softened portion where the stress condition becomes severe. In addition, recently, mainly in the United Kingdom, a test method for performing a sulfide stress cracking resistance evaluation test of a line pipe, a so-called CAPCIS test, is being standardized. In the CAPCIS test, the HAZ softened portion is included in the evaluation, and since ultrasonic flaw detection is adopted as an evaluation means, minute internal cracks generated in the softened portion can be regarded as a problem.

【0005】この軟化部の硫化物応力割れを防止する方
法として、従来より直接軟化を防止する次のような対策
が開示されている。 (1)窒化物等の析出硬化によりHAZの強度低下を防
止する方法(例えば、特開昭62−284043号公
報)。 (2)溶接後溶接部を熱処理して軟化を改善する方法
(例えば、特開平4−168220号公報)。 これらの手段は、単に軟化防止という意味では有効であ
るが、実際にラインパイプの製造に適用するには次のよ
うな欠点がある。
As a method for preventing the sulfide stress cracking of the softened portion, the following countermeasures for directly preventing the softening have been disclosed. (1) A method of preventing the HAZ from lowering its strength by precipitation hardening of a nitride or the like (for example, JP-A-62-284043). (2) A method of heat-treating a welded portion after welding to improve softening (for example, JP-A-4-168220). Although these means are effective only in terms of preventing softening, they have the following drawbacks when actually applied to the production of line pipes.

【0006】[0006]

【発明が解決しようとする課題】上記(1)のように析
出硬化を利用した場合、確かに軟化の程度は軽減される
が、軟化部を皆無にするまでには至らない。また、析出
元素としてVの窒化物を利用するのでラインパイプにお
いて重要な特性の1つである溶接部の破壊靭性を低下さ
せることになる。また、上記(2)の方法は確かに軟化
防止の手段ではあるが、UOE鋼管の製造に適用するた
めには大型の熱処理手段を必要とする上に、生産性を阻
害しコスト増となるため現実的な方法とは言えない。
When the precipitation hardening is utilized as in the above (1), the degree of softening is certainly reduced, but the softened portion is not completely eliminated. Further, since the nitride of V is used as the precipitation element, the fracture toughness of the welded portion, which is one of the important characteristics in the line pipe, is reduced. Further, although the method (2) is certainly a means for preventing softening, a large heat treatment means is required for application to the production of UOE steel pipes, and productivity is impaired, resulting in an increase in cost. Not a realistic method.

【0007】以上のように溶接部の耐硫化物応力割れ性
を得るための方法として、軟化を改善することは手段が
少なく、とり得たとしても工業的に有利な手段とはなら
ない。従って、HAZ軟化の存在を前提として、軟化部
の耐硫化物応力割れ性を確保することが溶接部の耐硫化
物応力割れ性に優れた高強度UOEラインパイプを製造
するにあたっての課題となる。
As described above, as a method for obtaining the sulfide stress cracking resistance of the welded portion, improving softening has few means, and even if possible, it is not an industrially advantageous means. Therefore, assuming the presence of HAZ softening, ensuring the sulfide stress cracking resistance of the softened part is an issue in manufacturing a high strength UOE line pipe having excellent sulfide stress cracking resistance of the welded part.

【0008】[0008]

【課題を解決するための手段】本発明は、上記の課題を
有利に解決するもので、硫化物の形態制御に必要なCa
を添加した上で、CaとAlの添加量を調整して硫化物
応力割れの発生起点となるCaを含む酸化物の形態を制
御し、軟化部でも耐硫化物応力割れ性を得るというもの
である。
The present invention advantageously solves the above-mentioned problems, and Ca, which is necessary for controlling the morphology of sulfides, is provided.
In addition to controlling the morphology of Ca-containing oxide, which is the starting point of sulfide stress cracking, by adding Ca and Al, the sulfide stress cracking resistance can be obtained even in the softened part. is there.

