JPH06281234A - Refrigerating cycle apparatus - Google Patents

Refrigerating cycle apparatus

Info

Publication number
JPH06281234A
JPH06281234A JP5242506A JP24250693A JPH06281234A JP H06281234 A JPH06281234 A JP H06281234A JP 5242506 A JP5242506 A JP 5242506A JP 24250693 A JP24250693 A JP 24250693A JP H06281234 A JPH06281234 A JP H06281234A
Authority
JP
Japan
Prior art keywords
value
detected
set value
degree
superheat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5242506A
Other languages
Japanese (ja)
Other versions
JP3117339B2 (en
Inventor
Toru Kubo
徹 久保
Yoshinobu Fujita
義信 藤田
Takayuki Kanbe
崇幸 神戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP05242506A priority Critical patent/JP3117339B2/en
Priority to TW082110655A priority patent/TW228024B/zh
Priority to GB9326573A priority patent/GB2274930B/en
Priority to KR1019930032344A priority patent/KR940018635A/en
Priority to CN93119985A priority patent/CN1071882C/en
Publication of JPH06281234A publication Critical patent/JPH06281234A/en
Application granted granted Critical
Publication of JP3117339B2 publication Critical patent/JP3117339B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/35Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by rotary motors, e.g. by stepping motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/15Hunting, i.e. oscillation of controlled refrigeration variables reaching undesirable values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Abstract

PURPOSE:To rapidly converge a degree of superheat to a set value and afford stable operation at all times by correcting opening degree control values for electronic expansion valves in a manner to make the same decreasing when a decreasing variation of a maximum value of a difference between the set value and the degree of overheat is not more than a set value and this is successively satisfied a predetermined times. CONSTITUTION:A difference between a set value and a degree of super heat, and a maximum value of the difference are successively detected. When a variation detected is not more than a set value, for example, 2 deg.C and a maximum value at that time is not less than a predetermined value, for example, 1 deg.C, a gain G is decreased a predetermined value, for example, 0.3 at a point of time when a number of times reaches a set value, for example 2. An opening degree control value for electronic expansion valves 11, 21 is corrected to be decreased, and a flow rate of a refrigerant flowing to an evaporator becomes small in variation. Therefore, an amplitude variation of the degree of overheat is suppressed, and the degree of overheat can be made to rapidly tend to the set value. Accordingly, it is possible to perform stable operation at all times.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、空気調和機に用いる
冷凍サイクル装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration cycle device used in an air conditioner.

【0002】[0002]

【従来の技術】空気調和機は、圧縮機、室外熱交換器、
減圧器、室内熱交換器を接続して冷凍サイクルを構成
し、圧縮機から吐出される冷媒を室外熱交換器、減圧
器、室内熱交換器の順に流すことにより、室外熱交換器
を凝縮器、室内熱交換器を蒸発器として機能させ、冷房
運転を実行する。圧縮機、四方弁、室外熱交換器、減圧
器、室内熱交換器を接続してヒートポンプ式冷凍サイク
ルを構成したものでは、四方弁を切換えて冷媒の流れを
冷房運転時と反対にすることで、室内熱交換器を凝縮
器、室外熱交換器を蒸発器として機能させ、暖房運転を
実行できる。
2. Description of the Related Art Air conditioners include compressors, outdoor heat exchangers,
A decompressor and an indoor heat exchanger are connected to form a refrigeration cycle, and the refrigerant discharged from the compressor is allowed to flow in the order of the outdoor heat exchanger, the decompressor, and the indoor heat exchanger, whereby the outdoor heat exchanger is condensed. , The indoor heat exchanger is made to function as an evaporator, and the cooling operation is executed. In a heat pump type refrigeration cycle configured by connecting a compressor, a four-way valve, an outdoor heat exchanger, a pressure reducer, and an indoor heat exchanger, by switching the four-way valve, the flow of refrigerant can be made opposite to that during cooling operation. The indoor heat exchanger can function as a condenser and the outdoor heat exchanger can function as an evaporator to perform heating operation.

【0003】また、圧縮機が能力可変式の場合、室内温
度に基づく空調負荷を検出し、その空調負荷に応じて圧
縮機の能力を制御することで、空調負荷に対応する最適
な冷房能力および暖房能力が得られる。
When the compressor is of variable capacity type, the air conditioning load based on the room temperature is detected and the capacity of the compressor is controlled in accordance with the air conditioning load, so that the optimum cooling capacity corresponding to the air conditioning load and Heating capacity is obtained.

【0004】ただ、この能力制御に際しては、能力変化
に伴って冷媒の流量が変化するため、蒸発器での冷媒の
過熱度に変化が生じる。この過熱度は、安定運転を確保
する上から一定の値に維持する必要がある。そこで、減
圧器として電子膨張弁が採用され、過熱度が一定の値
(=設定値)に維持されるよう、電子膨張弁の開度が制
御される。
However, in this capacity control, the flow rate of the refrigerant changes with the capacity change, so that the degree of superheat of the refrigerant in the evaporator changes. This superheat degree must be maintained at a constant value in order to ensure stable operation. Therefore, an electronic expansion valve is used as the pressure reducer, and the opening degree of the electronic expansion valve is controlled so that the degree of superheat is maintained at a constant value (= set value).

【0005】このような過熱度制御を採用した空気調和
機の例として、特開昭60-263065 号公報に示されるもの
がある。ところで、過熱度制御の具体的方法として、フ
ィードバック制御やファジイ制御がある。フィードバッ
ク制御の例では、冷凍サイクルにおける過熱度が検出さ
れ、それがPID制御部にフィードバックされる。PI
D制御部では、過熱度と設定値との偏差から電子膨張弁
に対する開度の操作量が演算して求められる。この操作
量だけ電子膨張弁の開度が調節される。
An example of an air conditioner that employs such superheat control is disclosed in Japanese Patent Laid-Open No. 60-263065. By the way, there are feedback control and fuzzy control as specific methods of superheat control. In the feedback control example, the degree of superheat in the refrigeration cycle is detected and fed back to the PID control unit. PI
In the D control unit, the manipulated variable of the opening degree for the electronic expansion valve is calculated and calculated from the deviation between the degree of superheat and the set value. The opening degree of the electronic expansion valve is adjusted by this operation amount.

【0006】[0006]

【発明が解決しようとする課題】電子膨張弁の開度が調
節されると、まず室内熱交換器への冷媒の流量が変化
し、それが過熱度の変化となって現われる。つまり、開
度調節から過熱度変化までに時間遅れが存在する。この
時間遅れの影響で、過熱度はすぐには設定値へと収束せ
ず、設定値を中心とする上下の振幅変動を繰返しながら
収束していくことになる。
When the opening degree of the electronic expansion valve is adjusted, first, the flow rate of the refrigerant to the indoor heat exchanger changes, which appears as a change in superheat degree. That is, there is a time delay from the opening adjustment to the change in superheat degree. Due to the influence of this time delay, the degree of superheat does not immediately converge to the set value, but rather converges while repeating amplitude fluctuations around the set value.

【0007】過熱度の振幅変動については、フィードバ
ック制御やファジイ制御によってある程度は吸収される
ものの、空調負荷の変動が大きかったりすると、なかな
か収束に至らないことがある。負荷条件によっては、収
束するどころか反対に拡散したり、あるいは設定値から
離れたところで安定してしまうこともある。基本的には
このようなPID、ファジイ制御等の定数設定が行なわ
れるが、冷凍サイクルのように負荷変動がきわめて大き
いものに対しては、十分な定数設定がきわめて困難であ
った。
Although the amplitude fluctuation of the superheat degree is absorbed to some extent by the feedback control and the fuzzy control, if the fluctuation of the air conditioning load is large, it may not be easily converged. Depending on the load conditions, instead of converging, it may diffuse in the opposite direction, or may become stable at a distance from the set value. Basically, constants such as PID and fuzzy control are set, but it is extremely difficult to set sufficient constants for refrigeration cycles with extremely large load fluctuations.

【0008】この発明は上記の事情を考慮したもので、
その目的とするところは、過熱度を設定値へと迅速に収
束させることができ、常に安定した運転が可能な冷凍サ
イクル装置を提供することにある。
The present invention takes the above circumstances into consideration,
It is an object of the present invention to provide a refrigeration cycle apparatus capable of quickly converging the degree of superheat to a set value and always performing stable operation.

【0009】[0009]

【課題を解決するための手段】請求項1の冷凍サイクル
装置は、圧縮機、凝縮器、電子膨張弁、蒸発器を接続し
た冷凍サイクルを備え、蒸発器での冷媒の過熱度が設定
値となるよう電子膨張弁の開度を制御するものにおい
て、上記設定値と上記過熱度との差の最大値を逐次に検
出する第1検出手段と、この第1検出手段で検出される
最大値の減少方向の変化量を検出する第2検出手段と、
この第2検出手段で検出される変化量が設定値以下でし
かも第1検出手段で検出される最大値が所定値以上の状
態にあるかどうか判定する判定手段と、この判定手段の
判定が所定回数連続して満足されるとき電子膨張弁に対
する開度制御値を減少方向に補正する補正手段とを備え
ている。
A refrigeration cycle apparatus according to claim 1 comprises a refrigeration cycle in which a compressor, a condenser, an electronic expansion valve, and an evaporator are connected, and the degree of superheat of the refrigerant in the evaporator is set to a set value. In the one that controls the opening degree of the electronic expansion valve so that the maximum value of the difference between the set value and the superheat degree is sequentially detected, and the maximum value detected by the first detection means Second detecting means for detecting the amount of change in the decreasing direction,
A determination unit that determines whether the amount of change detected by the second detection unit is less than or equal to a set value and the maximum value detected by the first detection unit is greater than or equal to a predetermined value, and the determination of this determination unit is predetermined. And a correction means for correcting the opening control value for the electronic expansion valve in a decreasing direction when the number of times is continuously satisfied.

