JP2022096824A - Heat pump cycle device - Google Patents

Heat pump cycle device Download PDF

Info

Publication number
JP2022096824A
JP2022096824A JP2020210025A JP2020210025A JP2022096824A JP 2022096824 A JP2022096824 A JP 2022096824A JP 2020210025 A JP2020210025 A JP 2020210025A JP 2020210025 A JP2020210025 A JP 2020210025A JP 2022096824 A JP2022096824 A JP 2022096824A
Authority
JP
Japan
Prior art keywords
refrigerant
degree
expansion valve
opening
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020210025A
Other languages
Japanese (ja)
Inventor
稔久 冨田
Toshihisa Tomita
雄多 安河内
Yuta Yasukochi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2020210025A priority Critical patent/JP2022096824A/en
Publication of JP2022096824A publication Critical patent/JP2022096824A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a heat pump cycle device capable of accurately performing control of a refrigerant supercooling degree during a heating operation.SOLUTION: A heat pump cycle device in one embodiment of the present invention includes a refrigerant circuit, a discharge pressure sensor, a refrigerant temperature sensor and a control unit. The control unit includes: a calculation section calculating a refrigerant supercooling degree on the basis of discharge pressure that is pressure of a refrigerant discharged from a compressor and a temperature before an expansion valve that is a temperature of the refrigerant flowing out from a use side heat exchanger during a heating operation; an adjustment section adjusting an opening of the expansion valve so that the calculated refrigerant supercooling degree becomes a predetermined target refrigerant supercooling degree; and a correction section increasing the target refrigerant supercooling temperature by a predetermined value when the opening of the expansion valve is larger than a predetermined threshold opening.SELECTED DRAWING: Figure 7

Description

本発明は、ヒートポンプ式給湯装置、ヒートポンプ式温水暖房装置、ヒートポンプ式温冷水空気調和機などのヒートポンプサイクル装置に関する。 The present invention relates to a heat pump cycle device such as a heat pump type hot water supply device, a heat pump type hot water heating device, and a heat pump type hot / cold water air conditioner.

従来、ヒートポンプサイクル装置は、圧縮機と、四方弁と、利用側熱交換器と、膨張弁と、熱源側熱交換器である室外熱交換器とを順次配管接続してなる冷媒回路を有している。このヒートポンプサイクル装置で暖房運転や給湯運転を行う際は、冷媒回路が暖房サイクルとなり、圧縮機で圧縮された高温高圧のガスとなった冷媒は四方弁を通過し、利用側熱交換器で熱を放出して液冷媒となり、さらに膨張弁で減圧された後に室外熱交換器で蒸発して室外空気と熱交換し、ガスとなって再び圧縮機で圧縮される過程を繰り返す。なお、冷房/除霜運転の際は、冷媒回路は、四方弁が切り替わって上述した冷媒の流れとは逆方向の流れとなる冷房サイクルとなる。 Conventionally, a heat pump cycle device has a refrigerant circuit in which a compressor, a four-way valve, a heat exchanger on the user side, an expansion valve, and an outdoor heat exchanger, which is a heat exchanger on the heat source side, are sequentially connected by piping. ing. When performing heating operation or hot water supply operation with this heat pump cycle device, the refrigerant circuit becomes a heating cycle, and the refrigerant that has become high temperature and high pressure gas compressed by the compressor passes through the four-way valve and heats in the heat exchanger on the user side. Is released to become a liquid refrigerant, and after being depressurized by the expansion valve, it evaporates in the outdoor heat exchanger to exchange heat with the outdoor air, becomes gas, and is compressed again by the compressor. During the cooling / defrosting operation, the refrigerant circuit has a cooling cycle in which the four-way valve is switched and the flow is in the direction opposite to the flow of the refrigerant described above.

このようなヒートポンプサイクル装置で暖房運転を行う場合、膨張弁の開度を冷媒の過冷却度の大きさに応じて制御する方法(以下、過冷却制御と記載する場合がある)が知られている。冷媒過冷却度は、一般に、利用側熱交換器(室内熱交換器あるいは水冷媒熱交換器に相当)における冷媒の凝縮温度から、利用側熱交換器から流出して膨張弁へと流れる冷媒の温度を減じることで算出される。膨張弁の開度の調整方法としては、算出された冷媒過冷却度と、ヒートポンプサイクル装置で意図した暖房能力が発揮されるために必要な値である目標冷媒過冷却度とを比較し、算出された冷媒過冷却度が、目標冷媒過冷却度よりも大きいときは膨張弁の開度を大きくし、目標冷媒過冷却度よりも小さいときは膨張弁の開度を小さくする。なお、利用側熱交換器から流出して膨張弁へと流れる冷媒温度は、利用側熱交換器と膨張弁とを接続する冷媒配管に配置される温度センサで検出する。 When the heating operation is performed by such a heat pump cycle device, a method of controlling the opening degree of the expansion valve according to the magnitude of the degree of supercooling of the refrigerant (hereinafter, may be referred to as supercooling control) is known. There is. The degree of refrigerant supercooling is generally the degree of refrigerant that flows out of the user side heat exchanger and flows to the expansion valve from the condensation temperature of the refrigerant in the user side heat exchanger (corresponding to an indoor heat exchanger or a water refrigerant heat exchanger). Calculated by reducing the temperature. As a method of adjusting the opening degree of the expansion valve, the calculated refrigerant supercooling degree is compared with the target refrigerant supercooling degree which is a value necessary for the heat pump cycle device to exhibit the intended heating capacity. When the degree of supercooling of the refrigerant is larger than the target degree of supercooling of the refrigerant, the opening degree of the expansion valve is increased, and when the degree of supercooling of the refrigerant is smaller than the target degree of supercooling of the refrigerant, the opening degree of the expansion valve is decreased. The temperature of the refrigerant flowing out of the heat exchanger on the user side and flowing to the expansion valve is detected by a temperature sensor arranged in the refrigerant pipe connecting the heat exchanger on the user side and the expansion valve.

