JPH04295550A - Refrigerating cycle apparatus - Google Patents

Refrigerating cycle apparatus

Info

Publication number
JPH04295550A
JPH04295550A JP5908891A JP5908891A JPH04295550A JP H04295550 A JPH04295550 A JP H04295550A JP 5908891 A JP5908891 A JP 5908891A JP 5908891 A JP5908891 A JP 5908891A JP H04295550 A JPH04295550 A JP H04295550A
Authority
JP
Japan
Prior art keywords
refrigerant
expansion valve
compressor
degree
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5908891A
Other languages
Japanese (ja)
Inventor
Yasuji Ogoshi
靖二 大越
Hideaki Suzuki
秀明 鈴木
Eiji Kuwabara
永治 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5908891A priority Critical patent/JPH04295550A/en
Publication of JPH04295550A publication Critical patent/JPH04295550A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To provide a refrigerating cycle apparatus capable of escaping from a liquid back state quickly, thereby the life of a compressor can be extended. CONSTITUTION:A refrigerating cycle apparatus consists of a refrigerating cycle which is composed of a compressor 1, a condenser 3, an electronic expansion valve 4 and an evaporator 5, a detector that detects the superheat degree SH of refrigerant in the evaporator 5, a controller which controls the valve lift of the electronic expansion valve 4 so that refrigerant superheat degree is kept at a constant value of 5 degrees, for example, and a temperature detector which detects the refrigerant delivery temperature Td of the compressor 1. When the detected superheat degree SH is zero or lower, that means liquid back state, the valve lift of the expansion valve 4 is corrected corresponding to the detected refrigerant delivery temperature Td.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、電子膨張弁を備えた
冷凍サイクル装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a refrigeration cycle device equipped with an electronic expansion valve.

【0002】0002

【従来の技術】空気調和機等に用いる冷凍サイクルとし
ては、電子膨張弁を備え、その電子膨張弁の開度を蒸発
器の冷媒過熱度が一定値となるよう制御し、運転の安定
化を図るものがある。一例を図9に示す。
[Prior Art] A refrigeration cycle used in an air conditioner, etc. is equipped with an electronic expansion valve, and the opening degree of the electronic expansion valve is controlled so that the degree of superheating of the refrigerant in the evaporator remains at a constant value, thereby stabilizing the operation. There is something to aim for. An example is shown in FIG.

【0003】1は能力可変圧縮機である。この圧縮機1
の吐出口に四方弁2を介して室外熱交換器3を接続し、
その室外熱交換器3に電子膨張弁(パルスモータバルブ
;PMV)4を介して室内熱交換器5を接続している。 そして、室内熱交換器5を上記四方弁2を介して圧縮機
1の吸込口に接続している。つまり、冷房運転時は図示
実線矢印の方向に冷媒を流して冷房サイクルを形成し、
室外熱交換器3を凝縮器、室内熱交換器5を蒸発器とし
て働かせる。
1 is a variable capacity compressor. This compressor 1
An outdoor heat exchanger 3 is connected to the discharge port of the unit via a four-way valve 2,
An indoor heat exchanger 5 is connected to the outdoor heat exchanger 3 via an electronic expansion valve (pulse motor valve; PMV) 4. The indoor heat exchanger 5 is connected to the suction port of the compressor 1 via the four-way valve 2. In other words, during cooling operation, the refrigerant flows in the direction of the solid arrow shown in the figure to form a cooling cycle.
The outdoor heat exchanger 3 is used as a condenser, and the indoor heat exchanger 5 is used as an evaporator.

【0004】暖房運転時は、四方弁2の切換作動により
、図示破線矢印の方向に冷媒を流して暖房サイクルを形
成し、室内熱交換器5を凝縮器、室外熱交換器3を蒸発
器として働かせる。
During heating operation, the four-way valve 2 is switched to flow the refrigerant in the direction of the dashed arrow in the figure to form a heating cycle, with the indoor heat exchanger 5 serving as a condenser and the outdoor heat exchanger 3 serving as an evaporator. make it work

【0005】また、室外熱交換器3と電子膨張弁4の接
続配管にキャピラリチューブ6の一端を接続し、電子膨
張弁4と室内熱交換器5の接続配管にキャピラリチュー
ブ7の一端を接続し、それらキャピラリチューブ6,7
の他端を共にバイパス8を介して圧縮機1の吸込口に接
続している。
Furthermore, one end of the capillary tube 6 is connected to the connecting pipe between the outdoor heat exchanger 3 and the electronic expansion valve 4, and one end of the capillary tube 7 is connected to the connecting pipe between the electronic expansion valve 4 and the indoor heat exchanger 5. , those capillary tubes 6,7
Both ends are connected to the suction port of the compressor 1 via a bypass 8.

【0006】そして、圧縮機1の吸込側配管において、
上記バイパス8の接続部よりも上流側に温度センサ11
を取り付けている。さらに、バイパス8に温度センサ1
2を取り付けている。作用を説明する。
[0006] In the suction side piping of the compressor 1,
A temperature sensor 11 is located upstream of the connection part of the bypass 8.
is installed. Furthermore, the temperature sensor 1 is connected to the bypass 8.
2 is installed. Explain the action.

【0007】冷房あるいは暖房運転時、空調負荷に応じ
て圧縮機1の運転周波数つまり能力を制御する。同時に
、圧縮機1の吸い込み冷媒温度を温度センサ11で検知
し、飽和冷媒温度を温度センサ12で検知する。そして
、温度センサ11の検知温度T1 と温度センサ12の
検知温度T2 との差を蒸発器の冷媒過熱度(スーパー
ヒート)SHとして検知し、その冷媒過熱度SHが予め
定められている一定値となるよう電子膨張弁4の開度を
制御する。
During cooling or heating operation, the operating frequency, or capacity, of the compressor 1 is controlled according to the air conditioning load. At the same time, the temperature of the refrigerant sucked into the compressor 1 is detected by a temperature sensor 11, and the saturated refrigerant temperature is detected by a temperature sensor 12. Then, the difference between the temperature T1 detected by the temperature sensor 11 and the temperature T2 detected by the temperature sensor 12 is detected as the refrigerant superheat degree (superheat) SH of the evaporator, and the refrigerant superheat degree SH is set to a predetermined constant value. The opening degree of the electronic expansion valve 4 is controlled so that

【0008】[0008]

【発明が解決しようとする課題】ところで、上記の冷凍
サイクルにおいて、圧縮機1に液冷媒が吸い込まれるい
わゆる液バック時には、冷媒過熱度が零degとなる。
By the way, in the above-mentioned refrigeration cycle, during so-called liquid back when liquid refrigerant is sucked into the compressor 1, the degree of superheat of the refrigerant becomes 0 degrees.