【0010】請求項2の冷凍サイクル装置は、圧縮機、
凝縮器、電子膨張弁、蒸発器を接続した冷凍サイクルを
備え、蒸発器での冷媒の過熱度が設定値となるよう電子
膨張弁の開度を制御するものにおいて、上記設定値と上
記過熱度との差およびその最大値を逐次に検出する第1
検出手段と、この第1検出手段で検出される最大値の減
少方向の変化量を検出する第2検出手段と、この第2検
出手段で検出される変化量が設定値以下でしかも第1検
出手段で検出される最大値が所定値以上の状態にあるか
どうか判定する第1判定手段と、この第1判定手段の判
定が所定回数連続して満足されるとき電子膨張弁に対す
る開度制御値を減少方向に補正する第1補正手段と、第
1検出手段で検出される差が所定値以上の状態を一定時
間継続したかどうか判定する第2判定手段と、この第2
判定手段の判定が満足されるとき電子膨張弁に対する開
度制御値を増大方向に補正する第2補正手段とを備えて
いる。
The refrigeration cycle apparatus of claim 2 is a compressor,
A condenser, an electronic expansion valve, and a refrigeration cycle in which an evaporator is connected, and the opening degree of the electronic expansion valve is controlled so that the superheat degree of the refrigerant in the evaporator becomes a set value. The difference between and the maximum value of the difference
A detection means; a second detection means for detecting a change amount of the maximum value detected by the first detection means in a decreasing direction; and a change amount detected by the second detection means that is less than or equal to a set value and the first detection Means for determining whether or not the maximum value detected by the means is a predetermined value or more, and an opening control value for the electronic expansion valve when the determination by the first determination means is satisfied a predetermined number of times in succession And a second determining means for determining whether or not the difference detected by the first detecting means has continued for a certain period of time.
Second correction means for correcting the opening control value for the electronic expansion valve in the increasing direction when the judgment of the judgment means is satisfied.

【0011】請求項3の冷凍サイクル装置は、請求項2
の冷凍サイクル装置において、圧縮機の運転周波数が変
化したとき、第1検出手段で検出される最大値とその検
出から所定時間後に検出される差との差である過熱度変
化量を検出する第3検出手段と、この過熱度変化量およ
び第1検出手段で検出される差から過熱度が設定値に到
達するまでの時間を予測する予測手段と、この予測時間
が所定値以上のとき電子膨張弁に対する開度制御値を増
大方向に補正し所定値以下のとき減少方向に補正する第
3補正手段とを設けたことを特徴とする。
The refrigeration cycle apparatus of claim 3 is the same as that of claim 2
In the refrigeration cycle apparatus, when the operating frequency of the compressor changes, a superheat degree change amount that is a difference between a maximum value detected by the first detection means and a difference detected a predetermined time after the detection is detected. 3 detection means, prediction means for predicting the time until the superheat degree reaches the set value from the difference detected by the superheat degree change amount and the first detection means, and electronic expansion when the predicted time is a predetermined value or more A third correction means is provided for correcting the opening control value for the valve in the increasing direction and for decreasing the opening control value in the decreasing direction when it is less than or equal to a predetermined value.

【0012】[0012]

【作用】請求項1の冷凍サイクル装置では、設定値と過
熱度との差の最大値が逐次に検出されるとともに、その
最大値の減少方向の変化量が検出される。この変化量が
設定値以下で、しかもそのときの最大値が所定値以上の
状態にあるかどうか判定される。この判定が所定回数連
続して満足されるとき、電子膨張弁に対する開度制御値
が減少方向に補正される。
In the refrigeration cycle apparatus of the first aspect, the maximum value of the difference between the set value and the degree of superheat is sequentially detected, and the change amount in the decreasing direction of the maximum value is detected. It is determined whether the amount of change is less than or equal to the set value and the maximum value at that time is greater than or equal to the predetermined value. When this determination is continuously satisfied a predetermined number of times, the opening control value for the electronic expansion valve is corrected in the decreasing direction.

【0013】請求項2の冷凍サイクル装置では、設定値
と過熱度との差およびその最大値が逐次に検出されると
ともに、その最大値の減少方向の変化量が検出される。
この変化量が設定値以下で、しかもそのときの最大値が
所定値以上の状態にあるかどうか判定される。この判定
が所定回数連続して満足されるとき、電子膨張弁に対す
る開度制御値を減少方向に補正される。一方、上記検出
される差が所定値以上の状態を一定時間継続したかどう
か判定される。この判定が満足されるとき、電子膨張弁
に対する開度制御値が増大方向に補正される。
In the refrigeration cycle apparatus of the second aspect, the difference between the set value and the degree of superheat and the maximum value thereof are sequentially detected, and the amount of change in the decreasing direction of the maximum value is also detected.
It is determined whether the amount of change is less than or equal to the set value and the maximum value at that time is greater than or equal to the predetermined value. When this determination is satisfied a predetermined number of times in succession, the opening control value for the electronic expansion valve is corrected in the decreasing direction. On the other hand, it is determined whether the detected difference is equal to or more than a predetermined value for a certain period of time. When this determination is satisfied, the opening control value for the electronic expansion valve is corrected in the increasing direction.

【0014】請求項3の冷凍サイクル装置では、請求項
2の冷凍サイクル装置の作用に加え、圧縮機の運転周波
数が変化したとき、検出される最大値とその検出から所
定時間後に検出される差との差である過熱度変化量が検
出される。この過熱度変化量および初めに検出される差
(設定値と過熱度との差)から過熱度が設定値に到達す
るまでの時間が予測される。この予測時間が所定値以上
のとき、電子膨張弁に対する開度制御値が増大方向に補
正される。予測時間が所定値以下のとき、電子膨張弁に
対する開度制御値が減少方向に補正される。
In the refrigeration cycle apparatus of claim 3, in addition to the operation of the refrigeration cycle apparatus of claim 2, when the operating frequency of the compressor changes, the maximum value detected and the difference detected a predetermined time after the detection. The amount of change in superheat which is the difference between From this change amount of superheat degree and the difference (difference between the set value and the superheat degree) detected at the beginning, the time until the superheat degree reaches the set value is predicted. When the predicted time is equal to or greater than the predetermined value, the opening control value for the electronic expansion valve is corrected in the increasing direction. When the predicted time is less than or equal to the predetermined value, the opening control value for the electronic expansion valve is corrected in the decreasing direction.

【0015】[0015]

【実施例】以下、この発明の第1実施例について図面を
参照して説明する。図1において、Aは室外ユニット、
1 ,B2 は室内ユニットで、これらユニットに次の冷
凍サイクルが構成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, A is an outdoor unit,
B 1 and B 2 are indoor units, and the following refrigeration cycle is configured in these units.

【0016】圧縮機1の吐出口に四方弁2を介して室外
熱交換器3が接続され、その室外熱交換器3に液側主管
Wが接続される。この液側主管Wは液側支管W1 ,W2
に分岐されており、液側支管W1 ,W2 は室内熱交換器
12,22に接続される。
An outdoor heat exchanger 3 is connected to a discharge port of the compressor 1 via a four-way valve 2, and a liquid side main pipe W is connected to the outdoor heat exchanger 3. The liquid side main pipes W are liquid side branch pipes W 1 and W 2.
The liquid side branch pipes W 1 and W 2 are connected to the indoor heat exchangers 12 and 22.

【0017】液側支管W1 ,W2 に減圧手段であるとこ
ろの電子膨張弁11,21が設けられる。この電子膨張
弁11,21は、供給される駆動パルスの数に応じて開
度が連続的に変化するパルスモータバルブ(PMV)で
ある。以下、電子膨張弁のことをPMVと称する。
The liquid side branch pipes W 1 and W 2 are provided with electronic expansion valves 11 and 21 which are pressure reducing means. The electronic expansion valves 11 and 21 are pulse motor valves (PMV) whose opening continuously changes according to the number of drive pulses supplied. Hereinafter, the electronic expansion valve is referred to as PMV.

【0018】室内熱交換器12,22にガス側支管G
1 ,G2 が接続される。このガス側支管G1 ,G2 はガ
ス側主管Gに集結されており、ガス側主管Gは上記四方
弁2を介して圧縮機1の吸込口に接続される。
A gas side branch pipe G is attached to the indoor heat exchangers 12 and 22.
1 , G 2 are connected. The gas side branch pipes G 1 and G 2 are gathered together in the gas side main pipe G, and the gas side main pipe G is connected to the suction port of the compressor 1 via the four-way valve 2.

【0019】室外熱交換器3の近傍に室外ファン4が設
けられる。圧縮機1の吐出口と四方弁2との間の管に除
霜用のバイパス5の一端が接続され、そのバイパス5の
他端が液側主管Wに接続される。バイパス5に二方弁6
が設けられる。室外熱交換器3に熱交換器温度センサ7
が取付けられる。四方弁2と圧縮機1の吸込口との間の
管に、冷媒温度センサ8が取付けられる。
An outdoor fan 4 is provided near the outdoor heat exchanger 3. One end of a defrosting bypass 5 is connected to a pipe between the discharge port of the compressor 1 and the four-way valve 2, and the other end of the bypass 5 is connected to the liquid side main pipe W. Two-way valve 6 on bypass 5
Is provided. The heat exchanger temperature sensor 7 is attached to the outdoor heat exchanger 3.
Is installed. A refrigerant temperature sensor 8 is attached to a pipe between the four-way valve 2 and the suction port of the compressor 1.