しかしながら、暖房運転時に利用側熱交換器から膨張弁へ向かって流れる液冷媒が、利用側熱交換器と膨張弁との間を接続する冷媒配管(液管)内における冷媒の圧力損失により気液二相状態になる場合がある。冷媒の圧力損失は、配管長や配管内の異物の堆積量などによってその値が異なり、圧力損失による圧力の低下により冷媒が気液二相状態となって冷媒温度が液相状態の冷媒温度より低い温度となる。そして、上述した温度センサが、利用側熱交換器と膨張弁とを接続する冷媒配管における膨張弁の近傍に配置される場合に、圧力損失によって冷媒温度が低下すれば、低下した冷媒温度を用いて算出する冷媒過冷却度は圧力損失が小さい場合と比べて大きくなる。なお、温度センサが、利用側熱交換器と膨張弁とを接続する冷媒配管における膨張弁の近傍に配置される場合としては、例えば、圧縮機と四方弁と膨張弁と熱源側熱交換器を有する室外機と、利用側熱交換器を有する室内ユニットとが冷媒配管で接続されるヒートポンプサイクル装置において、室外機に温度センサを設ける場合である。 However, the liquid refrigerant flowing from the user-side heat exchanger to the expansion valve during the heating operation is gas-liquid due to the pressure loss of the refrigerant in the refrigerant pipe (liquid pipe) connecting the user-side heat exchanger and the expansion valve. It may be in a two-phase state. The value of the pressure loss of the refrigerant varies depending on the length of the pipe and the amount of foreign matter accumulated in the pipe, and the pressure drop due to the pressure loss causes the refrigerant to be in a gas-liquid two-phase state, and the refrigerant temperature is higher than the liquid-phase state refrigerant temperature. The temperature will be low. Then, when the temperature sensor described above is arranged in the vicinity of the expansion valve in the refrigerant pipe connecting the user side heat exchanger and the expansion valve, if the refrigerant temperature decreases due to the pressure loss, the reduced refrigerant temperature is used. The degree of refrigerant supercooling calculated by the above method is larger than that when the pressure loss is small. When the temperature sensor is arranged in the vicinity of the expansion valve in the refrigerant pipe connecting the user side heat exchanger and the expansion valve, for example, a compressor, a four-way valve, an expansion valve, and a heat source side heat exchanger are used. This is a case where a temperature sensor is provided in the outdoor unit in a heat pump cycle device in which the outdoor unit having the outdoor unit and the indoor unit having the heat exchanger on the user side are connected by a refrigerant pipe.

一般的には、目標冷媒過冷却度は、利用側熱交換器から流出して膨張弁に流入するまでの冷媒が液相状態であることを前提に決められる、つまり、圧力損失による冷媒温度の低下を加味せずに決定される。このため、算出する冷媒過冷却度が圧力損失の影響で大きくなれば、膨張弁に流入する冷媒が液相状態である場合と比べて、冷媒過冷却度が目標冷媒過冷却度より小さいときに膨張弁の開度が小さくされないため、あるいは、冷媒過冷却度が目標冷媒過冷却度より大きいときに膨張弁の開度が大きくされ過ぎるため、膨張弁の過冷却制御を行ってもヒートポンプサイクル装置で意図した暖房能力を発揮できないおそれがある。 Generally, the target refrigerant overcooling degree is determined on the assumption that the refrigerant flowing out of the heat exchanger on the user side and flowing into the expansion valve is in a liquid phase state, that is, the temperature of the refrigerant due to pressure loss. Determined without taking into account the decline. Therefore, if the calculated refrigerant supercooling degree becomes large due to the influence of pressure loss, the refrigerant supercooling degree is smaller than the target refrigerant supercooling degree as compared with the case where the refrigerant flowing into the expansion valve is in the liquid phase state. The heat pump cycle device even if the expansion valve supercooling control is performed because the opening of the expansion valve is not reduced, or because the opening of the expansion valve is too large when the refrigerant supercooling degree is larger than the target refrigerant supercooling degree. There is a risk that the intended heating capacity cannot be achieved.