【0009】すなわち、本発明の要旨とするところは、
重量%で、C :0.03〜0.09%、Si:0.1
〜0.6%、Mn:1.1〜1.5%、P :0.01
5%以下、S :0.0010%以下、Nb:0.01
0〜0.050%、Al:0.005〜0.03%、C
a:0.002〜0.004%、Ti:0.005〜
0.025%を含有し、または、これらに加えてさら
に、V :0.01〜0.1%、Ni:0.1〜1.0
%、Cu:0.1〜1.0%、Cr:0.1〜1.0
%、Mo:0.1〜0.5%の一種または二種以上を含
有し、残部が鉄及び不可避不純物からなり、かつ下記の
(1)式及び(2)式を満足することを特徴とする溶接
部の耐硫化物応力割れ性に優れた高強度UOEラインパ
イプにある。
That is, the gist of the present invention is that
% By weight, C: 0.03 to 0.09%, Si: 0.1
-0.6%, Mn: 1.1-1.5%, P: 0.01
5% or less, S: 0.0010% or less, Nb: 0.01
0-0.050%, Al: 0.005-0.03%, C
a: 0.002-0.004%, Ti: 0.005-
0.025%, or in addition to these, V: 0.01 to 0.1%, Ni: 0.1 to 1.0
%, Cu: 0.1 to 1.0%, Cr: 0.1 to 1.0
%, Mo: 0.1 to 0.5%, or a mixture of iron and inevitable impurities, and the following expressions (1) and (2) are satisfied. It is a high-strength UOE line pipe with excellent sulfide stress cracking resistance of the welded part.

【数3】 [Equation 3]

【0010】[0010]

【作用】本発明者らは、実機で製造したX60からX7
0グレードの種々のUOEラインパイプについて割れ感
受性の高い溶接軟化部の硫化物応力割れを再現する実験
を行い、軟化部に生じる初期の割れの破面を観察して割
れの発生起点を観察した。その結果、Caによる硫化物
の形態制御が十分に行われていない場合、比較的大きな
割れが生じ、割れは伸長したMnSを起点とすること、
Caによる硫化物の形態制御が十分に行われている場
合、比較的小さな割れが生じ、割れの起点は多くの場
合、群状に存在するCaO,Al2 3 またはこれらを
主体とする複合酸化物であることが判明した。そこで、
本発明者は軟化部の硫化物応力割れを防止するには、ま
ず、硫化物の形態制御を十分に行うことが必要であると
考えた。実機で製造したX60からX70グレードの種
々のUOEラインパイプについて調査した結果、硫化物
の形態制御を十分に行うために必要なCa量に関して、
(1)式を満足することが必要であることを知見した。
[Function] The inventors of the present invention have manufactured X60 to X7 manufactured on an actual machine.
Experiments were performed to reproduce sulfide stress cracks in the weld softened portion having high crack susceptibility for various 0 grade UOE line pipes, and the fracture surface of the initial crack generated in the softened portion was observed to observe the origin of the crack. As a result, when the sulfide morphology control by Ca is not sufficiently performed, relatively large cracks occur, and the cracks start from elongated MnS,
When the sulfide morphology is sufficiently controlled by Ca, relatively small cracks occur, and the origins of the cracks are often CaO, Al 2 O 3 existing in the form of groups or complex oxidation mainly composed of these. It turned out to be a thing. Therefore,
In order to prevent sulfide stress cracking of the softened portion, the present inventor first thought that it is necessary to sufficiently control the sulfide morphology. As a result of investigating various UOE line pipes of X60 to X70 grade manufactured in actual equipment, regarding the amount of Ca necessary to sufficiently control the morphology of sulfide,
We have found that it is necessary to satisfy equation (1).

【数4】 [Equation 4]

【0011】本条件を満足した上で、酸化物の存在状態
がCaとAlの添加量により異なると推量し、Ca/A
lが異なる種々のUOEラインパイプについて、シーム
溶接部から溶接線に垂直方向にNACE規格TM017
7−90methodAに従う試験片を作製し、同規格に従い
定荷重試験を実施し、720時間後に試験片が破断しな
い限界の応力、σthを求めた。σthを鋼管の規格最小降
伏応力、SMYSで規格化しσth/SMYS≧0.8を
もって、優れた耐硫化物応力割れ性を有すると判断し、
溶接部の硫化物応力割れの発生状況を検討した。その結
果図1に示すように、下記(2)式を満足すれば軟化部
でも耐硫化物応力割れが得られることを知見するに至っ
た。 0.07<(%Ca)/(%Al)<0.17 ………………(2)
After satisfying these conditions, it is presumed that the existence state of oxides varies depending on the added amounts of Ca and Al, and Ca / A
For various UOE line pipes with different l, NACE standard TM017 in the direction perpendicular to the weld line from the seam weld
A test piece according to 7-90 method A was prepared, a constant load test was carried out according to the same standard, and after 720 hours, a critical stress at which the test piece did not break, σth, was determined. By standardizing σth by the standard minimum yield stress of steel pipe, SMYS, and judging that σth / SMYS ≧ 0.8, it is judged to have excellent sulfide stress cracking resistance,
The occurrence of sulfide stress cracking at the weld was examined. As a result, as shown in FIG. 1, it has been found that sulfide-resistant stress cracking can be obtained even in the softened part if the following expression (2) is satisfied. 0.07 <(% Ca) / (% Al) <0.17 ……………… (2)