【0020】室内熱交換器12,22の近傍に室内ファ
ン13,23が設けられる。室内熱交換器12に熱交換
器温度センサ14が取付けられる。室内熱交換器22に
熱交換器温度センサ24が取付けられる。ガス側支管G
1 に冷媒温度センサ15が取付けられる。ガス側支管G
2 に冷媒温度センサ25が取付けられる。
Indoor fans 13, 23 are provided near the indoor heat exchangers 12, 22. A heat exchanger temperature sensor 14 is attached to the indoor heat exchanger 12. A heat exchanger temperature sensor 24 is attached to the indoor heat exchanger 22. Gas side branch pipe G
A refrigerant temperature sensor 15 is attached to 1. Gas side branch pipe G
Second refrigerant temperature sensor 25 is attached to.

【0021】制御回路を図2に示す。商用交流電源30
に、室外ユニットAの室外制御部40が接続される。こ
の室外制御部40は、マイクロコンピュータおよびその
周辺回路からなる。この室外制御部40に、PMV1
1,21、二方弁6、四方弁2、室外ファンモータ4
M、冷媒温度センサ7,8,15,25、インバータ回
路41が接続される。
The control circuit is shown in FIG. Commercial AC power supply 30
The outdoor control unit 40 of the outdoor unit A is connected to the. The outdoor control unit 40 includes a microcomputer and its peripheral circuits. PMV1 is added to the outdoor control unit 40.
1, 21, two-way valve 6, four-way valve 2, outdoor fan motor 4
M, the refrigerant temperature sensors 7, 8, 15, 25, and the inverter circuit 41 are connected.

【0022】インバータ回路41は、電源30の電圧を
整流し、それを室外制御部40の指令に応じた周波数お
よびレベルの電圧に変換し、出力する。この出力は圧縮
機モータ1Mの駆動電力となる。
The inverter circuit 41 rectifies the voltage of the power supply 30, converts it into a voltage of a frequency and level according to a command from the outdoor control section 40, and outputs it. This output becomes drive power for the compressor motor 1M.

【0023】室内ユニットB1 ,B2 はそれぞれ室内制
御部50を備える。室内制御部50は、マイクロコンピ
ュータおよびその周辺回路からなる。この室内制御部5
0に、室内温度センサ51、熱交換器温度センサ14
(および24)、リモートコントロール式の操作器(以
下、リモコンと略称する)52、室内ファンモータ13
M(および23M)が接続される。
The indoor units B 1 and B 2 each include an indoor control section 50. The indoor control unit 50 includes a microcomputer and its peripheral circuits. This indoor control unit 5
0, the indoor temperature sensor 51, the heat exchanger temperature sensor 14
(And 24), remote control type operation device (hereinafter, abbreviated as remote controller) 52, indoor fan motor 13
M (and 23M) are connected.

【0024】これら室内制御部50と室外制御部40と
が、それぞれ電源ラインACLおよびデータ転送用のシ
リアル信号ラインSLにより接続される。各室内制御部
50は、次の機能手段を備える。
The indoor control unit 50 and the outdoor control unit 40 are connected by a power supply line ACL and a serial signal line SL for data transfer, respectively. Each indoor control unit 50 includes the following functional means.

【0025】[1]リモコン52の操作による運転条件
(設定温度Tsを含む)を電源電圧同期のシリアル信号
により室外制御部40に知らせる手段。 [2]室内温度センサ51の検知温度Taとリモコン5
2で設定される設定温度Tsとの差を空調負荷として検
出し、その空調負荷に対応する要求能力(周波数値)を
電源電圧同期のシリアル信号により室外制御部40に知
らせる手段。
[1] A means for notifying the outdoor control section 40 of the operating conditions (including the set temperature Ts) by the operation of the remote controller 52 by a serial signal synchronized with the power supply voltage. [2] Temperature Ta detected by the indoor temperature sensor 51 and the remote controller 5
A means for detecting a difference from the set temperature Ts set in 2 as an air conditioning load and notifying the outdoor control unit 40 of the required capacity (frequency value) corresponding to the air conditioning load by a serial signal synchronized with the power supply voltage.

【0026】[3]熱交換器温度センサ14(および2
4)の検知温度Tcおよび室内温度センサ51の検知温
度Taを電源電圧同期のシリアル信号により室外制御部
40に知らせる手段。
[3] Heat exchanger temperature sensor 14 (and 2
A means for notifying the outdoor control unit 40 of the detected temperature Tc of 4) and the detected temperature Ta of the indoor temperature sensor 51 by a serial signal synchronized with the power supply voltage.

【0027】室外制御部40は、次の機能手段を備え
る。 [1]各室外制御部50からの冷房運転モード指令に基
づき、圧縮機1から吐出される冷媒を四方弁2、室外熱
交換器3、PMV11,21、室内熱交換器12,2
2、四方弁2に通して圧縮機1に戻し、冷房運転を実行
する手段。
The outdoor control section 40 has the following functional means. [1] The four-way valve 2, the outdoor heat exchanger 3, the PMVs 11 and 21, the indoor heat exchangers 12 and 2 are used for the refrigerant discharged from the compressor 1 based on the cooling operation mode command from each outdoor control unit 50.
2. Means for returning to the compressor 1 through the four-way valve 2 to execute the cooling operation.

【0028】[2]各室外制御部50からの暖房運転モ
ード指令に基づき、四方弁2を切換え、圧縮機1から吐
出される冷媒を四方弁2、室内熱交換器12,22、P
MV11,21、室外熱交換器3、四方弁2に通して圧
縮機1に戻し、暖房運転を実行する手段。
[2] The four-way valve 2 is switched based on the heating operation mode command from each outdoor control unit 50, and the refrigerant discharged from the compressor 1 is transferred to the four-way valve 2, the indoor heat exchangers 12, 22, P.
Means for returning to the compressor 1 through the MVs 11 and 21, the outdoor heat exchanger 3, and the four-way valve 2 to execute heating operation.

【0029】[3]冷房および暖房運転時、圧縮機1の
運転周波数F(=インバータ回路41の出力周波数)を
各室内制御部50からの要求能力の総和に応じて制御す
る手段。
[3] A means for controlling the operating frequency F of the compressor 1 (= the output frequency of the inverter circuit 41) during the cooling and heating operations according to the sum of the required capacities from the indoor control units 50.

【0030】[4]冷房運転時、冷媒温度センサ15の
検知温度Tgと熱交換器温度センサ14の検知温度Tc
との差(=Tg−Tc)を室内熱交換器12での冷媒の
過熱度(スーパーヒート)SHとして検出し、冷媒温度セ
ンサ25の検知温度Tgと熱交換器温度センサ24の検
知温度Tcとの差を室内熱交換器22での冷媒の過熱度
SHとして検出する手段。
[4] During cooling operation, the temperature Tg detected by the refrigerant temperature sensor 15 and the temperature Tc detected by the heat exchanger temperature sensor 14
(= Tg−Tc) is detected as the degree of superheat (superheat) SH of the refrigerant in the indoor heat exchanger 12, and the detected temperature Tg of the refrigerant temperature sensor 25 and the detected temperature Tc of the heat exchanger temperature sensor 24 are detected. Of the refrigerant in the indoor heat exchanger 22
Means to detect as SH.

【0031】[5]冷房運転時、検出される各過熱度SH
が設定値SHs となるよう、PMV11,21の開度を制
御する手段。 [6]暖房運転時、熱交換器温度センサ7の検知温度T
eと冷媒温度センサ8の検知温度Tsとの差(=Ts−
Te)を室外熱交換器3での冷媒の過熱度SHとして検出
する手段。
[5] Each superheat degree SH detected during cooling operation
A means for controlling the opening of the PMVs 11 and 21 so that the value becomes the set value SHs. [6] Temperature T detected by the heat exchanger temperature sensor 7 during heating operation
e and the temperature Ts detected by the refrigerant temperature sensor 8 (= Ts-
Means for detecting Te) as the superheat degree SH of the refrigerant in the outdoor heat exchanger 3.

【0032】[7]暖房運転時、検出される過熱度SHが
設定値SHs となるよう、PMV11,21の開度を制御
する手段。 [8]暖房運転時、定期的に、二方弁6を開放して室外
熱交換器3に対する除霜運転を実行する手段。二方弁6
が開くと、圧縮機1から吐出される高温冷媒が室外熱交
換器3に注入される。
[7] A means for controlling the opening degree of the PMVs 11 and 21 so that the detected superheat degree SH becomes the set value SHs during the heating operation. [8] A means for periodically performing the defrosting operation on the outdoor heat exchanger 3 by opening the two-way valve 6 during the heating operation. Two-way valve 6
When is opened, the high temperature refrigerant discharged from the compressor 1 is injected into the outdoor heat exchanger 3.

【0033】[9]冷房および暖房運転時、設定値SHs
と過熱度SHとの差ΔSHおよびその最大値ΔSHmax を逐次
に検出する第1検出手段。ここで検出される最大値ΔSH
maxの最新の値がΔSHmax(n)として記憶され、前回の値
がΔSHmax(n-1)として記憶される。
[9] Set value SHs during cooling and heating operation
And a superheat degree difference ΔSH and a maximum value ΔSHmax thereof are sequentially detected. Maximum value ΔSH detected here
The latest value of max is stored as ΔSHmax (n), and the previous value is stored as ΔSHmax (n-1).