上述した圧力損失を考慮した過冷却度制御として、例えば特許文献1には、圧縮機の運転周波数を検知する周波数センサの値から圧縮機と室内熱交換器との間の圧力損失を計算する圧力損失算出器と、圧縮機から吐出される冷媒の圧力である吐出圧力から圧力損失算出器で算出された圧力損失を減じ、吐出圧力から圧力損失を減じて求めた圧力に相当する飽和温度を算出する補正飽和温度算出器と、補正飽和温度算出器で算出された飽和温度から室内熱交換器から流出する冷媒の温度を減じて室内熱交換器の過冷却度を算出する補正過冷却度算出器と、補正過冷却度算出器で算出された過冷却度とあらかじめ設定された設定過冷却度とを比較して膨張弁の開度を制御する膨張弁制御器とを備えた空気調和機が開示されている。 As the overcooling degree control in consideration of the pressure loss described above, for example, in Patent Document 1, the pressure for calculating the pressure loss between the compressor and the indoor heat exchanger from the value of the frequency sensor that detects the operating frequency of the compressor. The pressure loss calculated by the pressure loss calculator is subtracted from the discharge pressure, which is the pressure of the refrigerant discharged from the loss calculator and the compressor, and the saturation temperature corresponding to the pressure obtained by subtracting the pressure loss from the discharge pressure is calculated. A corrected overcooling degree calculator that calculates the degree of overcooling of the indoor heat exchanger by subtracting the temperature of the refrigerant flowing out of the indoor heat exchanger from the saturation temperature calculated by the corrected saturation temperature calculator and the corrected saturation temperature calculator. And an air exchanger equipped with an expansion valve controller that controls the opening degree of the expansion valve by comparing the overcooling degree calculated by the corrected overcooling degree calculator with the preset overcooling degree. Has been done.

特開平9-280681号公報Japanese Unexamined Patent Publication No. 9-280681

ところで、利用側熱交換器から流出して膨張弁に流入するまでの冷媒が気液二相状態となった場合は、膨張弁の開度が大きいほど、つまり、利用側熱交換器から膨張弁へと流れる冷媒量が多くなるほど、冷媒が受ける圧力損失が大きくなる。このとき、膨張弁の最小開度から最大開度の間のいずれかの開度で膨張弁へと流れる冷媒温度が最大値となって冷媒冷却度が最小値となり、冷媒冷却度が最小値となる開度より開度が大きくなるほど圧力損失により膨張弁へと流れる冷媒の温度が低くなって冷媒過冷却度が大きくなる。このため、膨張弁の開度が冷媒冷却度が最小値となる開度より大きいときに、冷媒過冷却度が目標冷媒過冷却度より大きい場合は、冷媒過冷却度を目標冷媒過冷却度に近づけるために膨張弁の開度を大きくしても圧力損失の増大により冷媒過冷却度が低下しない。そして、膨張弁が最大開度に達しても冷媒過冷却度を目標冷媒過冷却度とならず、意図した暖房能力を発揮できないという問題があった。 By the way, when the refrigerant flowing out of the user-side heat exchanger and flowing into the expansion valve is in a gas-liquid two-phase state, the larger the opening of the expansion valve, that is, the expansion valve from the user-side heat exchanger. The greater the amount of refrigerant flowing into, the greater the pressure loss that the refrigerant receives. At this time, the refrigerant temperature flowing to the expansion valve becomes the maximum value at any opening between the minimum opening and the maximum opening of the expansion valve, the refrigerant cooling degree becomes the minimum value, and the refrigerant cooling degree becomes the minimum value. As the opening becomes larger than the opening, the temperature of the refrigerant flowing to the expansion valve due to the pressure loss becomes lower, and the degree of refrigerant overcooling becomes larger. Therefore, when the opening degree of the expansion valve is larger than the opening degree at which the refrigerant cooling degree becomes the minimum value and the refrigerant supercooling degree is larger than the target refrigerant supercooling degree, the refrigerant supercooling degree is set to the target refrigerant supercooling degree. Even if the opening degree of the expansion valve is increased to bring it closer, the degree of refrigerant supercooling does not decrease due to the increase in pressure loss. Further, even if the expansion valve reaches the maximum opening degree, the refrigerant supercooling degree does not reach the target refrigerant supercooling degree, and there is a problem that the intended heating capacity cannot be exhibited.

以上のような事情に鑑み、本発明の目的は、暖房運転時に冷媒の圧力損失の影響を低減して過冷却度制御を適切に行うことができるヒートポンプサイクル装置を提供することにある。 In view of the above circumstances, an object of the present invention is to provide a heat pump cycle device capable of appropriately controlling the degree of supercooling by reducing the influence of the pressure loss of the refrigerant during the heating operation.