【0012】以上の事実に基づき、後述する理由で化学
成分を限定した上で、上記の条件が満足されれば、溶接
部の耐硫化物応力割れ性に優れたAPIグレードX60
からX70の高強度UOEラインパイプの製造が可能で
あるという結論を得た。
Based on the above facts, if the above conditions are satisfied after limiting the chemical components for the reasons described below, API grade X60 excellent in sulfide stress cracking resistance of the welded part is obtained.
It was concluded that it is possible to manufacture X70 high strength UOE line pipes.

【0013】次に本発明における成分限定理由を述べ
る。Cは、強化元素であるため、所望の強度を得るため
に0.03%以上とする。一方、多量に添加すると、ラ
インパイプの母材、溶接部の硬度が高くなり、靭性が低
下することに加え、硫化水素環境中では、硫化物応力割
れが生じやすくなるため0.09%以下とする。
Next, the reasons for limiting the components in the present invention will be described. Since C is a strengthening element, it is made 0.03% or more to obtain a desired strength. On the other hand, if added in a large amount, the hardness of the base material of the line pipe and the welded portion will increase, the toughness will decrease, and sulfide stress cracking will easily occur in a hydrogen sulfide environment, so 0.09% or less. To do.

【0014】Siは脱酸元素であり、0.1%未満で
は、十分な脱酸力が得られないため、また、0.6%を
超えると鋼を脆化させるため0.1〜0.6%とする。
Mnは、硫化物応力割れの発生起点となるMnSを形成
するとともに、鋼の脆化を促進するPと共偏析して、割
れの伝播、進展を助長するので、Mnの添加量は、でき
るだけ低い方が望ましい。しかし、Mnは強度、靭性を
得る上で、不可欠の元素であるため、X60からX70
のラインパイプの強度を得るため、1.1〜1.5%と
する。
Si is a deoxidizing element, and if it is less than 0.1%, sufficient deoxidizing power cannot be obtained, and if it exceeds 0.6%, the steel is embrittled to 0.1 to 0.1%. 6%.
Mn forms MnS, which is the starting point of sulfide stress cracking, and co-segregates with P that promotes embrittlement of steel to promote the propagation and propagation of cracks, so the amount of Mn added is as low as possible. Is preferable. However, Mn is an indispensable element for obtaining strength and toughness, so X60 to X70
In order to obtain the strength of the line pipe of No. 1, it is made 1.1 to 1.5%.

【0015】Pは偏析により硫化物応力割れの伝播を起
こしやすくする元素で、低い方が望ましく、0.015
%を上限とする。SはMnと結びついて硫化物応力割れ
の発生起点であるMnSを形成するため、極力低い方が
望ましい。耐割れ性を安定して得る観点から、0.00
10%を上限とする。
P is an element that facilitates the propagation of sulfide stress cracking due to segregation, and the lower the better, the better 0.015.
% Is the upper limit. Since S is combined with Mn to form MnS, which is the starting point of sulfide stress cracking, S is preferably as low as possible. From the viewpoint of stably obtaining crack resistance, 0.00
The upper limit is 10%.

【0016】Nbは圧延組織の細粒化、焼入性の向上と
析出硬化のため0.010%以上添加するが、0.05
0%を超えて添加しても多量に添加する効果は小さく、
むしろ、粗大な炭化物を形成して耐水素誘起割れ性を低
下するので、0.05%を上限とする。Alは脱酸元素
として重要であるが、多量に添加すると鋼を汚染し、ま
た靭性を低下させるので、0.005〜0.04%とす
る。
Nb is added in an amount of 0.010% or more in order to make the rolling structure finer grain, improve hardenability and precipitation hardening.
Even if added over 0%, the effect of adding a large amount is small,
Rather, coarse carbides are formed to reduce hydrogen-induced cracking resistance, so the upper limit is 0.05%. Al is important as a deoxidizing element, but if added in a large amount, it contaminates the steel and lowers the toughness, so the content is made 0.005 to 0.04%.