【0009】この場合、液バック量が多くても少なくて
も電子膨張弁4の開度補正量が一定に保たれることにな
り、適正な冷媒流量調節が困難となる。このため、液バ
ック状態からなかなか脱却できなくなり、圧縮機1の寿
命に悪影響を与えるなどの不具合を生じてしまう。
In this case, whether the liquid back amount is large or small, the opening degree correction amount of the electronic expansion valve 4 is kept constant, making it difficult to properly adjust the refrigerant flow rate. For this reason, it becomes difficult to escape from the liquid back state, resulting in problems such as an adverse effect on the life of the compressor 1.

【0010】また、圧縮機の能力が低くなると、圧縮機
のケース温度が低下するため、圧縮機内の潤滑油に冷媒
が溶け込み、潤滑油が希釈されるという事態が生じる。 こうなると、圧縮機の故障の心配がある。この発明は上
記の事情を考慮したもので、請求項1の冷凍サイクル装
置は、液バック状態を迅速に脱却することができ、これ
により圧縮機の寿命向上などを可能とすることを目的と
する。請求項2の冷凍サイクル装置は、潤滑油が希釈さ
れる事態を回避して圧縮機の故障を防ぐことを目的とす
る。
Furthermore, when the capacity of the compressor decreases, the temperature of the case of the compressor decreases, resulting in a situation where the refrigerant dissolves into the lubricating oil in the compressor and the lubricating oil is diluted. If this happens, there is a risk of compressor failure. The present invention has been made in consideration of the above-mentioned circumstances, and an object of the present invention is to provide a refrigeration cycle device according to claim 1, which can quickly escape from the liquid back-up state, thereby making it possible to extend the life of the compressor. . A refrigeration cycle device according to a second aspect of the present invention aims to avoid a situation in which lubricating oil is diluted and thereby prevent a failure of a compressor.

【0011】[0011]

【課題を解決するための手段】請求項1の冷凍サイクル
装置は、圧縮機、凝縮器、電子膨張弁、および蒸発器を
順次接続した冷凍サイクルと、前記蒸発器の冷媒過熱度
を検知する手段と、この冷媒過熱度が一定値となるよう
前記電子膨張弁の開度を制御する手段と、前記圧縮機の
吐出冷媒温度を検知する手段と、前記冷媒過熱度が零ま
たはそれ以下のとき前記検知温度に応じて前記電子膨張
弁の開度を補正する手段とを備える。
[Means for Solving the Problems] A refrigeration cycle device according to claim 1 includes a refrigeration cycle in which a compressor, a condenser, an electronic expansion valve, and an evaporator are connected in sequence, and means for detecting the degree of superheating of a refrigerant in the evaporator. a means for controlling the opening degree of the electronic expansion valve so that the refrigerant superheat degree is a constant value; a means for detecting the temperature of the refrigerant discharged from the compressor; and means for correcting the opening degree of the electronic expansion valve according to the detected temperature.

【0012】請求項2の冷凍サイクル装置は、圧縮機、
凝縮器、電子膨張弁、および蒸発器を順次接続した冷凍
サイクルと、上記蒸発器の冷媒過熱度を検知する手段と
、この冷媒過熱度が一定値となるよう上記電子膨張弁の
開度を制御する第1制御手段と、上記圧縮機の温度を検
知する手段と、上記凝縮器の温度を検知する手段と、こ
の両検知温度の差を求める手段と、この温度差が一定値
となるよう上記電子膨張弁の開度を制御する第2制御手
段と、運転開始から一定時間が経過するまで上記第1制
御手段の制御を実行し、一定時間の経過後は上記温度差
に応じて第1制御手段の制御または第2制御手段の制御
を選択的に実行する手段と、上記第2制御手段の制御を
一旦実行した後はその続行,解除を上記冷媒過熱度に応
じて選択する手段とを備える。
[0012] The refrigeration cycle device according to claim 2 comprises a compressor;
A refrigeration cycle in which a condenser, an electronic expansion valve, and an evaporator are sequentially connected, a means for detecting the degree of superheating of a refrigerant in the evaporator, and an opening degree of the electronic expansion valve is controlled so that the degree of superheating of the refrigerant is kept at a constant value. a means for detecting the temperature of the compressor; a means for detecting the temperature of the condenser; a means for determining the difference between the two detected temperatures; A second control means for controlling the opening degree of the electronic expansion valve and a first control means for controlling the degree of opening of the electronic expansion valve and the first control means for controlling the degree of opening of the electronic expansion valve until a certain period of time has elapsed from the start of operation, and after the elapse of the certain period of time, controlling the first control means according to the temperature difference. means for selectively controlling the control means or controlling the second control means; and means for selecting whether to continue or cancel the control of the second control means once it is executed, depending on the degree of superheating of the refrigerant. .

【0013】[0013]

【作用】請求項1の冷凍サイクル装置では、蒸発器の冷
媒過熱度が一定値となるよう電子膨張弁の開度を制御す
る。ただし、冷媒過熱度が零またはそれ以下になると、
圧縮機の吐出冷媒温度に応じて電子膨張弁の開度を補正
する。
In the refrigeration cycle device according to the first aspect of the present invention, the opening degree of the electronic expansion valve is controlled so that the degree of superheating of the refrigerant in the evaporator becomes a constant value. However, when the degree of superheat of the refrigerant becomes zero or less,
The opening degree of the electronic expansion valve is corrected according to the temperature of the refrigerant discharged from the compressor.