上記目的を達成するため、本発明の一形態に係るヒートポンプサイクル装置は、冷媒回路と、吐出圧力センサと、冷媒温度センサと、制御ユニットとを備える。
前記冷媒回路は、圧縮機と、利用側熱交換器と、熱源側熱交換器と、前記利用側熱交換器と前記熱源側熱交換器との間に配置された膨張弁と、前記圧縮機から吐出される冷媒の流れ方向を切り替える流路切替弁と、を有する。
前記吐出圧力センサは、前記圧縮機から吐出される冷媒の圧力である吐出圧力を検出する。
前記冷媒温度センサは、前記圧縮機から吐出される冷媒の流れ方向が前記利用側熱交換器である暖房運転時において、前記利用側熱交換器から流出する冷媒の温度である膨張弁前温度を検出する。
前記制御ユニットは、前記吐出圧力と前記膨張弁前温度とに基づいて冷媒過冷却度を算出する算出部と、算出した前記冷媒過冷却度が所定の目標冷媒過冷却度となるように前記膨張弁の開度を調整する調整部と、前記膨張弁の開度が所定の閾開度より大きいとき、前記目標冷媒過冷却温度を所定値増加させる補正部と、を有する。
In order to achieve the above object, the heat pump cycle device according to one embodiment of the present invention includes a refrigerant circuit, a discharge pressure sensor, a refrigerant temperature sensor, and a control unit.
The refrigerant circuit includes a compressor, a user-side heat exchanger, a heat source-side heat exchanger, an expansion valve arranged between the user-side heat exchanger and the heat source-side heat exchanger, and the compressor. It has a flow path switching valve for switching the flow direction of the refrigerant discharged from.
The discharge pressure sensor detects the discharge pressure, which is the pressure of the refrigerant discharged from the compressor.
The refrigerant temperature sensor measures the temperature before the expansion valve, which is the temperature of the refrigerant flowing out of the user-side heat exchanger during the heating operation in which the flow direction of the refrigerant discharged from the compressor is the user-side heat exchanger. To detect.
The control unit includes a calculation unit that calculates a refrigerant supercooling degree based on the discharge pressure and the temperature before the expansion valve, and the expansion so that the calculated refrigerant supercooling degree becomes a predetermined target refrigerant supercooling degree. It has an adjusting unit for adjusting the opening degree of the valve and a correction unit for increasing the target refrigerant supercooling temperature by a predetermined value when the opening degree of the expansion valve is larger than a predetermined threshold opening degree.

前記所定の閾開度は、前記冷媒過冷却度が前記目標冷媒過冷却度となる目標開度よりも大きい開度と、当該開度よりも大きい開度領域における前記冷媒過冷却度が前記目標冷媒過冷却度となる開度との間の任意の開度であってもよい。 The predetermined threshold opening is such that the opening degree in which the refrigerant supercooling degree is larger than the target opening degree to be the target refrigerant supercooling degree and the refrigerant supercooling degree in the opening region larger than the opening degree are the targets. It may be any opening between the opening degree and the degree of refrigerant supercooling.

また、前記目標冷媒過冷却度の前記補正値は、前記冷媒過冷却度が補正後の目標冷媒過冷却度より常に小さくなるように定められてもよい。 Further, the correction value of the target refrigerant supercooling degree may be set so that the refrigerant supercooling degree is always smaller than the corrected target refrigerant supercooling degree.

本発明によれば、暖房運転時に冷媒の圧力損失の影響を低減して過冷却度制御を適切に行うことができる。 According to the present invention, it is possible to appropriately control the degree of supercooling by reducing the influence of the pressure loss of the refrigerant during the heating operation.

本実施形態のヒートポンプサイクル装置であるヒートポンプ式温水暖房装置を示す概略構成図である。It is a schematic block diagram which shows the heat pump type hot water heating apparatus which is the heat pump cycle apparatus of this embodiment. 制御ユニットの構成を示すブロック図である。It is a block diagram which shows the structure of a control unit. 過冷却度と膨張弁の開度との関係を示す典型例である。This is a typical example showing the relationship between the degree of supercooling and the opening degree of the expansion valve. 圧力損失と、膨張弁の開度と、液管の長さとの関係を示す説明図である。It is explanatory drawing which shows the relationship between the pressure loss, the opening degree of an expansion valve, and the length of a liquid pipe. 液管内の冷媒が気液二相状態のときにおける過冷却度と膨張弁の開度との関係を示す説明図である。It is explanatory drawing which shows the relationship between the degree of supercooling and the opening degree of an expansion valve when the refrigerant in a liquid pipe is in a gas-liquid two-phase state. 冷凍サイクル制御を行えない不具合が発生したときの実験例を示す図である。It is a figure which shows the experimental example at the time of the trouble that the refrigeration cycle control cannot be performed occurs. 補正部の作用を説明するための過冷却度と膨張弁開度との関係を示す図である。It is a figure which shows the relationship between the supercooling degree and the expansion valve opening degree for demonstrating the operation of a correction part. 制御ユニットにより実行される処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the processing procedure executed by a control unit.

以下、図面を参照しながら、本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本実施形態のヒートポンプサイクル装置であるヒートポンプ式温水暖房装置を示す概略構成図である。 FIG. 1 is a schematic configuration diagram showing a heat pump type hot water heating device which is the heat pump cycle device of the present embodiment.