【0034】[10]第1検出手段で検出される最大値Δ
SHmax の減少方向の変化量を検出する第2検出手段。減
少方向の変化量とは、ΔSHmax(n-1)>ΔSHmax(n)のとき
の両者の差(=ΔSHmax(n-1)−ΔSHmax(n))である。
[10] Maximum value Δ detected by the first detecting means
Second detection means for detecting the amount of change in the SHmax decreasing direction. The amount of change in the decreasing direction is the difference between the two when ΔSHmax (n-1)> ΔSHmax (n) (= ΔSHmax (n-1) -ΔSHmax (n)).

【0035】[11]第2検出手段で検出される変化量が
設定値(たとえば2℃)以下で、しかも第1検出手段で
検出される最大値ΔSHmax が所定値(たとえば1℃)以
上の状態にあるかどうか判定する第1判定手段。
[11] A state in which the amount of change detected by the second detecting means is less than a set value (for example, 2 ° C.) and the maximum value ΔSHmax detected by the first detecting means is over a predetermined value (for example, 1 ° C.). First determining means for determining whether or not

【0036】[12]第1判定手段の判定が所定回数(た
とえば2回)連続して満足されるときに、PMV11,
21に対する開度制御値を減少方向に補正する第1補正
手段。
[12] When the judgment of the first judging means is satisfied a predetermined number of times (for example, twice) in succession, the PMV 11,
First correction means for correcting the opening control value for 21 in a decreasing direction.

【0037】[13]第1検出手段で検出される差ΔSHが
所定値(たとえば1℃)以上の状態を一定時間(たとえ
ば5分間)継続したかどうか判定する第2判定手段。 [14]第2判定手段の判定が満足されるとき、PMV1
1,21に対する開度制御値を増大方向に補正する第2
補正手段。
[13] Second determining means for determining whether or not the difference ΔSH detected by the first detecting means is kept at a predetermined value (eg, 1 ° C.) or more for a certain period of time (eg, 5 minutes). [14] When the determination by the second determining means is satisfied, PMV1
2nd for correcting the opening control values for 1, 21 in the increasing direction
Correction means.

【0038】つぎに、作用を説明する。各リモコン52
で冷房運転モードが設定された場合、圧縮機1の吐出冷
媒が図1の実線矢印の方向に流れ、室外熱交換器3が凝
縮器、室内熱交換器12,22が蒸発器として機能す
る。これにより、冷房運転が実行される。
Next, the operation will be described. Each remote controller 52
When the cooling operation mode is set, the refrigerant discharged from the compressor 1 flows in the direction of the solid line arrow in FIG. 1, the outdoor heat exchanger 3 functions as a condenser, and the indoor heat exchangers 12 and 22 function as evaporators. As a result, the cooling operation is executed.

【0039】この冷房運転時、圧縮機1の運転周波数F
(=インバータ回路41の出力周波数)が室内ユニット
1 ,B2 の要求能力の総和に応じて制御される。同時
に、室内熱交換器12,22での冷媒の過熱度SHがそれ
ぞれ検出され、これら過熱度SHがそれぞれ設定値SHs と
なるよう、PMV11,21の開度が制御される。
During this cooling operation, the operating frequency F of the compressor 1
(= Output frequency of the inverter circuit 41) is controlled according to the total required capacity of the indoor units B 1 and B 2 . At the same time, the superheat degrees SH of the refrigerant in the indoor heat exchangers 12 and 22 are respectively detected, and the opening degrees of the PMVs 11 and 21 are controlled so that the superheat degrees SH become set values SHs, respectively.

【0040】各リモコン52で暖房運転モードが設定さ
れた場合、四方弁2が切換えられて圧縮機1の吐出冷媒
が図1の破線矢印の方向に流れ、室内熱交換器12,2
2が凝縮器、室外熱交換器3が蒸発器として機能する。
これにより、暖房運転が実行される。
When the heating operation mode is set by each remote controller 52, the four-way valve 2 is switched and the refrigerant discharged from the compressor 1 flows in the direction of the broken line arrow in FIG.
2 functions as a condenser, and the outdoor heat exchanger 3 functions as an evaporator.
As a result, the heating operation is executed.

【0041】この暖房運転時、圧縮機1の運転周波数F
が室内ユニットB1 ,B2 の要求能力の総和に応じて制
御される。同時に、室外熱交換器3での冷媒の過熱度SH
が検出され、その過熱度SHが設定値SHs となるよう、P
MV11,21の開度が制御される。この開度制御によ
り、室内熱交換器12,22にそれぞれ適正な量の冷媒
が流れる。
During this heating operation, the operating frequency F of the compressor 1
Is controlled in accordance with the total required capacity of the indoor units B 1 and B 2 . At the same time, the degree of superheat SH of the refrigerant in the outdoor heat exchanger 3
Is detected and the superheat degree SH reaches the set value SHs, P
The opening degrees of the MVs 11 and 21 are controlled. By this opening degree control, an appropriate amount of refrigerant flows through the indoor heat exchangers 12 and 22, respectively.

【0042】ところで、冷房および暖房運転時の過熱度
制御は、図3に示すフィードバック制御により実行され
る。すなわち、冷凍サイクルにおける過熱度SHが検出さ
れ、それがPID制御部にフィードバックされる。PI
D制御部には設定値SHs が取込まれており、その設定値
SHs と過熱度SHとの偏差からPMV11,21に対する
操作量(駆動パルス数)が演算して求められる。この操
作量に対してゲインGの補正が施され、その補正後の操
作量に従ってPMV11,21の開度制御が実行され
る。
By the way, the superheat degree control during the cooling and heating operations is executed by the feedback control shown in FIG. That is, the superheat degree SH in the refrigeration cycle is detected and fed back to the PID control unit. PI
The set value SHs is taken in the D control unit, and the set value SHs
From the deviation between SHs and the degree of superheat SH, the operation amount (the number of drive pulses) for the PMVs 11 and 21 is calculated. The gain G is corrected with respect to this operation amount, and the opening degree control of the PMVs 11 and 21 is executed according to the corrected operation amount.

【0043】検出される過熱度SHがゲインG判断部に供
給されており、そこで設定値SHs に対する過熱度SHの収
束状況が監視され、その収束状況を基にゲインGが設定
される。
The detected superheat degree SH is supplied to the gain G determination section, where the convergence state of the superheat degree SH with respect to the set value SHs is monitored, and the gain G is set based on the convergence state.

【0044】ここで、過熱度SHの監視およびゲインGの
設定が実際にどのうようになされるかを図4、図5、お
よび図6を参照しながら説明する。運転開始時、室内ユ
ニットB1 ,B2 の運転台数が変化したとき、PMV1
1,21が初期開度設定中のとき、あるいは除霜運転中
のとき(ステップ101,102,103,104 )、メモリ内のΔSH
max(n)、ΔSHmax(n-1)、回数カウントN、およびタイム
カウントtがクリアされるとともに、ゲインGが“1”
に設定される(ステップ105 )。このゲインG=“1”
は、補正なしに相当し、PID制御部で決定される操作
量がそのまま開度制御に使用されることになる。
Here, how the superheat degree SH is monitored and the gain G is actually set will be described with reference to FIGS. 4, 5 and 6. When the number of operating indoor units B 1 and B 2 changes at the start of operation, PMV1
ΔSH in the memory when 1, 2 is setting the initial opening or during defrosting operation (steps 101, 102, 103, 104)
max (n), ΔSHmax (n-1), the number of times count N, and the time count t are cleared, and the gain G is "1".
Is set to (step 105). This gain G = "1"
Corresponds to no correction, and the operation amount determined by the PID control unit is used as it is for opening control.

【0045】ところで、PMV11,21の開度が調節
されると、まず蒸発器への冷媒の流量が変化し、それが
過熱度SHの変化となって現われる。つまり、開度調節か
ら過熱度変化までに時間遅れが存在する。この時間遅れ
の影響で、過熱度SHはすぐには設定値へと収束せず、設
定値SHs を中心とする上下の振幅変動を繰返しながら収
束していくことになる。なお、過熱度SHの振幅変動につ
いては、PID制御等によってある程度は吸収されるも
のの、空調負荷の変動が大きかったりすると、なかなか
収束に至らないことがある。負荷条件によっては、収束
するどころか反対に拡散したり、あるいは設定値から離
れたところで安定してしまうこともある。
By the way, when the opening degree of the PMVs 11 and 21 is adjusted, first, the flow rate of the refrigerant to the evaporator changes, which appears as a change in the superheat degree SH. That is, there is a time delay from the opening adjustment to the change in superheat degree. Due to the influence of this time delay, the superheat degree SH does not immediately converge to the set value, but it converges while repeating the amplitude fluctuations around the set value SHs. The amplitude fluctuation of the superheat degree SH may be absorbed to some extent by PID control or the like, but may not be easily converged if the fluctuation of the air conditioning load is large. Depending on the load conditions, instead of converging, it may diffuse in the opposite direction, or may become stable at a distance from the set value.