【0014】請求項2の冷凍サイクル装置は、蒸発器の
冷媒過熱度が一定値となるよう電子膨張弁の開度を制御
する第1制御手段、および圧縮機の温度と凝縮器の温度
との差が一定値となるよう電子膨張弁の開度を制御する
第2制御手段があり、運転開始から一定時間が経過する
までは第1制御手段の制御を実行する。ただし、一定時
間の経過後は、上記温度差に応じて第1制御手段の制御
または第2制御手段の制御を選択的に実行する。そして
、第2制御手段の制御を一旦実行した後はその続行,解
除を上記冷媒過熱度に応じて選択する。
[0014] The refrigeration cycle device according to the second aspect includes a first control means for controlling the opening degree of the electronic expansion valve so that the degree of superheating of the refrigerant in the evaporator becomes a constant value, and There is a second control means that controls the opening degree of the electronic expansion valve so that the difference becomes a constant value, and the control of the first control means is executed until a certain period of time has elapsed from the start of operation. However, after a certain period of time has elapsed, the control of the first control means or the control of the second control means is selectively executed depending on the temperature difference. Once the control of the second control means is executed, its continuation or cancellation is selected depending on the degree of superheating of the refrigerant.

【0015】[0015]

【実施例】以下、この発明の第1実施例について図面を
参照して説明する。なお、図面において図9と同一部分
には同一符号を付し、その詳細な説明は省略する。図1
に示すように、圧縮機1の吐出側配管に温度センサ10
を取り付ける。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to the drawings. In the drawings, the same parts as those in FIG. 9 are designated by the same reference numerals, and detailed explanation thereof will be omitted. Figure 1
As shown in the figure, a temperature sensor 10 is installed on the discharge side piping of the compressor 1.
Attach.

【0016】また、制御部20を設け、その制御部20
に四方弁2、電子膨張弁4、操作器21、室内温度セン
サ22、インバータ回路23、および温度センサ10,
11,12を接続する。
[0016] Furthermore, a control section 20 is provided, and the control section 20
A four-way valve 2, an electronic expansion valve 4, an operating device 21, an indoor temperature sensor 22, an inverter circuit 23, and a temperature sensor 10,
Connect 11 and 12.

【0017】インバータ回路23は、図示しない商用交
流電源の電圧を整流し、それを制御部20の指令に応じ
たスイッチングによって所定周波数(および電圧)の交
流に変換し、出力するものである。このインバータ回路
23の出力を圧縮機1へ駆動電力として供給する。制御
部20は、冷凍サイクルの全般にわたる制御を行なうも
ので、マイクロコンピュータおよびその周辺回路からな
る。そして、制御部20は、通常の運転機能に加え、次
の機能手段を備える。 (1)蒸発器の冷媒過熱度(温度センサ11の検知温度
T1 と温度センサ12の検知温度T2 との差)SH
を検知する手段。 (2)検知した冷媒過熱度SHが一定値たとえば5de
g となるよう電子膨張弁4の開度を制御する手段。
The inverter circuit 23 rectifies the voltage of a commercial AC power supply (not shown), converts it into AC of a predetermined frequency (and voltage) by switching in accordance with a command from the control section 20, and outputs the same. The output of this inverter circuit 23 is supplied to the compressor 1 as driving power. The control unit 20 performs overall control of the refrigeration cycle, and is composed of a microcomputer and its peripheral circuits. The control unit 20 has the following functional means in addition to normal operating functions. (1) Degree of superheating of refrigerant in the evaporator (difference between temperature T1 detected by temperature sensor 11 and temperature T2 detected by temperature sensor 12) SH
means to detect. (2) The detected degree of refrigerant superheating SH is a constant value, for example 5 de
Means for controlling the opening degree of the electronic expansion valve 4 so that g.

【0018】(3)検知した冷媒過熱度SHが零または
それ以下のとき、温度センサ10によって検知される圧
縮機1の吐出冷媒温度Tdに応じて電子膨張弁4の開度
を補正する手段。 つぎに、図2ないし図6を参照しながら作用を説明する
。まず、冷房運転について説明する。操作器21で冷房
運転モードおよび所望の室内温度を設定し、かつ運転開
始操作を行なう。すると、制御部20は、インバータ回
路23を駆動し圧縮機1を起動する。
(3) Means for correcting the opening degree of the electronic expansion valve 4 in accordance with the discharge refrigerant temperature Td of the compressor 1 detected by the temperature sensor 10 when the detected refrigerant superheat degree SH is zero or less. Next, the operation will be explained with reference to FIGS. 2 to 6. First, cooling operation will be explained. The cooling operation mode and desired indoor temperature are set using the operating device 21, and the operation is started. Then, the control unit 20 drives the inverter circuit 23 and starts the compressor 1.

【0019】この場合、圧縮機1から吐出される冷媒が
図示実線矢印の方向に流れて冷房サイクルが形成され、
室外熱交換器3が凝縮器、室内熱交換器5が蒸発器とし
て働く。これにより、室内が冷房される。
In this case, the refrigerant discharged from the compressor 1 flows in the direction of the solid arrow shown in the figure to form a cooling cycle.
The outdoor heat exchanger 3 works as a condenser, and the indoor heat exchanger 5 works as an evaporator. This cools the room.

【0020】この暖房運転時、制御部20は、操作器2
1での設定室内温度と室内温度センサ22の検知温度と
の差を空調負荷として求め、求めた空調負荷に応じてイ
ンバータ回路23の出力周波数を制御する。すなわち、
温度差が大きいときはインバータ回路23の出力周波数
を高め、温度差が小さくなるに従って出力周波数を下げ
る制御を行なう。
During this heating operation, the control section 20 controls the operation device 2.
The difference between the indoor temperature set in step 1 and the temperature detected by the indoor temperature sensor 22 is determined as the air conditioning load, and the output frequency of the inverter circuit 23 is controlled according to the determined air conditioning load. That is,
When the temperature difference is large, the output frequency of the inverter circuit 23 is increased, and as the temperature difference becomes smaller, the output frequency is lowered.