[ヒートポンプ式温水暖房装置]
図1に示されるように、ヒートポンプ式温水暖房装置100は、冷媒回路10と、温水回路20と、制御ユニット60とを備える。冷媒回路10においては、圧縮機1と、四方弁2と、冷媒と水との熱交換を行う水冷媒熱交換器3と、膨張弁4と、熱源側熱交換器5と、アキュムレータ6とが順に冷媒配管11で接続されている。温水回路20においては、水冷媒熱交換器3と、流量計31と、利用側ユニットである室内ユニット(温水ユニット)40と、循環ポンプ30とが順に水配管16で接続されている。さらにヒートポンプ式温水暖房装置100は、熱源側熱交換器5に室外空気を送風する室外ファン90と、水冷媒熱交換器3における水の温度を検出する温度センサ58および温度センサ59とを備える。
[Heat pump type hot water heater]
As shown in FIG. 1, the heat pump type hot water heating device 100 includes a refrigerant circuit 10, a hot water circuit 20, and a control unit 60. In the refrigerant circuit 10, the compressor 1, the four-way valve 2, the water refrigerant heat exchanger 3 that exchanges heat between the refrigerant and water, the expansion valve 4, the heat source side heat exchanger 5, and the accumulator 6 are used. They are connected in order by the refrigerant pipe 11. In the hot water circuit 20, the water-refrigerant heat exchanger 3, the flow meter 31, the indoor unit (hot water unit) 40 as the user-side unit, and the circulation pump 30 are connected in order by the water pipe 16. Further, the heat pump type hot water heating device 100 includes an outdoor fan 90 that blows outdoor air to the heat source side heat exchanger 5, a temperature sensor 58 that detects the temperature of water in the water refrigerant heat exchanger 3, and a temperature sensor 59.

ここで、圧縮機1、四方弁2、膨張弁4、熱源側熱交換器5およびアキュムレータ6は室外機に格納され、水冷媒熱交換器3および室内ユニット40は室内機に格納される。これら室外機と室内機との間は、水冷媒熱交換器3と膨張弁4との間を接続する冷媒配管である液管3Aと、四方弁2と水冷媒熱交換器3との間を接続する冷媒配管であるガス管3Bとにより接続される。 Here, the compressor 1, the four-way valve 2, the expansion valve 4, the heat source side heat exchanger 5, and the accumulator 6 are housed in the outdoor unit, and the water-refrigerant heat exchanger 3 and the indoor unit 40 are housed in the indoor unit. Between these outdoor units and the indoor unit, there is a liquid pipe 3A which is a refrigerant pipe connecting between the water refrigerant heat exchanger 3 and the expansion valve 4, and between the four-way valve 2 and the water refrigerant heat exchanger 3. It is connected to the gas pipe 3B, which is a connecting refrigerant pipe.

(冷媒回路の構成)
圧縮機1は、インバータにより回転数が制御される図示しないモータによって駆動される。圧縮機1は、運転容量が可変の能力可変型圧縮機である。四方弁2は、冷媒回路10における冷媒循環方向を切り替える流路切替弁である。水冷熱交換器3は、冷媒配管11を流れて水冷媒熱交換器3に流入した冷媒と、水配管16を流れて水冷媒熱交換器3に流入した水とを熱交換させる。水冷媒熱交換器3は、利用側熱交換器である。
(Construction of refrigerant circuit)
The compressor 1 is driven by a motor (not shown) whose rotation speed is controlled by an inverter. The compressor 1 is a capacity variable compressor having a variable operating capacity. The four-way valve 2 is a flow path switching valve that switches the refrigerant circulation direction in the refrigerant circuit 10. The water-cooled heat exchanger 3 exchanges heat between the refrigerant flowing through the refrigerant pipe 11 and flowing into the water refrigerant heat exchanger 3 and the water flowing through the water pipe 16 and flowing into the water refrigerant heat exchanger 3. The water refrigerant heat exchanger 3 is a user-side heat exchanger.

膨張弁4は、ステッピングモータを用いてパルス制御により弁の開度を制御する。膨張弁4は、熱源側熱交換器5に流入あるいは熱源側熱交換器5から流出する冷媒量を調整する。熱源側熱交換器5は、冷媒配管11を流れて熱源側熱交換器5に流入する冷媒と、室外ファン90の回転により取り込まれた外気とを熱交換させる。アキュムレータ6は、四方弁2から流入した冷媒をガス冷媒と液冷媒に分離し、ガス冷媒のみを圧縮機1に吸入させる。 The expansion valve 4 controls the opening degree of the valve by pulse control using a stepping motor. The expansion valve 4 adjusts the amount of refrigerant that flows into or out of the heat source side heat exchanger 5. The heat source side heat exchanger 5 exchanges heat between the refrigerant flowing through the refrigerant pipe 11 and flowing into the heat source side heat exchanger 5 and the outside air taken in by the rotation of the outdoor fan 90. The accumulator 6 separates the refrigerant flowing from the four-way valve 2 into a gas refrigerant and a liquid refrigerant, and causes only the gas refrigerant to be sucked into the compressor 1.