【0046】運転開始後、室内ユニットB1 ,B2 の運
転台数に変化がなく、PMV11,21が初期開度設定
中でなく、しかも除霜運転中でないとき(ステップ101,
102,103,104 )、蒸発器での過熱度SH、設定値SHs と過
熱度SHとの差ΔSH、および差ΔSHの最大値ΔSHmax が逐
次に検出される(ステップ106 )。同時に、フラグHが
“0”に設定される(ステップ107 )。
After the start of operation, when the number of operating indoor units B 1 and B 2 does not change, PMVs 11 and 21 are not in the initial opening setting, and are not in defrosting operation (steps 101, 101).
102, 103, 104), the superheat degree SH in the evaporator, the difference ΔSH between the set value SHs and the superheat degree SH, and the maximum value ΔSHmax of the difference ΔSH are sequentially detected (step 106). At the same time, the flag H is set to "0" (step 107).

【0047】差ΔSHが所定値たとえば1℃以上かどうか
判定される(ステップ108 )。差ΔSHが1℃以上で(ス
テップ108 のYES )、しかも運転周波数Fに変化がなけ
れば(ステップ110 のNO)、フラグHが“0”であるこ
とを基に(ステップ113 のNO)、タイムカウントtが開
始される(ステップ114 )。
It is determined whether the difference ΔSH is a predetermined value or more, for example, 1 ° C. or more (step 108). If the difference ΔSH is 1 ° C. or more (YES in step 108) and there is no change in the operating frequency F (NO in step 110), based on the flag H being “0” (NO in step 113), the time The count t is started (step 114).

【0048】差ΔSHが1℃以下に収まると(ステップ10
8 のNO)、フラグHが“1”に設定される(ステップ10
9 )。また、運転周波数Fが変化した場合には(ステッ
プ110 のYES )、メモリ内のΔSHmax(n)、ΔSHmax(n-
1)、および回数カウントNがクリアされるとともに(ス
テップ111 )、フラグHが“1”に設定される(ステッ
プ105 )。この場合、フラグHが“1”であることを基
に(ステップ113 のYES )、タイムカウントtがクリア
される(ステップ115 )。
When the difference ΔSH is less than 1 ° C (step 10
8 NO) and flag H are set to "1" (step 10)
9). When the operating frequency F changes (YES in step 110), ΔSHmax (n) and ΔSHmax (n- in the memory
1) and the count N are cleared (step 111) and the flag H is set to "1" (step 105). In this case, the time count t is cleared (step 115) on the basis of the flag H being "1" (YES in step 113).

【0049】タイムカウントtは一定時間t1 たとえば
5分間と比較される(ステップ116)。タイムカウント
tが5分間に達すると、つまり設定値SHs と過熱度SHと
の差ΔSHが1℃以上の状態を5分間継続すると(ステッ
プ115 のYES )、ゲインGが所定値たとえば“0.2 ”だ
け増やされる(ステップ116 )。こうして設定されるゲ
インGにより、PMV11,21に対する駆動パルス数
が補正される(ステップ128 )。
The time count t is compared with a constant time t 1 for example 5 minutes (step 116). When the time count t reaches 5 minutes, that is, when the difference ΔSH between the set value SHs and the degree of superheat SH is 1 ° C or more for 5 minutes (YES in step 115), the gain G is a predetermined value, for example, "0.2". Is increased (step 116). The gain G set in this way corrects the number of drive pulses for the PMVs 11 and 21 (step 128).

【0050】すなわち、負荷条件によっては過熱度SHが
設定値SHs よりも1℃以上高い値、あるいは1℃以上低
い値のまま、5分間以上にわたって安定してしまうこと
がある。この場合、ゲインGが増やされる。ゲインGが
増えると、PMV11,21に対する開度制御値が増大
方向に補正され、蒸発器への冷媒流量の変化が大きくな
る。これにより、過熱度SHの不要な安定が解除され、過
熱度SHを設定値SHs へと迅速に収束させることができ
る。
That is, depending on the load conditions, the superheat degree SH may be stable for 5 minutes or more while maintaining a value higher than the set value SHs by 1 ° C. or more or a value lower by 1 ° C. or more. In this case, the gain G is increased. When the gain G increases, the opening control values for the PMVs 11 and 21 are corrected in the increasing direction, and the change in the refrigerant flow rate to the evaporator increases. As a result, unnecessary stabilization of the superheat degree SH is released, and the superheat degree SH can quickly converge to the set value SHs.

【0051】一方、過熱度SHは設定値SHs を中心とする
上下の振幅変動を繰返しながら収束していく。この場
合、差ΔSHが正側(+側)に存するごとに(ステップ11
8 のYES )、差ΔSHの最大値ΔSHmax が最新のΔSHmax
(n)として更新記憶される(ステップ119 )。
On the other hand, the superheat degree SH converges while repeating the amplitude fluctuation up and down about the set value SHs. In this case, each time the difference ΔSH is on the positive side (+ side) (step 11
8 YES), the maximum value of the difference ΔSH ΔSHmax is the latest ΔSHmax
It is updated and stored as (n) (step 119).

【0052】差ΔSHが正側から負側に向かって立下がる
とき(ステップ120 のYES )、ΔSHmax(n)が前回のΔSH
max(n-1)として更新記憶される(ステップ121 )。過熱
度SHが設定値SHs に向かって収束するとき、最大値ΔSH
max は減少方向に変化する。したがって、前回のΔSHma
x(n-1)と最新のΔSHmax(n)との間には、ΔSHmax(n-1)>
ΔSHmax(n)の関係が生じ、差(=ΔSHmax(n-1)−ΔSHma
x(n))が減少方向の変化量として検出される。
When the difference ΔSH falls from the positive side to the negative side (YES in step 120), ΔSHmax (n) is the previous ΔSH.
It is updated and stored as max (n-1) (step 121). When the superheat SH converges toward the set value SHs, the maximum value ΔSH
max changes in the decreasing direction. Therefore, the previous ΔSHma
Between x (n-1) and the latest ΔSHmax (n), ΔSHmax (n-1)>
The relationship of ΔSHmax (n) occurs, and the difference (= ΔSHmax (n-1) −ΔSHma
x (n)) is detected as the amount of change in the decreasing direction.

【0053】検出される変化量が設定値たとえば2℃以
下で、しかもそのときの最大値ΔSHmax が所定値たとえ
ば1℃以上の状態にあるかどうか判定される。これは、
過熱度SHの振幅変動が設定値HSs に向かって収束する状
況を監視するためのものである。
It is determined whether the detected change amount is a set value, for example, 2 ° C. or less, and the maximum value ΔSHmax at that time is at a predetermined value, for example, 1 ° C. or more. this is,
This is for monitoring the situation where the amplitude fluctuation of the superheat degree SH converges toward the set value HSs.

【0054】変化量が2℃以下と小さく、しかも最大値
ΔSHmax が1℃以上のとき、つまり上記の判定が満足さ
れる場合、ハンチングありと判断される(ステップ122
のYES )。変化量が2℃以上であるか、または最大値Δ
SHmax が1℃以下のとき、つまり上記の判定が満足され
ない場合、ハンチングなしと判断される(ステップ122
のNO)。
When the variation is as small as 2 ° C. or less and the maximum value ΔSHmax is 1 ° C. or more, that is, when the above determination is satisfied, it is determined that hunting is present (step 122).
YES). The amount of change is 2 ° C or more, or the maximum value Δ
When SHmax is 1 ° C or less, that is, when the above determination is not satisfied, it is determined that there is no hunting (step 122).
NO).

【0055】ハンチングありのときは、回数カウントN
がカウントアップされる(ステップ123 )。ハンチング
なしのときは、回数カウントNがクリアされる(ステッ
プ124 )。
With hunting, count N
Is counted up (step 123). When there is no hunting, the count N is cleared (step 124).

【0056】回数Nが設定値N1 たとえば2回に達する
と(ステップ125 のYES )、回数カウントNがクリアさ
れるとともに(ステップ126 )、ゲインGが所定値たと
えば“0.3 ”だけ減らされる(ステップ127 )。こうし
て設定されるゲインGにより、PMV11,21に対す
る駆動パルス数が補正される(ステップ128 )。
When the number of times N reaches the set value N 1, for example, twice (YES in step 125), the number of times N is cleared (step 126) and the gain G is decreased by a predetermined value, for example, "0.3" (step). 127). The gain G set in this way corrects the number of drive pulses for the PMVs 11 and 21 (step 128).

【0057】すなわち、過熱度SHの振幅変動はPID制
御等によってある程度は吸収されるものの、空調負荷の
変動が大きかったりすると、なかなか収束に至らないこ
とがある。この収束の遅れについてはある程度は仕方な
い面があるものの、あまり延びると運転に悪影響を与え
る。そこで、収束の遅れや拡散に際しては、ゲインGを
減らすようにしている。
That is, although the amplitude fluctuation of the superheat degree SH is absorbed to some extent by PID control or the like, if the air conditioning load fluctuation is large, it may not be easily converged. Although there is some unavoidable side to this convergence delay, if it is extended too much, it adversely affects driving. Therefore, the gain G is reduced when convergence is delayed or spread.

【0058】ゲインGが減ると、PMV11,21に対
する開度制御値が減少方向に補正され、蒸発器への冷媒
流量の変化が小さくなる。これにより、過熱度SHの振幅
変動が抑制され、過熱度SHを設定値SHs へと迅速に収束
させることができる。よって、常に安定な運転を行なう
ことができる。
When the gain G is reduced, the opening control values for the PMVs 11 and 21 are corrected in a decreasing direction, and the change in the refrigerant flow rate to the evaporator is reduced. As a result, the amplitude fluctuation of the superheat degree SH is suppressed, and the superheat degree SH can be quickly converged to the set value SHs. Therefore, stable operation can always be performed.