【0017】CaはMnS等の硫化物系介在物の形状を
制御するために、0.002%以上添加するが、多量に
添加すると鋼が汚染されるので0.004%以下とす
る。Ti添加量の下限0.005%は、微細なTiNを
形成し、ミクロ組織の細粒化が期待される最小量であ
り、上限はTiCによる靭性低下が起きない条件から
0.025%とする。
Ca is added in an amount of 0.002% or more in order to control the shape of sulfide inclusions such as MnS. However, if added in a large amount, the steel is contaminated, so Ca is made 0.004% or less. The lower limit of 0.005% of the amount of Ti added is the minimum amount at which fine TiN is formed and micronization of the microstructure is expected, and the upper limit is 0.025% from the condition that the toughness does not decrease due to TiC. .

【0018】本発明では、上記元素に加えてV,Ni,
Cu,Cr,Moの一種または二種以上を添加する。V
は強化元素として0.01%以上添加し、過剰に添加す
ると靭性を低下させるので0.1%以下とする。Ni,
Cu,Cr,Moはいずれも鋼の焼入性を増大し、強度
を増加する必要がある場合にそれぞれ0.1%以上添加
するが、過度の添加により低温変態生成物が形成され靭
性及び耐水素誘起割れ性が損なわれるので、それぞれ、
1.0%、1.0%、1.0%、0.5%を上限とす
る。
In the present invention, in addition to the above elements, V, Ni,
One or more of Cu, Cr and Mo are added. V
Is added as a strengthening element in an amount of 0.01% or more, and if added excessively, the toughness decreases, so the content is made 0.1% or less. Ni,
Cu, Cr, and Mo all add 0.1% or more when it is necessary to increase the hardenability of steel and increase the strength, but excessive addition forms a low-temperature transformation product, resulting in toughness and resistance. Since hydrogen-induced crackability is impaired,
The upper limits are 1.0%, 1.0%, 1.0%, and 0.5%.

【0019】本発明は、上記成分を有するラインパイプ
に関して、Ca添加量を式(1),(2)に従い調整し
て、優れた溶接部の耐硫化物応力割れ性を付与する。
The present invention adjusts the amount of Ca added to the line pipe having the above components according to the formulas (1) and (2) to impart excellent sulfide stress cracking resistance of the welded portion.

【数5】 [Equation 5]

【0020】式(1)は、比較的大きな硫化物応力割れ
の原因となる伸長したMnSの生成を防止するため、硫
化物の形態制御を十分に行うのに必要な条件である。式
(2)は、比較的小さな硫化物応力割れの原因となる群
状に存在するCaO,Al23 またはこれらを主体と
する複合酸化物の生成を防止する条件である。これらの
条件は、鋼管の母材の耐硫化物応力割れ性を得るために
も十分な条件である。
Formula (1) is a condition necessary for sufficiently controlling the morphology of sulfides in order to prevent the formation of elongated MnS that causes relatively large sulfide stress cracking. The formula (2) is a condition for preventing the formation of CaO, Al 2 O 3 or complex oxides containing them as a main component, which exist in the form of groups, which cause a relatively small sulfide stress cracking. These conditions are also sufficient for obtaining the sulfide stress cracking resistance of the base material of the steel pipe.

【0021】[0021]

【実施例】表1−1に化学成分を示す鋼を溶製し、連続
鋳造でスラブを製造し、厚板圧延を実施後、UOE鋼管
に造管した。鋼管のサイズは、外径が約30インチ、管
厚が約20mmで、各鋼管は成分により異なるがAPI規
格X60からX70を満足する。シーム溶接部から溶接
線に垂直方向にNACE規格TM0177−90method
Aに従う試験片を、シーム溶接部から180°離れた鋼
管の母材部より同様の試験片を作製した。同規格に従い
定荷重試験を実施し、720時間後に試験片が破断しな
い限界の応力,σthを求めた。σthを鋼管の規格最小降
伏応力、SMYSで規格化しσth/SMYS≧0.8を
もって、優れた耐硫化物応力割れ性を有すると判断し
た。
[Examples] Steels having the chemical composition shown in Table 1-1 were melted, slabs were manufactured by continuous casting, and after thick plate rolling, they were formed into UOE steel pipes. The size of the steel pipe has an outer diameter of about 30 inches and a pipe thickness of about 20 mm, and each steel pipe satisfies API standards X60 to X70, although it depends on the composition. NACE standard TM0177-90method in the direction perpendicular to the weld line from the seam weld
A similar test piece was prepared from the base material part of the steel pipe which was 180 ° away from the seam welded part. A constant load test was carried out according to the same standard, and after 720 hours, the critical stress and σth at which the test piece did not break were determined. σth was standardized by the standard minimum yield stress of the steel pipe, SMYS, and it was determined that the sulfide stress cracking resistance was excellent when σth / SMYS ≧ 0.8.