【0021】インバータ回路23の出力周波数が高くな
ると、圧縮機1の能力が上がり、冷房能力がアップする
。インバータ回路23の出力周波数が低くなると、圧縮
機1の能力が下がり、冷房能力がダウンする。こうして
、室内温度が設定室内温度に向かって収束する。次に、
暖房運転について説明する。操作部23で暖房運転モー
ドおよび所望の室内温度を設定し、かつ運転開始操作を
行なう。すると、制御部20は、インバータ回路23を
駆動して圧縮機1を起動するとともに、四方弁2を切換
作動する。
[0021] When the output frequency of the inverter circuit 23 increases, the capacity of the compressor 1 increases, and the cooling capacity increases. When the output frequency of the inverter circuit 23 becomes lower, the capacity of the compressor 1 decreases, and the cooling capacity decreases. In this way, the indoor temperature converges toward the set indoor temperature. next,
The heating operation will be explained. The heating operation mode and desired indoor temperature are set using the operation unit 23, and the operation is started. Then, the control unit 20 drives the inverter circuit 23 to start the compressor 1, and also switches the four-way valve 2.

【0022】この場合、圧縮機1から吐出される冷媒が
図示破線矢印の方向に流れて暖房サイクルが形成され、
室内熱交換器7が凝縮器、室外熱交換器5が蒸発器とし
て働く。これにより、室内が暖房される。
In this case, the refrigerant discharged from the compressor 1 flows in the direction of the dashed arrow in the figure to form a heating cycle.
The indoor heat exchanger 7 works as a condenser, and the outdoor heat exchanger 5 works as an evaporator. This heats the room.

【0023】この暖房運転時、制御部20は、設定室内
温度と室内温度センサ22の検知温度との差を算出し、
算出した温度差に応じてインバータ回路23の出力周波
数を制御する。すなわち、温度差が大きいときはインバ
ータ回路23の出力周波数を高め、温度差が小さくなる
に従って出力周波数を下げる制御を行なう。
During this heating operation, the control unit 20 calculates the difference between the set indoor temperature and the temperature detected by the indoor temperature sensor 22,
The output frequency of the inverter circuit 23 is controlled according to the calculated temperature difference. That is, control is performed to increase the output frequency of the inverter circuit 23 when the temperature difference is large, and to lower the output frequency as the temperature difference becomes smaller.

【0024】インバータ回路23の出力周波数が高くな
ると、圧縮機1の能力が上がり、暖房能力がアップする
。インバータ回路23の出力周波数が低くなると、圧縮
機1の能力が下がり、暖房能力がダウンする。こうして
、室内温度が設定室内温度に向かって収束する。
As the output frequency of the inverter circuit 23 increases, the capacity of the compressor 1 increases, and the heating capacity increases. When the output frequency of the inverter circuit 23 becomes lower, the capacity of the compressor 1 decreases, and the heating capacity decreases. In this way, the indoor temperature converges toward the set indoor temperature.

【0025】この冷房あるいは暖房運転時、冷媒の一部
がキャピラリチューブ6,7を通ってバイパス管8に入
り、そのバイパス管8に入った冷媒は圧縮機1の吸込口
に導かれる。このとき、バイパス管8に入った冷媒の温
度(飽和冷媒温度)が温度センサ12によって検知され
る。また、四方弁2を経た冷媒が圧縮機1に吸い込まれ
るとき、その冷媒の温度が温度センサ11によって検知
される。ここで、制御部20は、図2に示す制御を実行
する。
During this cooling or heating operation, a part of the refrigerant passes through the capillary tubes 6 and 7 and enters the bypass pipe 8, and the refrigerant that has entered the bypass pipe 8 is guided to the suction port of the compressor 1. At this time, the temperature of the refrigerant that has entered the bypass pipe 8 (saturated refrigerant temperature) is detected by the temperature sensor 12. Furthermore, when the refrigerant that has passed through the four-way valve 2 is sucked into the compressor 1, the temperature of the refrigerant is detected by the temperature sensor 11. Here, the control unit 20 executes the control shown in FIG. 2.

【0026】所定の制御インターバル(たとえば1分)
ごとに、温度センサ11,12の検知温度T1 ,T2
 を取込み、両検知温度の差(=T1 −T2 )を求
める。この温度差は、冷媒過熱度SHに相当する。
A predetermined control interval (for example, 1 minute)
The detected temperatures T1 and T2 of the temperature sensors 11 and 12 are respectively
The difference between both detected temperatures (=T1 - T2) is determined. This temperature difference corresponds to the refrigerant superheat degree SH.

【0027】この冷媒過熱度SHを一定値SHo たと
えば5degに収めるべく、電子膨張弁4の現時点の開
度に対する補正量(駆動パルス数)ΔPLSをPI制御
によって求める。
In order to keep the refrigerant superheat degree SH within a constant value SHo, for example 5 degrees, a correction amount (drive pulse number) ΔPLS for the current opening degree of the electronic expansion valve 4 is determined by PI control.

【0028】このPI制御に当たっては、現時点の冷媒
過熱度SHn と前回の冷媒過熱度SHn−1 との差
ΔSH1 (=SHn −SHn−1 )を求め、その
ΔSH1 と内部メモリに記憶している図3のP値選択
条件とからPの値を選択する。
In this PI control, the difference ΔSH1 (=SHn - SHn-1) between the current degree of refrigerant superheating SHn and the previous degree of refrigerant superheating SHn-1 is calculated, and the difference ΔSH1 and the diagram stored in the internal memory are calculated. The value of P is selected from the P value selection conditions of 3.

【0029】同時に、現時点の冷媒過熱度SHn と一
定値SHoの差ΔSH2 (=SHn −SHo )を
求め、そのΔSH2 と内部メモリに記憶している図4
のI値選択条件とからIの値を選択する。また、温度セ
ンサ10の検知温度Tdを取り込み、その検知温度Td
の変化量ΔTdを求める。つまり、ΔTd=Tdn −
Tdn−1 。
At the same time, the difference ΔSH2 (=SHn - SHo) between the current refrigerant superheat degree SHn and the constant value SHo is calculated, and the difference ΔSH2 and the difference ΔSH2 are stored in the internal memory.
The value of I is selected from the I value selection conditions. Also, the detected temperature Td of the temperature sensor 10 is taken in, and the detected temperature Td
Find the amount of change ΔTd. In other words, ΔTd=Tdn −
Tdn-1.