【0059】この発明の第2実施例について説明する。
PMV11,21に対する開度制御値が補正されたとこ
ろで、運転周波数Fに変化が生じることがある。この場
合、せっかく補正が施されたにもかかわらず、運転周波
数Fの変化が原因で、結局は過熱度SHs の収束に遅れを
生じてしまう心配がある。これに対処したのがこの第2
実施例である。
A second embodiment of the present invention will be described.
When the opening control values for the PMVs 11 and 21 are corrected, the operating frequency F may change. In this case, there is a risk that the convergence of the superheat degree SHs will eventually be delayed due to the change in the operating frequency F, although the correction has been made. This is the second to deal with this
This is an example.

【0060】室外制御部40の機能手段として、上記の
[1]ないし[14]に加え、次の[15]ないし[17]が
設けられる。 [15]圧縮機1の運転周波数Fが変化したとき、第1検
出手段で検出される最大値ΔSHmax とその検出から所定
時間t3 後に検出される差ΔSHとの差である過熱度変化
量を検出する第3検出手段。
As the functional means of the outdoor control section 40, the following [15] to [17] are provided in addition to the above [1] to [14]. [15] When the operating frequency F of the compressor 1 changes, the superheat degree change amount, which is the difference between the maximum value ΔSHmax detected by the first detection means and the difference ΔSH detected a predetermined time t 3 after the detection, Third detecting means for detecting.

【0061】[16]検出される過熱度変化量および第1
検出手段で検出される差ΔSHから、過熱度SHが設定値SH
s に到達するまでの時間t4 を予測する予測手段。 [17]予測時間t4 が所定値tup以上のときPMV1
1,21に対する開度制御値を増大方向に補正し、予測
時間t4 が所定値tdw以下のときPMV11,21に対
する開度制御値を減少方向に補正する第3補正手段。
[16] Detected superheat change amount and first
From the difference ΔSH detected by the detection means, the degree of superheat SH is the set value SH
Prediction means for predicting the time t 4 until reaching s. [17] PMV1 when the estimated time t 4 is equal to or greater than the predetermined value t up
Third correction means for correcting the opening control values for the Nos. 1 and 21 in the increasing direction and correcting the opening control values for the PMVs 11 and 21 in the decreasing direction when the predicted time t 4 is equal to or less than the predetermined value t dw .

【0062】他の構成については第1実施例と同じであ
る。この第2実施例に特有の作用として、図7、図8、
図9、図10のフローチャートに示すように、ステップ
112 とステップ113 との間にステップ112aおよびステッ
プ112bが加わり、ステップ121 とステップ122 との間に
ステップ131 ないしステップ139 が加わる。また、ステ
ップ105 にタイムカウントt2 のクリアが加わる。他の
作用は第1実施例と同じである。
The other structure is the same as that of the first embodiment. As an operation peculiar to the second embodiment, FIG. 7, FIG.
As shown in the flowcharts of FIGS. 9 and 10, step
Step 112a and step 112b are added between 112 and step 113, and step 131 to step 139 are added between step 121 and step 122. Further, the time count t 2 is cleared in step 105. Other functions are the same as those in the first embodiment.

【0063】すなわち、運転周波数Fが変化した場合
(ステップ110 のYES )、フラグH2が“1”に設定さ
れ(ステップ112a)、タイムカウントt2 がクリアされ
る(ステップ112b)。
That is, when the operating frequency F has changed (YES in step 110), the flag H 2 is set to "1" (step 112a) and the time count t 2 is cleared (step 112b).

【0064】差ΔSHが正側から負側に向かって立下がる
とき(ステップ120 のYES )、フラグH2 が“1”とな
っていれば(ステップ131 のYES )、運転周波数Fの変
化があったとの判断の下に、タイムカウントt2 が開始
される(ステップ132 )。
When the difference ΔSH falls from the positive side to the negative side (YES in step 120), if the flag H 2 is "1" (YES in step 131), there is a change in the operating frequency F. If it is determined that the time is t, the time count t 2 is started (step 132).

【0065】タイムカウントt2 が所定時間t3 に達す
ると、ステップ121 で記憶された最新の最大値ΔSHmax
(n-1)と現時点の差ΔSHとの差(=ΔSHmax(n)−ΔSH)
が過熱度変化量として検出される。そして、下式に示す
ように、現時点の差ΔSHと過熱度変化量との比が求めら
れ、それに所定時間t3 が足されることにより、差ΔSH
が立下がりを始めてから(タイムカウントt2 の開始か
ら)、過熱度SHが設定値SHs に到達するまでの時間t4
が予測される(ステップ134 )。
When the time count t 2 reaches a predetermined time t 3 , the latest maximum value ΔSHmax stored in step 121 is stored.
Difference between (n-1) and current difference ΔSH (= ΔSHmax (n) −ΔSH)
Is detected as the superheat change amount. Then, as shown in the following equation, the ratio between the current difference ΔSH and the superheat change amount is obtained, and the predetermined time t 3 is added to the ratio, so that the difference ΔSH
There from the start of falling (from the start of the time count t 2), the time until the degree of superheat SH reaches the set value SHs t 4
Is predicted (step 134).

【0066】 t4 =ΔSH/(ΔSHmax(n-1)−ΔSH)+t3 過熱度SHの変化と予測時間t4 との関係を図11に示
す。この予測時間t4 と所定値tupたとえば5分間とが
比較される(ステップ135)。
FIG. 11 shows the relationship between t 4 = ΔSH / (ΔSHmax (n−1) −ΔSH) + t 3 change in superheat degree SH and the predicted time t 4 . The predicted time t 4 is compared with a predetermined value t up, for example, 5 minutes (step 135).

【0067】予測時間t4 が所定値tupより長い場合
(ステップ135 のYES )、ゲインGが所定値たとえば
“0.2 ”だけ増やされる(ステップ136 )。ゲインGが
増えると、PMV11,21に対する開度制御値が増大
方向に補正され、蒸発器への冷媒流量の変化が大きくな
る。これにより、過熱度SHは設定値SHs へと迅速に到達
する。
When the predicted time t 4 is longer than the predetermined value t up (YES in step 135), the gain G is increased by a predetermined value, for example, "0.2" (step 136). When the gain G increases, the opening control values for the PMVs 11 and 21 are corrected in the increasing direction, and the change in the refrigerant flow rate to the evaporator increases. As a result, the superheat degree SH quickly reaches the set value SHs.

【0068】また、予測時間t4 と所定値tdwたとえば
1分とが比較される(ステップ137)。予測時間t4
所定値tdwより短い場合(ステップ137 のYES )、過熱
度SHが設定値SHs を中心とした振幅変動を繰返してしま
う心配がある。そこで、この場合は、ゲインGが所定値
たとえば“0.3 ”だけ減らされる(ステップ138 )。ゲ
インGが減ると、PMV11,21に対する開度制御値
が減少方向に補正され、蒸発器への冷媒流量の変化が小
さくなる。これにより、過熱度SHが設定値SHs を中心と
して振幅変動する事態が防止され、過熱度SHは設定値SH
s へと迅速に収束することになる。なお、上記各実施例
では、空気調和機への適用について説明したが、冷凍サ
イクルを搭載する機器であれば他の機器にも適用可能で
ある。
Further, the estimated time t 4 is compared with a predetermined value t dw, for example, 1 minute (step 137). If the predicted time t 4 is shorter than the predetermined value t dw (YES in step 137), there is a fear that the degree of superheat SH will repeat amplitude variation around the set value SHs. Therefore, in this case, the gain G is reduced by a predetermined value, for example, "0.3" (step 138). When the gain G decreases, the opening control values for the PMVs 11 and 21 are corrected in the decreasing direction, and the change in the refrigerant flow rate to the evaporator becomes small. This prevents the superheat SH from fluctuating in amplitude around the set value SHs.
It quickly converges to s. In each of the above-described embodiments, the application to the air conditioner has been described, but the present invention can be applied to other devices as long as the device has a refrigeration cycle.

【0069】[0069]

【発明の効果】以上述べたようにこの発明によれば、請
求項1の冷凍サイクル装置は、設定値と過熱度との差の
最大値を逐次に検出するとともに、その最大値の減少方
向の変化量を検出し、その変化量が設定値以下でしかも
そのときの最大値が所定値以上の状態にあるかどうか判
定し、その判定が所定回数連続して満足されるとき、電
子膨張弁に対する開度制御値を減少方向に補正する構成
としたので、過熱度を設定値へと迅速に収束させること
ができ、常に安定した運転が可能である。
As described above, according to the present invention, the refrigeration cycle apparatus of claim 1 successively detects the maximum value of the difference between the set value and the degree of superheat, and detects the maximum value in the decreasing direction. When the amount of change is detected, it is determined whether the amount of change is less than or equal to a set value and the maximum value at that time is greater than or equal to a predetermined value. Since the opening control value is corrected in the decreasing direction, the degree of superheat can be quickly converged to the set value, and stable operation can always be performed.