冷媒配管11における圧縮機1の冷媒吐出口付近には、圧縮機1から吐出された冷媒の圧力である吐出圧力を検出する吐出圧力センサ51と、圧縮機1から吐出された冷媒の温度である吐出温度を検出する吐出温度センサ52とが設けられている。冷媒配管11におけるアキュムレータ6の冷媒流入側付近には、圧縮機1に吸入される冷媒の圧力である吸入圧力を検出する吸入圧力センサ53と、圧縮機1に吸入される冷媒の温度である吸入温度を検出する吸入温度センサ54とが設けられている。 In the vicinity of the refrigerant discharge port of the compressor 1 in the refrigerant pipe 11, a discharge pressure sensor 51 that detects the discharge pressure, which is the pressure of the refrigerant discharged from the compressor 1, and the temperature of the refrigerant discharged from the compressor 1 are present. A discharge temperature sensor 52 for detecting the discharge temperature is provided. In the vicinity of the refrigerant inflow side of the accumulator 6 in the refrigerant pipe 11, a suction pressure sensor 53 that detects the suction pressure which is the pressure of the refrigerant sucked into the compressor 1 and the suction which is the temperature of the refrigerant sucked into the compressor 1 are sucked. A suction temperature sensor 54 for detecting the temperature is provided.

吐出圧力センサ51は、冷媒配管11における圧縮機1の冷媒吐出側と水冷媒熱交換器3の間に配置すればよく、例えば、図1において一点鎖線で仮想的に示すように、四方弁2と水冷媒熱交換器3との間に配置する。また、圧縮機1の回転数を検出する回転数センサが圧縮機1に設けられてもよい。 The discharge pressure sensor 51 may be arranged between the refrigerant discharge side of the compressor 1 in the refrigerant pipe 11 and the water refrigerant heat exchanger 3. For example, as virtually shown by the one-point chain line in FIG. 1, the four-way valve 2 It is arranged between the water refrigerant heat exchanger 3 and the water refrigerant heat exchanger 3. Further, the compressor 1 may be provided with a rotation speed sensor that detects the rotation speed of the compressor 1.

冷媒配管11における水冷媒熱交換器3と膨張弁4との間の膨張弁4の接続口付近には、冷媒温度センサ55が設けられている。冷媒温度センサ55は、暖房運転時において水冷媒熱交換器3から流出する冷媒の温度である膨張弁前温度を検出する。なお、冷媒温度センサ55が、膨張弁4の接続口付近に配置される、つまり、室外機に設けられる場合としては、例えば、ヒートポンプ式温水暖房装置100が室外機に組み合わせる室内機を選択できるものであって、室外機に冷媒温度センサ55を設けることで、冷媒温度センサ55に相当するセンサが搭載されていない室内機を室外機に組み合わせることができるようにしたい場合である。 A refrigerant temperature sensor 55 is provided in the vicinity of the connection port of the expansion valve 4 between the water refrigerant heat exchanger 3 and the expansion valve 4 in the refrigerant pipe 11. The refrigerant temperature sensor 55 detects the temperature before the expansion valve, which is the temperature of the refrigerant flowing out from the water refrigerant heat exchanger 3 during the heating operation. When the refrigerant temperature sensor 55 is arranged near the connection port of the expansion valve 4, that is, when it is provided in the outdoor unit, for example, the indoor unit to which the heat pump type hot water heating device 100 is combined with the outdoor unit can be selected. In this case, it is desired to provide the outdoor unit with the refrigerant temperature sensor 55 so that the indoor unit on which the sensor corresponding to the refrigerant temperature sensor 55 is not mounted can be combined with the outdoor unit.

膨張弁4と熱源側熱交換器5との間の冷媒配管11には、熱源側熱交換器5側に熱交温度センサ57が設けられている。熱交温度センサ57は、暖房運転時に熱源側熱交換器5に流入する冷媒の温度を検出する。熱交温度センサ57は、除霜運転時には熱源側熱交換器5から流出する冷媒の温度を検出する。熱源側熱交換器5の近傍には、外気温度を検出するための外気温度センサ56が設けられている。 The refrigerant pipe 11 between the expansion valve 4 and the heat source side heat exchanger 5 is provided with a heat exchange temperature sensor 57 on the heat source side heat exchanger 5 side. The heat exchange temperature sensor 57 detects the temperature of the refrigerant flowing into the heat source side heat exchanger 5 during the heating operation. The heat exchange temperature sensor 57 detects the temperature of the refrigerant flowing out from the heat source side heat exchanger 5 during the defrosting operation. An outside air temperature sensor 56 for detecting the outside air temperature is provided in the vicinity of the heat source side heat exchanger 5.

(温水回路の構成)
水冷媒熱交換器3には、冷媒配管11と水配管16が接続されている。水配管16には、流量計31と室内ユニット40と循環ポンプ30とが順次接続されている。循環ポンプ30は、回転数が固定されたモータまたは回転数が変更可能なモータによって駆動される。これにより、温水回路20では、矢印80の方向に水が循環する。特に、循環ポンプ30として、回転数が変更可能なモータを使用した場合は、温水回路20を流れる水の流量を変更することができる。循環ポンプ30が回転数の変更可能なモータを使用しない場合は、水配管16を流れる水の流量は、ヒートポンプ式温水暖房装置100が配置されたときの予め定められた固定の流量となる。室内ユニット40は、床暖房装置やラジエタなどといった室内を暖房するための端末である。流量計31は、温水回路20における単位時間あたりの水の流量を計測する。
(Structure of hot water circuit)
A refrigerant pipe 11 and a water pipe 16 are connected to the water-refrigerant heat exchanger 3. The flow meter 31, the indoor unit 40, and the circulation pump 30 are sequentially connected to the water pipe 16. The circulation pump 30 is driven by a motor having a fixed rotation speed or a motor having a variable rotation speed. As a result, in the hot water circuit 20, water circulates in the direction of the arrow 80. In particular, when a motor whose rotation speed can be changed is used as the circulation pump 30, the flow rate of water flowing through the hot water circuit 20 can be changed. When the circulation pump 30 does not use a motor whose rotation speed can be changed, the flow rate of water flowing through the water pipe 16 is a predetermined fixed flow rate when the heat pump type hot water heating device 100 is arranged. The indoor unit 40 is a terminal for heating the room such as a floor heating device and a radiator. The flow meter 31 measures the flow rate of water per unit time in the hot water circuit 20.