【0030】検知した冷媒過熱度SHが零よりも大きけ
れば、PI制御で求めた補正量ΔPLSを実際の補正量
ΔPLS´として決定し、その補正量ΔPLS´だけ電
子膨張弁4の開度を補正する。
If the detected refrigerant superheat degree SH is greater than zero, the correction amount ΔPLS obtained by PI control is determined as the actual correction amount ΔPLS', and the opening degree of the electronic expansion valve 4 is corrected by the correction amount ΔPLS'. do.

【0031】検知した冷媒過熱度SHが零またはそれ以
下のとき、つまり圧縮機1への液バック現象が生じてい
るとき、上記求めたΔTdと内部メモリに記憶している
図5の係数選択条件とから係数Kの値を選択する。そし
て、PI制御で求めた補正量ΔPLSに係数Kを積算す
ることにより実際の補正量ΔPLS´(=K・ΔPLS
)を得、その補正量ΔPLS´だけ電子膨張弁4の開度
を補正する。
When the detected refrigerant superheat degree SH is zero or less, that is, when a liquid back phenomenon to the compressor 1 is occurring, the above-determined ΔTd and the coefficient selection conditions shown in FIG. 5 stored in the internal memory are used. Select the value of coefficient K from . Then, by integrating the coefficient K to the correction amount ΔPLS obtained by PI control, the actual correction amount ΔPLS' (=K・ΔPLS
), and the opening degree of the electronic expansion valve 4 is corrected by the correction amount ΔPLS'.

【0032】このように、液バックが生じた時点では、
冷媒過熱度SHに基づく電子膨張弁4の開度制御に対し
、圧縮機1の吐出冷媒温度Tdに基づく補正を加えるこ
とにより、液バック量を考慮した冷媒流量調節が可能と
なる。したがって、液バック状態からの脱却が早くなり
、図6に示すように、冷媒過熱度SHが迅速に通常状態
に復帰し、冷凍サイクルの運転が安定化することはもち
ろん、圧縮機1の寿命への悪影響を減らすことができる
。この発明の第2実施例を図7に示す。
[0032] In this way, when liquid back occurs,
By adding correction based on the discharge refrigerant temperature Td of the compressor 1 to the opening degree control of the electronic expansion valve 4 based on the refrigerant superheat degree SH, it becomes possible to adjust the refrigerant flow rate in consideration of the liquid back amount. Therefore, the exit from the liquid back-up state becomes faster, and as shown in FIG. can reduce the negative effects of A second embodiment of the invention is shown in FIG.

【0033】この実施例では、圧縮機1のケースの底部
に温度センサ13を取り付けるとともに、室外熱交換器
3に温度センサ14、室内熱交換器5に温度センサ15
をそれぞれ取り付けている。そして、第1実施例の場合
の温度センサ10を除いている。制御部20は、通常の
運転機能に加え、次の機能手段を備える。 (1)蒸発器の冷媒過熱度(温度センサ11の検知温度
T1 と温度センサ12の検知温度T2 との差)SH
を検知する手段。 (2)検知した冷媒過熱度SHが一定値たとえば5de
g に収まるよう電子膨張弁4の開度を制御する第1制
御手段。
In this embodiment, a temperature sensor 13 is attached to the bottom of the case of the compressor 1, a temperature sensor 14 is attached to the outdoor heat exchanger 3, and a temperature sensor 15 is attached to the indoor heat exchanger 5.
are installed respectively. The temperature sensor 10 in the case of the first embodiment is excluded. The control unit 20 includes the following functional means in addition to normal operation functions. (1) Degree of superheating of refrigerant in the evaporator (difference between temperature T1 detected by temperature sensor 11 and temperature T2 detected by temperature sensor 12) SH
means to detect. (2) The detected degree of refrigerant superheating SH is a constant value, for example 5 de
A first control means for controlling the opening degree of the electronic expansion valve 4 so that the opening degree is within the range of g.

【0034】(3)圧縮機1のケースの底部の温度(温
度センサ13の検知温度T3 )と凝縮器の温度(温度
センサ14または15の検知温度T4 )との差ΔT(
=T3 −T4 )を求める手段。 (4)検知した温度差ΔTが一定値たとえば15deg
 となるよう電子膨張弁4の開度を制御する第2制御手
段。
(3) Difference ΔT(
= T3 - T4 ). (4) The detected temperature difference ΔT is a constant value, for example 15 degrees
A second control means for controlling the opening degree of the electronic expansion valve 4 so that the following is achieved.

【0035】(5)運転開始から内部タイマのカウント
による一定時間たとえば5分間が経過するまで第1制御
手段の制御を実行し、一定時間の経過後は温度差ΔTに
応じて第1制御手段の制御または第2制御手段の制御を
選択的に実行する手段。 (6)第2制御手段の制御を一旦実行した後はその続行
,解除を冷媒過熱度SHに応じて選択する手段。 他の構成については第1実施例と同じである。作用を説
明する。
(5) The control of the first control means is executed from the start of operation until a fixed time, for example, 5 minutes, has elapsed based on the count of the internal timer, and after the elapse of the fixed time, the control of the first control means is executed according to the temperature difference ΔT. means for selectively executing the control or the control of the second control means; (6) Means for selecting whether to continue or cancel the control of the second control means once executed, depending on the refrigerant superheat degree SH. The other configurations are the same as in the first embodiment. Explain the action.