【0022】表1−2に示すように、本発明に従う条件
では、いずれの場合も溶接部、母材ともσth/SMYS
≧0.80%であり優れた耐硫化物応力割れ性が得られ
た。しかし、比較例1では式(1)の値が、比較例2で
はCa量と式(1)の値が、比較例3ではS量と式
(1)の値が、比較例4では式(2)の値が、比較例5
ではAl量と式(2)の値が、比較例6では式(2)の
値が、比較例7ではCa量と式(2)の値が本発明の範
囲を逸脱するために、それぞれ耐硫化物応力割れ性が低
下する。
As shown in Table 1-2, under the conditions according to the present invention, in both cases, both the welded portion and the base metal have σth / SMYS.
≧ 0.80%, and excellent sulfide stress cracking resistance was obtained. However, in Comparative Example 1, the value of Formula (1), in Comparative Example 2 the Ca amount and the value of Formula (1), in Comparative Example 3 the S amount and the value of Formula (1), and in Comparative Example 4, the formula (1) The value of 2) is the value of Comparative Example 5
Since the Al amount and the value of the formula (2) deviate from the ranges of the present invention in Comparative Example 6, the value of the formula (2) in Comparative Example 7, and the Ca amount and the value of the formula (2) in Comparative Example 7, respectively, Sulfide stress cracking property decreases.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【発明の効果】本発明により、湿潤な硫化水素環境にお
いて優れた溶接部の耐硫化物応力割れ性を有する、AP
IグレードX60からX70のラインパイプが得られる
ため、工業的効果は著しく大きい。
INDUSTRIAL APPLICABILITY According to the present invention, AP having excellent resistance to sulfide stress cracking of welds in a humid hydrogen sulfide environment
Since the I grade X60 to X70 line pipes are obtained, the industrial effect is remarkably large.

【図面の簡単な説明】[Brief description of drawings]

【図1】Ca/Al比が0.07〜0.17の範囲の場
合、溶接部の耐硫化物応力割れ抵抗が高いことを示す。
FIG. 1 shows that when the Ca / Al ratio is in the range of 0.07 to 0.17, the sulfide stress crack resistance of the weld is high.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.03〜0.09%、 Si:0.1〜0.6%、 Mn:1.1〜1.5%、 P :0.015%以下、 S :0.0010%以下、 Nb:0.010〜0.050%、 Al:0.005〜0.03%、 Ca:0.002〜0.004%、 Ti:0.005〜0.025% を含有し、残部が鉄及び不可避不純物からなり、かつ下
記の(1)式及び(2)式を満足することを特徴とする
溶接部の耐硫化物応力割れ性に優れた高強度UOEライ
ンパイプ。 【数1】
1. By weight%, C: 0.03 to 0.09%, Si: 0.1 to 0.6%, Mn: 1.1 to 1.5%, P: 0.015% or less, S: 0.0010% or less, Nb: 0.010 to 0.050%, Al: 0.005 to 0.03%, Ca: 0.002 to 0.004%, Ti: 0.005 to 0.025. %, With the balance consisting of iron and unavoidable impurities, and satisfying the following formulas (1) and (2), which is a high strength UOE line excellent in sulfide stress cracking resistance of welded parts. pipe. [Equation 1]
【請求項2】 重量%で、 C :0.03〜0.09%、 Si:0.1〜0.6%、 Mn:1.1〜1.5%、 P :0.015%以下、 S :0.0010%以下、 Nb:0.010〜0.050%、 Al:0.005〜0.03%、 Ca:0.002〜0.004%、 Ti:0.005〜0.025% を含有し、 V :0.01〜0.1%、 Ni:0.1〜1.0%、 Cu:0.1〜1.0%、 Cr:0.1〜1.0%、 Mo:0.1〜0.5% の一種または二種以上を含有し、残部が鉄及び不可避不
純物からなり、かつ下記の(1)式及び(2)式を満足
することを特徴とする溶接部の耐硫化物応力割れ性に優
れた高強度UOEラインパイプ。 【数2】
2. By weight%, C: 0.03 to 0.09%, Si: 0.1 to 0.6%, Mn: 1.1 to 1.5%, P: 0.015% or less, S: 0.0010% or less, Nb: 0.010 to 0.050%, Al: 0.005 to 0.03%, Ca: 0.002 to 0.004%, Ti: 0.005 to 0.025. %, V: 0.01-0.1%, Ni: 0.1-1.0%, Cu: 0.1-1.0%, Cr: 0.1-1.0%, Mo A welded part containing 0.1 to 0.5% of one or more kinds, the balance consisting of iron and unavoidable impurities, and satisfying the following formulas (1) and (2). High strength UOE line pipe with excellent sulfide stress cracking resistance. [Equation 2]
JP7477693A 1993-03-31 1993-03-31 High strength uoe line pipe excellent in sulfide stress cracking resistance in weld zone Withdrawn JPH06287682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7477693A JPH06287682A (en) 1993-03-31 1993-03-31 High strength uoe line pipe excellent in sulfide stress cracking resistance in weld zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7477693A JPH06287682A (en) 1993-03-31 1993-03-31 High strength uoe line pipe excellent in sulfide stress cracking resistance in weld zone