温水回路20は、水の温度を検知する検知手段を有する。例えば、水配管16における水冷媒熱交換器3の水の出口側には、水冷媒熱交換器3から流出する水の温度である往き温度を検出する温度センサ58が設けられている。水配管16における水冷媒熱交換器3の水の入口側には、水冷媒熱交換器3に流入する水の温度である戻り温度を検出する温度センサ59が設けられている。 The hot water circuit 20 has a detecting means for detecting the temperature of water. For example, a temperature sensor 58 for detecting the forward temperature, which is the temperature of the water flowing out from the water refrigerant heat exchanger 3, is provided on the water outlet side of the water refrigerant heat exchanger 3 in the water pipe 16. A temperature sensor 59 for detecting the return temperature, which is the temperature of the water flowing into the water refrigerant heat exchanger 3, is provided on the water inlet side of the water refrigerant heat exchanger 3 in the water pipe 16.

(制御ユニット)
図2は、制御ユニット60の構成を示すブロック図である。制御ユニット60は、CPU(Central Processing Unit)601と、ヒートポンプ式温水暖房装置100の運転制御に関わる各種プログラムや、各種プログラムの実行時に利用される制御パラメータを記憶する記憶部602と、冷媒回路10や温水回路20に設けられた各種センサでの検出値を取り込むセンサ入力部603と、室内ユニット40を操作するための図示しないリモコンから送信される信号を受信する受信部604とを有する。
(Controller unit)
FIG. 2 is a block diagram showing the configuration of the control unit 60. The control unit 60 includes a CPU (Central Processing Unit) 601, a storage unit 602 that stores various programs related to operation control of the heat pump type hot water heating device 100, and control parameters used when executing various programs, and a refrigerant circuit 10. It has a sensor input unit 603 for capturing the detected values of various sensors provided in the hot water circuit 20 and a receiving unit 604 for receiving a signal transmitted from a remote controller (not shown) for operating the indoor unit 40.

制御ユニット60は、各種センサで検出した値をセンサ入力部603を介して取り込む。制御ユニット60は、使用者のリモコン操作によって送信される室内ユニット40の運転に関わる各種要求を受信部604を介して取り込む。制御ユニット60は、取り込んだ各種センサで検出した値や運転に関わる各種要求に基づいて、圧縮機1や循環ポンプ30の駆動制御、四方弁2の切り換え制御、膨張弁4の開度調整などといった、ヒートポンプ式温水暖房装置100の各装置の制御を行う。 The control unit 60 captures the values detected by various sensors via the sensor input unit 603. The control unit 60 captures various requests related to the operation of the indoor unit 40 transmitted by the remote control operation of the user via the receiving unit 604. The control unit 60 controls the drive of the compressor 1 and the circulation pump 30, the switching control of the four-way valve 2, the opening degree adjustment of the expansion valve 4, etc., based on the values detected by the various sensors taken in and various demands related to the operation. , Each device of the heat pump type hot water heating device 100 is controlled.

[冷媒回路および温水回路の動作]
続いて、ヒートポンプ式温水暖房装置100が暖房運転を行う際の、冷媒回路10における冷媒の流れや各部の動作、および、温水回路20における水の流れや各部の動作について図1を参照して説明する。まず、ヒートポンプ式温水暖房装置100が暖房運転を行う場合について説明する。次に、ヒートポンプ式温水暖房装置100が除霜運転を行う場合について説明する。
[Operation of refrigerant circuit and hot water circuit]
Subsequently, when the heat pump type hot water heating device 100 performs the heating operation, the flow of the refrigerant in the refrigerant circuit 10 and the operation of each part, and the flow of water in the hot water circuit 20 and the operation of each part will be described with reference to FIG. do. First, a case where the heat pump type hot water heating device 100 performs a heating operation will be described. Next, a case where the heat pump type hot water heating device 100 performs the defrosting operation will be described.