【0036】冷房あるいは暖房運転時、冷媒の一部がキ
ャピラリチューブ6,7を通ってバイパス管8に入り、
そのバイパス管8に入った冷媒は圧縮機1の吸込口に導
かれる。このとき、バイパス管8に入った冷媒の温度(
飽和冷媒温度)が温度センサ12によって検知される。 また、四方弁2を経た冷媒が圧縮機1に吸い込まれると
き、その冷媒の温度が温度センサ11によって検知され
る。ここで、制御部20は、図8に示す制御を実行する
During cooling or heating operation, a part of the refrigerant passes through the capillary tubes 6 and 7 and enters the bypass pipe 8.
The refrigerant that has entered the bypass pipe 8 is guided to the suction port of the compressor 1. At this time, the temperature of the refrigerant entering the bypass pipe 8 (
saturated refrigerant temperature) is detected by the temperature sensor 12. Furthermore, when the refrigerant that has passed through the four-way valve 2 is sucked into the compressor 1, the temperature of the refrigerant is detected by the temperature sensor 11. Here, the control unit 20 executes the control shown in FIG. 8.

【0037】所定の制御インターバル(たとえば1分)
ごとに、温度センサ11,12の検知温度T1 ,T2
 を取込み、両検知温度の差(=T1 −T2 )を求
める。この温度差は、冷媒過熱度SHに相当する。
A predetermined control interval (for example, 1 minute)
The detected temperatures T1 and T2 of the temperature sensors 11 and 12 are respectively
The difference between both detected temperatures (=T1 - T2) is determined. This temperature difference corresponds to the refrigerant superheat degree SH.

【0038】この冷媒過熱度SHを一定値SHo たと
えば5degに収めるべく、電子膨張弁4の現時点の開
度に対する補正量(駆動パルス数)ΔPLSをPI制御
によって求める。
In order to keep the refrigerant superheat degree SH within a constant value SHo, for example 5 degrees, a correction amount (drive pulse number) ΔPLS for the current opening degree of the electronic expansion valve 4 is determined by PI control.

【0039】このPI制御に当たっては、現時点の冷媒
過熱度SHn と前回の冷媒過熱度SHn−1 との差
ΔSH1 (=SHn −SHn−1 )を求め、その
ΔSH1 と内部メモリに記憶している図3のP値選択
条件とからPの値を選択する。
In this PI control, the difference ΔSH1 (=SHn - SHn-1) between the current degree of refrigerant superheating SHn and the previous degree of refrigerant superheating SHn-1 is calculated, and the difference ΔSH1 and the diagram stored in the internal memory are calculated. The value of P is selected from the P value selection conditions of 3.

【0040】同時に、現時点の冷媒過熱度SHn と一
定値SHoの差ΔSH2 (=SHn −SHo )を
求め、そのΔSH2 と内部メモリに記憶している図4
のI値選択条件とからIの値を選択する。そして、求め
た補正量ΔPLSだけ電子膨張弁4の開度を補正する。 ここまでは第1制御手段による制御の実行であり、これ
を運転開始から内部タイマのカウントに基づく5分間に
わたって無条件に行なう。
At the same time, the difference ΔSH2 (=SHn - SHo) between the current refrigerant superheat degree SHn and the constant value SHo is calculated, and the difference ΔSH2 and the difference ΔSH2 are stored in the internal memory.
The value of I is selected from the I value selection conditions. Then, the opening degree of the electronic expansion valve 4 is corrected by the obtained correction amount ΔPLS. Up to this point, the control is executed by the first control means, and this is performed unconditionally for 5 minutes from the start of operation based on the count of the internal timer.

【0041】運転開始から5分間が経過したら、圧縮機
1のケースの底部の温度(温度センサ13の検知温度T
3 )と凝縮器の温度(温度センサ14または15の検
知温度T4 )との差ΔT(=T3 −T4 )を求め
る。
After 5 minutes have elapsed since the start of operation, the temperature at the bottom of the case of the compressor 1 (temperature T detected by the temperature sensor 13)
3) and the temperature of the condenser (temperature T4 detected by temperature sensor 14 or 15), the difference ΔT (=T3 - T4) is determined.

【0042】検知した温度差ΔTと設定値10deg 
とを比較し、温度差ΔTが設定値10deg よりも大
きければそのまま続けて第1制御手段の制御を実行する
。これは、圧縮機1が高めの運転周波数で運転していて
、圧縮機1内の潤滑油に冷媒が溶け込まない状態、つま
り潤滑油の希釈の心配がないという判断を基にしている
Detected temperature difference ΔT and set value 10deg
If the temperature difference ΔT is larger than the set value 10 degrees, the control of the first control means is continued. This is based on the determination that the compressor 1 is operating at a high operating frequency and the refrigerant does not dissolve into the lubricating oil in the compressor 1, that is, there is no fear of dilution of the lubricating oil.

【0043】ただし、温度差ΔTが設定値10deg 
よりも小さくなることがある。これは、圧縮機1が低め
運転周波数で運転している場合に発生することが多く、
圧縮機1内の潤滑油に冷媒が溶け込む状態、つまり潤滑
油が希釈される心配がある。この場合、温度差ΔTが一
定値たとえば15deg となるよう、電子膨張弁4の
開度を制御する。つまり、第2制御手段の制御の実行で
ある。
[0043] However, if the temperature difference ΔT is the set value 10deg
It may be smaller than. This often occurs when the compressor 1 is operating at a low operating frequency,
There is a risk that the refrigerant will dissolve into the lubricating oil in the compressor 1, that is, the lubricating oil will be diluted. In this case, the opening degree of the electronic expansion valve 4 is controlled so that the temperature difference ΔT is a constant value, for example, 15 degrees. In other words, this is execution of control by the second control means.

【0044】すなわち、温度差ΔTが15deg より
も小さければ電子膨張弁4の開度を所定値だけ絞る。温
度差ΔTが15deg よりも大きければ電子膨張弁4
の開度を所定値だけ増す。温度差ΔTが15deg と
同じならば、電子膨張弁4の開度をそのままの状態に保
持する。こうして、温度差ΔTを15deg に高める
ことにより、圧縮機1内の潤滑油に冷媒が溶け込む状態
、つまり潤滑油が希釈される心配を解消できる。
That is, if the temperature difference ΔT is smaller than 15 degrees, the opening degree of the electronic expansion valve 4 is reduced by a predetermined value. If the temperature difference ΔT is greater than 15 degrees, the electronic expansion valve 4
Increase the opening degree by a predetermined value. If the temperature difference ΔT is equal to 15 degrees, the opening degree of the electronic expansion valve 4 is maintained as it is. In this way, by increasing the temperature difference ΔT to 15 degrees, it is possible to eliminate the fear that the refrigerant will dissolve into the lubricating oil in the compressor 1, that is, the lubricating oil will be diluted.