【0070】請求項2の冷凍サイクル装置は、設定値と
過熱度との差およびその最大値を逐次に検出するととも
に、その最大値の減少方向の変化量を検出し、その変化
量が設定値以下でしかも上記検出される最大値が所定値
以上の状態にあるかどうか判定し、その判定が所定回数
連続して満足されるとき、電子膨張弁に対する開度制御
値を減少方向に補正し、さらに上記検出した差が所定値
以上の状態を一定時間継続したかどうか判定し、その判
定が満足されるとき電子膨張弁に対する開度制御値を増
大方向に補正する構成としたので、過熱度を設定値へと
迅速に収束させることができ、常に安定した運転が可能
である。
According to another aspect of the refrigeration cycle apparatus of the present invention, the difference between the set value and the degree of superheat and its maximum value are sequentially detected, and the change amount of the maximum value in the decreasing direction is detected. It is determined whether or not the maximum value detected below is a predetermined value or more, and when the determination is continuously satisfied for a predetermined number of times, the opening control value for the electronic expansion valve is corrected in a decreasing direction, Further, it is determined whether or not the detected difference has continued for a certain period of time over a predetermined value, and when the determination is satisfied, the opening control value for the electronic expansion valve is corrected in the increasing direction. It can be quickly converged to the set value, and stable operation is always possible.

【0071】請求項3の冷凍サイクル装置は、請求項2
の冷凍サイクル装置の構成に加え、圧縮機の運転周波数
が変化したとき、検出される最大値とその検出から所定
時間後に検出される差との差である過熱度変化量を検出
し、この過熱度変化量および初めに検出される差(設定
値と過熱度との差)から過熱度が設定値に到達するまで
の時間を予測し、この予測時間が所定値以上のときは電
子膨張弁に対する開度制御値を増大方向に補正し、予測
時間が所定値以下のときは電子膨張弁に対する開度制御
値を減少方向に補正する構成としたので、過熱度を設定
値へと迅速に収束させることができ、常に安定した運転
が可能である。
The refrigeration cycle apparatus of claim 3 is the same as that of claim 2
In addition to the configuration of the refrigeration cycle device, when the operating frequency of the compressor changes, the amount of change in the degree of superheat, which is the difference between the maximum value detected and the difference detected a predetermined time after the detection, is detected. Degree change amount and the difference detected at the beginning (difference between set value and superheat degree), predict the time until the superheat degree reaches the set value. The opening control value is corrected in the increasing direction, and when the predicted time is less than the predetermined value, the opening control value for the electronic expansion valve is corrected in the decreasing direction, so that the degree of superheat is quickly converged to the set value. It is possible, and stable operation is always possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1実施例の冷凍サイクルの構成
図。
FIG. 1 is a configuration diagram of a refrigeration cycle according to a first embodiment of the present invention.

【図2】第1実施例における制御回路の構成図。FIG. 2 is a configuration diagram of a control circuit in the first embodiment.

【図2】第1実施例におけるフィードバック制御を説明
するためのブロック図。
FIG. 2 is a block diagram for explaining feedback control in the first embodiment.

【図4】第1実施例における過熱度SHと設定値SHs との
差ΔSHの変化を示す図。
FIG. 4 is a diagram showing a change in a difference ΔSH between a superheat degree SH and a set value SHs in the first embodiment.

【図5】第1実施例の作用を説明するためのフローチャ
ート。
FIG. 5 is a flow chart for explaining the operation of the first embodiment.

【図6】第1実施例の作用を説明するためのフローチャ
ート。
FIG. 6 is a flowchart for explaining the operation of the first embodiment.

【図7】この発明の第2実施例の作用を説明するための
フローチャート。
FIG. 7 is a flow chart for explaining the operation of the second embodiment of the present invention.

【図8】第2実施例の作用を説明するためのフローチャ
ート。
FIG. 8 is a flowchart for explaining the operation of the second embodiment.

【図9】第2実施例の作用を説明するためのフローチャ
ート。
FIG. 9 is a flowchart for explaining the operation of the second embodiment.

【図10】第2実施例の作用を説明するためのフローチ
ャート。
FIG. 10 is a flowchart for explaining the operation of the second embodiment.

【図11】第2実施例における過熱度SHの変化と予測時
間t4 との関係を示す図。
FIG. 11 is a diagram showing the relationship between changes in superheat degree SH and predicted time t 4 in the second embodiment.

【符号の説明】[Explanation of symbols]

A…室外ユニット、B1 ,B2 …室内ユニット、1…能
力可変圧縮機、2…四方弁、3…室外熱交換器、11,
21…PMV、12,22…室内熱交換器、7,14,
24…熱交換器温度センサ、8,15,25…冷媒温度
センサ、40…室外制御部、50…室内制御部。
A ... outdoor unit, B 1, B 2 ... indoor unit, 1 ... variable capacity compressor, 2 ... four-way valve, 3 ... outdoor heat exchanger, 11,
21 ... PMV, 12, 22 ... Indoor heat exchanger, 7, 14,
24 ... Heat exchanger temperature sensor, 8, 15, 25 ... Refrigerant temperature sensor, 40 ... Outdoor control unit, 50 ... Indoor control unit.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年12月10日[Submission date] December 10, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1実施例の冷凍サイクルの構成
図。
FIG. 1 is a configuration diagram of a refrigeration cycle according to a first embodiment of the present invention.

【図2】第1実施例における制御回路の構成図。FIG. 2 is a configuration diagram of a control circuit in the first embodiment.

【図3】第1実施例におけるフィードバック制御を説明
するためのブロック図。
FIG. 3 is a block diagram for explaining feedback control in the first embodiment.

【図4】第1実施例における過熱度SHと設定値SHs との
差ΔSHの変化を示す図。
FIG. 4 is a diagram showing a change in a difference ΔSH between a superheat degree SH and a set value SHs in the first embodiment.

【図5】第1実施例の作用を説明するためのフローチャ
ート。
FIG. 5 is a flow chart for explaining the operation of the first embodiment.

【図6】第1実施例の作用を説明するためのフローチャ
ート。
FIG. 6 is a flowchart for explaining the operation of the first embodiment.

【図7】この発明の第2実施例の作用を説明するための
フローチャート。
FIG. 7 is a flow chart for explaining the operation of the second embodiment of the present invention.

【図8】第2実施例の作用を説明するためのフローチャ
ート。
FIG. 8 is a flowchart for explaining the operation of the second embodiment.

【図9】第2実施例の作用を説明するためのフローチャ
ート。
FIG. 9 is a flowchart for explaining the operation of the second embodiment.

【図10】第2実施例の作用を説明するためのフローチ
ャート。
FIG. 10 is a flowchart for explaining the operation of the second embodiment.

【図11】第2実施例における過熱度SHの変化と予測時
間t4 との関係を示す図。
FIG. 11 is a diagram showing the relationship between changes in superheat degree SH and predicted time t 4 in the second embodiment.