Publications (1)

Publication Number Publication Date
JPH06287682A true JPH06287682A (en) 1994-10-11

Family

ID=13557037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7477693A Withdrawn JPH06287682A (en) 1993-03-31 1993-03-31 High strength uoe line pipe excellent in sulfide stress cracking resistance in weld zone

Country Status (1)

Country Link
JP (1) JPH06287682A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283148A (en) * 2005-04-01 2006-10-19 Nippon Steel Corp WELDED STEEL PIPE HAVING EXCELLENT Cr-FREE SOUR RESISTANCE CHARACTERISTIC
CN109207838A (en) * 2017-06-29 2019-01-15 宝山钢铁股份有限公司 A kind of heat treatment type pipe line steel and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283148A (en) * 2005-04-01 2006-10-19 Nippon Steel Corp WELDED STEEL PIPE HAVING EXCELLENT Cr-FREE SOUR RESISTANCE CHARACTERISTIC
JP4709568B2 (en) * 2005-04-01 2011-06-22 新日本製鐵株式会社 UO steel pipe with excellent sour resistance
CN109207838A (en) * 2017-06-29 2019-01-15 宝山钢铁股份有限公司 A kind of heat treatment type pipe line steel and its manufacturing method

Similar Documents

Publication Publication Date Title
EP2105513B1 (en) High strength thick welded steel pipe for a line pipe superior in low temperature toughness and process for producing the same.
EP2264205B1 (en) High-strength steel plate excellent in low-temperature toughness, steel pipe, and processes for production of both
JP4484123B2 (en) High strength and excellent base material for clad steel plate with excellent weld heat affected zone toughness
JPH07216500A (en) High strength steel material excellent in corrosion resistance and its production
WO2007105752A1 (en) Steel sheet for submerged arc welding
JPWO2017154930A1 (en) High-strength flat steel wire with excellent resistance to hydrogen-induced cracking
WO1996010654A1 (en) Highly corrosion-resistant martensitic stainless steel with excellent weldability and process for producing the same
JP2011017048A (en) Method for manufacturing electroseamed steel pipe having sour-gas resistance for line pipe
KR20210099627A (en) High-strength steel products and their manufacturing method
JP2003013175A (en) Steel material superior in hydrogen-induced cracking resistance
JP5565420B2 (en) UOE steel pipe for line pipe
JP3303647B2 (en) Welded steel pipe with excellent sour resistance and carbon dioxide gas corrosion resistance
JP4082464B2 (en) Manufacturing method of high strength and high toughness large diameter welded steel pipe
JP3290247B2 (en) Method for manufacturing high tensile strength and high toughness bent pipe with excellent corrosion resistance
JP5157030B2 (en) Manufacturing method of high strength line pipe steel with excellent HIC resistance
JP5505487B2 (en) High-strength, high-tough steel plate with excellent cut crack resistance and DWTT properties
JPH07292416A (en) Production of ultrahigh strength steel plate for line pipe
JPH08104922A (en) Production of high strength steel pipe excellent in low temperature toughness
JP3526722B2 (en) Ultra high strength steel pipe with excellent low temperature toughness
JPH06256894A (en) High strength line pipe excellent in hydrogen induced cracking resistance
JPH06271974A (en) Line pipe excellent in hydrogen induced cracking resistance
JPH06287682A (en) High strength uoe line pipe excellent in sulfide stress cracking resistance in weld zone
JP3244986B2 (en) Weldable high strength steel with excellent low temperature toughness
JPH0813087A (en) Steel for welded steel pipe excellent in ssc resistance in seam zone
JPH08311548A (en) Production of steel sheet for ultrahigh strength steel pipe excellent in toughness in weld zone

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000704