【0045】この第2制御手段の制御を一旦実行した後
は、冷媒過熱度SHと設定値2degとを比較し、冷媒
過熱度SHが設定値2deg よりも大きければそのま
ま第2制御手段の制御を続行する。ただし、冷媒過熱度
SHが設定値2deg を下回ると、第2制御手段の制
御を解除し、基の第1制御手段の制御に復帰する。
Once the control of the second control means is executed, the refrigerant superheat degree SH is compared with the set value 2deg, and if the refrigerant superheat degree SH is larger than the set value 2deg, the control of the second control means is continued. continue. However, when the refrigerant superheat degree SH falls below the set value 2deg, the control of the second control means is canceled and the original control of the first control means is restored.

【0046】このように、温度差ΔTに基づいて第2制
御手段を適宜に実行することにより、圧縮機1内の潤滑
油が希釈される事態を回避することができ、圧縮機1の
故障を防ぐことができる。なお、この発明は上記実施例
に限定されるものではなく、要旨を変えない範囲で種々
変形実施可能である。
As described above, by appropriately executing the second control means based on the temperature difference ΔT, it is possible to avoid a situation where the lubricating oil in the compressor 1 is diluted, and to prevent a failure of the compressor 1. It can be prevented. Note that the present invention is not limited to the above-mentioned embodiments, and various modifications can be made without changing the gist.

【0047】[0047]

【発明の効果】以上述べたようにこの発明によれば、[Effect of the invention] As described above, according to this invention,


0048】請求項1の冷凍サイクル装置は、蒸発器の冷
媒過熱度が一定値となるよう電子膨張弁の開度を制御す
るとともに、冷媒過熱度が零またはそれ以下になった場
合は圧縮機の吐出冷媒温度に応じて電子膨張弁の開度を
補正する構成としたので、液バック状態を迅速に脱却す
ることができ、これにより圧縮機の寿命向上が可能とな
る。
[
The refrigeration cycle device of claim 1 controls the opening degree of the electronic expansion valve so that the degree of superheating of the refrigerant in the evaporator becomes a constant value, and also controls the degree of opening of the electronic expansion valve so that the degree of superheating of the refrigerant in the evaporator becomes zero or less. Since the opening degree of the electronic expansion valve is corrected according to the temperature of the discharged refrigerant, it is possible to quickly escape from the liquid back state, thereby extending the life of the compressor.

【0049】請求項2の冷凍サイクル装置は、蒸発器の
冷媒過熱度が一定値となるよう電子膨張弁の開度を制御
する第1制御手段、および圧縮機の温度と凝縮器の温度
との差が一定値となるよう電子膨張弁の開度を制御する
第2制御手段を備え、運転開始から一定時間が経過する
までは第1制御手段の制御を実行し、一定時間の経過後
は上記温度差に応じて第1制御手段の制御または第2制
御手段の制御を選択的に実行するとともに、第2制御手
段の制御を一旦実行した後はその続行,解除を上記冷媒
過熱度に応じて選択する構成としたので、潤滑油が希釈
される事態を回避して圧縮機の故障を防ぐことができる
The refrigeration cycle device according to the second aspect of the present invention includes a first control means for controlling the opening degree of the electronic expansion valve so that the degree of superheating of the refrigerant in the evaporator becomes a constant value, and a first control means for controlling the opening degree of the electronic expansion valve so that the degree of superheating of the refrigerant in the evaporator becomes a constant value; It is equipped with a second control means for controlling the opening degree of the electronic expansion valve so that the difference is a constant value, and the first control means executes the control from the start of operation until a certain period of time has elapsed, and after the elapse of the certain period of time, the above control is performed. The control of the first control means or the control of the second control means is selectively executed according to the temperature difference, and once the control of the second control means is executed, the control is continued or canceled according to the degree of superheating of the refrigerant. Since this configuration is selected, it is possible to avoid a situation where the lubricating oil is diluted and prevent a failure of the compressor.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の第1実施例の全体的な構成を示す図
FIG. 1 is a diagram showing the overall configuration of a first embodiment of the present invention.

【図2】同実施例の作用を説明するためのフローチャー
ト。
FIG. 2 is a flowchart for explaining the operation of the embodiment.

【図3】同実施例におけるP値選択条件のフォーマット
を示す図。
FIG. 3 is a diagram showing a format of P value selection conditions in the same embodiment.

【図4】同実施例におけるI値選択条件のフォーマット
を示す図。
FIG. 4 is a diagram showing the format of I value selection conditions in the same embodiment.

【図5】同実施例における係数選択条件のフォーマット
を示す図。
FIG. 5 is a diagram showing a format of coefficient selection conditions in the same embodiment.

【図6】同実施例における冷媒過熱度SHの変化の例を
示す図。
FIG. 6 is a diagram showing an example of a change in the refrigerant superheat degree SH in the same example.

【図7】この発明の第2実施例の全体的な構成を示す図
FIG. 7 is a diagram showing the overall configuration of a second embodiment of the invention.

【図8】同実施例の作用を説明するためのフローチャー
ト。
FIG. 8 is a flowchart for explaining the operation of the embodiment.

【図9】従来の冷凍サイクル装置の構成を示す図。FIG. 9 is a diagram showing the configuration of a conventional refrigeration cycle device.