【符号の説明】 A…室外ユニット、B1 ,B2 …室内ユニット、1…能
力可変圧縮機、2…四方弁、3…室外熱交換器、11,
21…PMV、12,22…室内熱交換器、7,14,
24…熱交換器温度センサ、8,15,25…冷媒温度
センサ、40…室外制御部、50…室内制御部。
[Reference Numerals] A ... outdoor unit, B 1, B 2 ... indoor unit, 1 ... variable capacity compressor, 2 ... four-way valve, 3 ... outdoor heat exchanger, 11,
21 ... PMV, 12, 22 ... Indoor heat exchanger, 7, 14,
24 ... Heat exchanger temperature sensor, 8, 15, 25 ... Refrigerant temperature sensor, 40 ... Outdoor control unit, 50 ... Indoor control unit.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、凝縮器、電子膨張弁、蒸発器を
接続した冷凍サイクルを備え、蒸発器での冷媒の過熱度
が設定値となるよう電子膨張弁の開度を制御する冷凍サ
イクル装置において、前記設定値と前記過熱度との差の
最大値を逐次に検出する第1検出手段と、この第1検出
手段で検出される最大値の減少方向の変化量を検出する
第2検出手段と、この第2検出手段で検出される変化量
が設定値以下でしかも前記第1検出手段で検出される最
大値が所定値以上の状態にあるかどうか判定する判定手
段と、この判定手段の判定が所定回数連続して満足され
るとき前記電子膨張弁に対する開度制御値を減少方向に
補正する補正手段とを備えたことを特徴とする冷凍サイ
クル装置。
1. A refrigeration cycle including a refrigeration cycle in which a compressor, a condenser, an electronic expansion valve, and an evaporator are connected, and the opening of the electronic expansion valve is controlled so that the degree of superheat of the refrigerant in the evaporator becomes a set value. In the device, first detection means for sequentially detecting a maximum value of the difference between the set value and the superheat degree, and second detection means for detecting a change amount of the maximum value detected by the first detection means in a decreasing direction. Means for determining whether or not the amount of change detected by the second detecting means is equal to or less than a set value and the maximum value detected by the first detecting means is equal to or more than a predetermined value, and the determining means. And a correction unit that corrects the opening degree control value for the electronic expansion valve in a decreasing direction when the determination of is satisfied a predetermined number of times consecutively.
【請求項2】 圧縮機、凝縮器、電子膨張弁、蒸発器を
接続した冷凍サイクルを備え、蒸発器での冷媒の過熱度
が設定値となるよう電子膨張弁の開度を制御する冷凍サ
イクル装置において、前記設定値と前記過熱度との差お
よびその最大値を逐次に検出する第1検出手段と、この
第1検出手段で検出される最大値の減少方向の変化量を
検出する第2検出手段と、この第2検出手段で検出され
る変化量が設定値以下でしかも前記第1検出手段で検出
される最大値が所定値以上の状態にあるかどうか判定す
る第1判定手段と、この第1判定手段の判定が所定回数
連続して満足されるとき前記電子膨張弁に対する開度制
御値を減少方向に補正する第1補正手段と、前記第1検
出手段で検出される差が所定値以上の状態を一定時間継
続したかどうか判定する第2判定手段と、この第2判定
手段の判定が満足されるとき前記電子膨張弁に対する開
度制御値を増大方向に補正する第2補正手段とを備えた
ことを特徴とする冷凍サイクル装置。
2. A refrigeration cycle including a refrigeration cycle in which a compressor, a condenser, an electronic expansion valve, and an evaporator are connected, and the opening of the electronic expansion valve is controlled so that the degree of superheat of the refrigerant in the evaporator becomes a set value. In the apparatus, a first detection unit that sequentially detects a difference between the set value and the superheat degree and a maximum value thereof, and a second detection unit that detects a change amount of the maximum value detected by the first detection unit in a decreasing direction. Detecting means; first determining means for determining whether or not the amount of change detected by the second detecting means is equal to or less than a set value and the maximum value detected by the first detecting means is equal to or more than a predetermined value. When the determination of the first determination means is satisfied a predetermined number of times in succession, the difference detected by the first correction means and the first correction means for correcting the opening control value for the electronic expansion valve in a decreasing direction is predetermined. Judgment whether or not the state above the value continued for a certain time Refrigeration cycle apparatus, comprising: a second determination means for controlling the electronic expansion valve; and a second correction means for correcting the opening control value for the electronic expansion valve in an increasing direction when the determination of the second determination means is satisfied. .
【請求項3】 請求項2記載の冷凍サイクル装置におい
て、前記圧縮機の運転周波数が変化したとき、前記第1
検出手段で検出される最大値とその検出から所定時間後
に検出される差との差である過熱度変化量を検出する第
3検出手段と、この過熱度変化量および前記第1検出手
段で検出される差から前記過熱度が設定値に到達するま
での時間を予測する予測手段と、この予測時間が所定値
以上のとき前記電子膨張弁に対する開度制御値を増大方
向に補正し、予測時間が所定値以下のとき前記電子膨張
弁に対する開度制御値を減少方向に補正する第3補正手
段とを設けたことを特徴とする冷凍サイクル装置。
3. The refrigeration cycle apparatus according to claim 2, wherein when the operating frequency of the compressor changes, the first
Third detecting means for detecting a superheat change amount, which is a difference between the maximum value detected by the detecting means and a difference detected after a predetermined time from the detection, and the superheat change amount and the first detecting means. Prediction means for predicting the time until the superheat reaches the set value from the difference, and when the predicted time is a predetermined value or more, the opening control value for the electronic expansion valve is corrected in the increasing direction, and the predicted time And a third correction means for correcting the opening control value for the electronic expansion valve in a decreasing direction when is less than or equal to a predetermined value.
JP05242506A 1993-01-27 1993-09-29 Refrigeration cycle device Expired - Lifetime JP3117339B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP05242506A JP3117339B2 (en) 1993-01-27 1993-09-29 Refrigeration cycle device
TW082110655A TW228024B (en) 1993-01-27 1993-12-15
GB9326573A GB2274930B (en) 1993-01-27 1993-12-30 Refrigeraing apparatus and control methods therefor
KR1019930032344A KR940018635A (en) 1993-01-27 1993-12-31 Refrigeration cycle unit
CN93119985A CN1071882C (en) 1993-01-27 1993-12-31 Refrigerant circulating arrangement

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1161893 1993-01-27
JP5-11618 1993-01-27
JP05242506A JP3117339B2 (en) 1993-01-27 1993-09-29 Refrigeration cycle device

Publications (2)

Publication Number Publication Date
JPH06281234A true JPH06281234A (en) 1994-10-07
JP3117339B2 JP3117339B2 (en) 2000-12-11

Family

ID=26347076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05242506A Expired - Lifetime JP3117339B2 (en) 1993-01-27 1993-09-29 Refrigeration cycle device

Country Status (5)

Country Link
JP (1) JP3117339B2 (en)
KR (1) KR940018635A (en)
CN (1) CN1071882C (en)
GB (1) GB2274930B (en)
TW (1) TW228024B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196812A (en) * 2007-02-14 2008-08-28 Fuji Electric Retail Systems Co Ltd Refrigerant flow control device
WO2009004780A1 (en) * 2007-06-29 2009-01-08 Daikin Industries, Ltd. Freezing apparatus
CN103982987A (en) * 2014-05-07 2014-08-13 广东美的暖通设备有限公司 Method and system for preventing bias flowing of refrigerant in multi-split air conditioner and multi-split air conditioner

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5533347A (en) * 1993-12-22 1996-07-09 Novar Electronics Corporation Method of refrigeration case control
US6148628A (en) * 1999-03-26 2000-11-21 Carrier Corporation Electronic expansion valve without pressure sensor reading
KR100366449B1 (en) * 2000-10-12 2002-12-31 주식회사 엘지이아이 Control Device and Control Method of 3 way valve
US7201008B2 (en) * 2003-05-05 2007-04-10 Carrier Corporation Vapor compression system performance enhancement and discharge temperature reduction in the unloaded mode of operation
KR100579564B1 (en) * 2004-04-12 2006-05-15 엘지전자 주식회사 LEV control method of cooling cycle apparatus
KR100664085B1 (en) * 2005-11-24 2007-01-03 엘지전자 주식회사 Apparatus for controlling air conditioner
US7784296B2 (en) * 2007-03-08 2010-08-31 Nordyne Inc. System and method for controlling an air conditioner or heat pump
CN101852523B (en) * 2009-03-31 2012-01-11 海尔集团公司 Superheat degree control method and system for refrigeration circulation system
JP6076583B2 (en) * 2011-01-19 2017-02-08 三菱重工業株式会社 heat pump
US9746224B2 (en) 2012-11-21 2017-08-29 Liebert Corporation Expansion valve setpoint control systems and methods
US10174977B2 (en) 2012-11-21 2019-01-08 Vertiv Corporation Apparatus and method for subcooling control based on superheat setpoint control
CN104110799B (en) * 2013-05-30 2016-12-07 广东美的制冷设备有限公司 The integrated control method of air-conditioner electric expansion valve and circuit
DK201470338A1 (en) * 2014-06-06 2015-05-11 Danfoss As A method for detecting instability in a refrigeration system
CN106403425B (en) * 2015-07-27 2019-04-12 青岛海尔空调电子有限公司 A kind of control method for electronic expansion valve of water chiller
JP6468300B2 (en) 2017-02-13 2019-02-13 株式会社富士通ゼネラル Air conditioner
CN107401811A (en) * 2017-07-26 2017-11-28 日照职业技术学院 Air conditioner defrosting system for automobile
CN110285618B (en) * 2019-06-27 2020-03-27 山东建筑大学 Frequency conversion control device and control method of heat pump

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2909190B2 (en) * 1990-11-02 1999-06-23 株式会社東芝 Air conditioner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196812A (en) * 2007-02-14 2008-08-28 Fuji Electric Retail Systems Co Ltd Refrigerant flow control device
WO2009004780A1 (en) * 2007-06-29 2009-01-08 Daikin Industries, Ltd. Freezing apparatus
JP2009014212A (en) * 2007-06-29 2009-01-22 Daikin Ind Ltd Refrigerating device
AU2008272384B2 (en) * 2007-06-29 2011-01-27 Daikin Industries, Ltd. Refrigeration system
CN103982987A (en) * 2014-05-07 2014-08-13 广东美的暖通设备有限公司 Method and system for preventing bias flowing of refrigerant in multi-split air conditioner and multi-split air conditioner

Also Published As

Publication number Publication date
GB9326573D0 (en) 1994-03-02
CN1093792A (en) 1994-10-19
KR940018635A (en) 1994-08-18
GB2274930B (en) 1996-02-07
GB2274930A (en) 1994-08-10
TW228024B (en) 1994-08-11
JP3117339B2 (en) 2000-12-11
CN1071882C (en) 2001-09-26

Similar Documents

Publication Publication Date Title
JP3117339B2 (en) Refrigeration cycle device
US4495779A (en) Air conditioner
EP1956323A2 (en) Air conditioner and method of controlling electronic expansion valve thereof
JPH11108485A (en) Method for controlling air conditioner and outlet temperature of refrigerant heater
JP2005024152A (en) Method of controlling expansion valve of multi-air conditioner
JPH04240355A (en) Controlling method for electronic expansion valve of air conditioner
WO2016132473A1 (en) Air conditioning device
JPH11230624A (en) Apparatus and method of controlling electronic expansion valve
JP2889791B2 (en) Vapor compression refrigerator
JP3253104B2 (en) Refrigeration cycle device
JPH09303885A (en) Refrigerating and air conditioning device
JP3436962B2 (en) Refrigeration cycle device
JP3375235B2 (en) Refrigeration cycle device
JPH11132605A (en) Air conditioner
JPH08327122A (en) Air conditioner
JP2914783B2 (en) Air conditioner
JPH0714772Y2 (en) Refrigeration cycle
JPH04295550A (en) Refrigerating cycle apparatus
JPH1038388A (en) Air conditioner and its control method
JPH10141788A (en) Multi-room split type air conditioner
JPH09236299A (en) Running control device for air conditioning apparatus
KR100535676B1 (en) Control method of cooling cycling apparatus
JP6245207B2 (en) Air conditioner
JPH04340056A (en) Refrigeration cycle device
JP2022096824A (en) Heat pump cycle device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081006

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081006

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081006

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 12