【符号の説明】[Explanation of symbols]

1…能力可変圧縮機、3…室外熱交換器、4…電子膨張
弁、5…室内熱交換器、11,12…温度センサ、20
…制御部。
1... Variable capacity compressor, 3... Outdoor heat exchanger, 4... Electronic expansion valve, 5... Indoor heat exchanger, 11, 12... Temperature sensor, 20
...control section.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  圧縮機、凝縮器、電子膨張弁、および
蒸発器を順次接続した冷凍サイクルと、前記蒸発器の冷
媒過熱度を検知する手段と、この冷媒過熱度が一定値と
なるよう前記電子膨張弁の開度を制御する手段と、前記
圧縮機の吐出冷媒温度を検知する手段と、前記冷媒過熱
度が零またはそれ以下のとき前記検知温度に応じて前記
電子膨張弁の開度を補正する手段とを具備したことを特
徴とする冷凍サイクル装置。
1. A refrigeration cycle in which a compressor, a condenser, an electronic expansion valve, and an evaporator are sequentially connected, a means for detecting a degree of superheat of a refrigerant in the evaporator, and a means for detecting a degree of superheat of a refrigerant in the evaporator, and a means for detecting a degree of superheat of a refrigerant in the evaporator, and a means for detecting a degree of superheat of a refrigerant in the evaporator. means for controlling the opening degree of the electronic expansion valve; means for detecting the temperature of the refrigerant discharged from the compressor; and means for controlling the opening degree of the electronic expansion valve according to the detected temperature when the degree of superheating of the refrigerant is zero or less. A refrigeration cycle device comprising: means for correcting.
【請求項2】  圧縮機、凝縮器、電子膨張弁、および
蒸発器を順次接続した冷凍サイクルと、前記蒸発器の冷
媒過熱度を検知する手段と、この冷媒過熱度が一定値と
なるよう前記電子膨張弁の開度を制御する第1制御手段
と、前記圧縮機の温度を検知する手段と、前記凝縮器の
温度を検知する手段と、この両検知温度の差を求める手
段と、この温度差が一定値となるよう前記電子膨張弁の
開度を制御する第2制御手段と、運転開始から一定時間
が経過するまで前記第1制御手段の制御を実行し、一定
時間の経過後は前記温度差に応じて第1制御手段の制御
または第2制御手段の制御を選択的に実行する手段と、
前記第2制御手段の制御を一旦実行した後はその続行,
解除を前記冷媒過熱度に応じて選択する手段とを具備し
たことを特徴とする冷凍サイクル装置。
2. A refrigeration cycle in which a compressor, a condenser, an electronic expansion valve, and an evaporator are sequentially connected; a first control means for controlling the opening degree of the electronic expansion valve; a means for detecting the temperature of the compressor; a means for detecting the temperature of the condenser; a means for determining the difference between the two detected temperatures; A second control means controls the opening degree of the electronic expansion valve so that the difference becomes a constant value, and a second control means controls the opening degree of the electronic expansion valve until a certain time elapses from the start of operation. means for selectively controlling the first control means or the second control means according to the temperature difference;
Once the control of the second control means is executed, its continuation;
A refrigeration cycle device comprising means for selecting release in accordance with the degree of superheating of the refrigerant.
JP5908891A 1991-03-22 1991-03-22 Refrigerating cycle apparatus Pending JPH04295550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5908891A JPH04295550A (en) 1991-03-22 1991-03-22 Refrigerating cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5908891A JPH04295550A (en) 1991-03-22 1991-03-22 Refrigerating cycle apparatus

Publications (1)

Publication Number Publication Date
JPH04295550A true JPH04295550A (en) 1992-10-20

Family

ID=13103239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5908891A Pending JPH04295550A (en) 1991-03-22 1991-03-22 Refrigerating cycle apparatus

Country Status (1)

Country Link
JP (1) JPH04295550A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH074753A (en) * 1992-12-18 1995-01-10 Danfoss As Refrigerator and its control
JP2001255024A (en) * 2000-03-10 2001-09-21 Mitsubishi Heavy Ind Ltd Air conditioner and its control method
JP2014190637A (en) * 2013-03-27 2014-10-06 Toyo Eng Works Ltd Refrigerator control device, refrigerator control method, and refrigerator including control device
JP2014224620A (en) * 2013-05-15 2014-12-04 株式会社東洋製作所 Refrigerator controller, refrigerator control method, and refrigerator including the refrigerator controller
CN112283994A (en) * 2020-10-30 2021-01-29 广东纽恩泰新能源科技发展有限公司 Control method for preventing compressor from liquid impact

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH074753A (en) * 1992-12-18 1995-01-10 Danfoss As Refrigerator and its control
JP2001255024A (en) * 2000-03-10 2001-09-21 Mitsubishi Heavy Ind Ltd Air conditioner and its control method
JP2014190637A (en) * 2013-03-27 2014-10-06 Toyo Eng Works Ltd Refrigerator control device, refrigerator control method, and refrigerator including control device
JP2014224620A (en) * 2013-05-15 2014-12-04 株式会社東洋製作所 Refrigerator controller, refrigerator control method, and refrigerator including the refrigerator controller
CN112283994A (en) * 2020-10-30 2021-01-29 广东纽恩泰新能源科技发展有限公司 Control method for preventing compressor from liquid impact

Similar Documents

Publication Publication Date Title
KR0150812B1 (en) Airconditioner with outdoor air temperature calculating function
JP2909190B2 (en) Air conditioner
JP3322684B2 (en) Air conditioner
JPH11108485A (en) Method for controlling air conditioner and outlet temperature of refrigerant heater
JP3117339B2 (en) Refrigeration cycle device
JPH0828984A (en) Air conditioner
JPH109683A (en) Air conditioner
JPH08261542A (en) Air conditioner
KR100311859B1 (en) Air conditioner having a number of indoor heat exchanger
JPH04295550A (en) Refrigerating cycle apparatus
JP3253104B2 (en) Refrigeration cycle device
JP3443433B2 (en) Air conditioner
JP3507243B2 (en) Refrigeration cycle control device for air conditioner
JP3495486B2 (en) Air conditioner
JPH05264113A (en) Operation control device of air conditioner
JPH04340056A (en) Refrigeration cycle device
JPH11132605A (en) Air conditioner
JPH0510604A (en) Refrigerating cycle device
JPH04356669A (en) Air conditioner
JPH05240493A (en) Air conditioner
JPH05288386A (en) Operation controller for outdoor fan in air conditioner
JP2971201B2 (en) Air conditioner
JPH05113252A (en) Refrigerating cycle
JP2793333B2 (en) Air conditioner
JPH07174416A (en) Freezing cycle apparatus