(暖房運転)
ヒートポンプ式温水暖房装置100が暖房運転を行う場合は、四方弁2が操作されて冷媒回路10が暖房サイクルとされる。また、循環ポンプ30が起動されて水回路16に実線矢印80の方向に水が循環する。この状態で圧縮機1が駆動すると、冷媒が冷媒回路10を実線矢印70の方向に流れる。圧縮機1から吐出された冷媒は、冷媒配管11を流れて四方弁2を経て水冷媒熱交換器3に流入する。圧縮機1の回転数は、温度センサ58で検出する水温である往き温度が室内ユニット40で使用者が要求する暖房能力に応じた目標往き温度となるように制御される。
(Heating operation)
When the heat pump type hot water heating device 100 performs the heating operation, the four-way valve 2 is operated and the refrigerant circuit 10 is set as the heating cycle. Further, the circulation pump 30 is activated and water circulates in the water circuit 16 in the direction of the solid arrow 80. When the compressor 1 is driven in this state, the refrigerant flows in the refrigerant circuit 10 in the direction of the solid arrow 70. The refrigerant discharged from the compressor 1 flows through the refrigerant pipe 11, passes through the four-way valve 2, and flows into the water refrigerant heat exchanger 3. The rotation speed of the compressor 1 is controlled so that the forward temperature, which is the water temperature detected by the temperature sensor 58, becomes the target forward temperature according to the heating capacity required by the user in the indoor unit 40.

水冷媒熱交換器3に流入した冷媒は、水冷媒熱交換器3に流入した水と熱交換を行って凝縮する。水冷媒熱交換器3から冷媒配管11に流出した冷媒は、膨張弁4を通過する際に減圧されて熱源側熱交換器5に流入する。膨張弁4の開度は、後述するように、水冷媒熱交換器3の出口側(暖房運転時の膨張弁4側)における冷媒の過冷却度が、あらかじめ設定された目標過冷却度となるように調整される。 The refrigerant flowing into the water-refrigerant heat exchanger 3 exchanges heat with the water flowing into the water-refrigerant heat exchanger 3 to condense. The refrigerant flowing out from the water-refrigerant heat exchanger 3 to the refrigerant pipe 11 is decompressed when passing through the expansion valve 4 and flows into the heat source side heat exchanger 5. As will be described later, the opening degree of the expansion valve 4 is such that the degree of supercooling of the refrigerant on the outlet side (the side of the expansion valve 4 during heating operation) of the water refrigerant heat exchanger 3 becomes a preset target supercooling degree. Is adjusted to.

熱源側熱交換器5に流入した冷媒は、外気と熱交換を行って蒸発する。熱源側熱交換器5から冷媒配管11に流出した冷媒は、四方弁2、アキュムレータ6を介して圧縮機1に吸入されて再び圧縮される。 The refrigerant flowing into the heat source side heat exchanger 5 exchanges heat with the outside air and evaporates. The refrigerant flowing out from the heat source side heat exchanger 5 to the refrigerant pipe 11 is sucked into the compressor 1 via the four-way valve 2 and the accumulator 6 and compressed again.

一方、温水回路20では、前述したように循環ポンプ30が駆動することで温水回路20を実線矢印80の方向に水が流れる。水配管16を流れて水冷媒熱交換器3に流入した水は冷媒によって加熱されて温水となって、室内ユニット40に流入する。室内ユニット40に温水が流れることで、室内ユニット40が配置された部屋の暖房が行われる。尚、温水回路20において水が流れる方向は、冷媒回路10が暖房サイクルであっても冷房サイクルであっても、実線矢印80の方向である。 On the other hand, in the hot water circuit 20, water flows in the hot water circuit 20 in the direction of the solid arrow 80 by driving the circulation pump 30 as described above. The water flowing through the water pipe 16 and flowing into the water refrigerant heat exchanger 3 is heated by the refrigerant to become hot water and flows into the indoor unit 40. By flowing hot water through the indoor unit 40, the room in which the indoor unit 40 is arranged is heated. The direction in which water flows in the hot water circuit 20 is the direction of the solid arrow 80 regardless of whether the refrigerant circuit 10 is in the heating cycle or the cooling cycle.

[冷媒の過冷却度制御(膨張弁の開度制御)]
暖房運転時における膨張弁4の開度は、水冷媒熱交換器3の出口側(暖房運転時の膨張弁4側)における冷媒過冷却度が、ヒートポンプ式温水暖房装置100で所望の暖房能力が発揮されるために必要な値である目標冷媒過冷却度となるように調整される。冷媒過冷却度は、以下のように、水冷媒熱交換器3における冷媒の凝縮温度から膨張弁4に流入する前の冷媒の温度(以下、膨張弁前温度ともいう)を減じることで算出される。

冷媒過冷却度=凝縮温度-膨張弁前温度 ・・・(1)

すなわち、冷媒過冷却度は、水冷媒熱交換器3における冷媒の凝縮温度と水冷媒熱交換器3から流出する冷媒の温度との温度差であり、この温度差が大きいほど冷媒過冷却度は大きくなる。本実施形態では、凝縮温度は、吐出圧力センサ51で検出される圧力から換算され、膨張弁前温度は、冷媒温度センサ55の検出値である。
[Refrigerant supercooling degree control (expansion valve opening control)]
The opening degree of the expansion valve 4 during the heating operation is such that the degree of refrigerant supercooling on the outlet side (expansion valve 4 side during the heating operation) of the water refrigerant heat exchanger 3 has a desired heating capacity in the heat pump type hot water heating device 100. It is adjusted to the target refrigerant overcooling degree, which is the value required to be exhibited. The degree of refrigerant supercooling is calculated by subtracting the temperature of the refrigerant before flowing into the expansion valve 4 (hereinafter, also referred to as the temperature before the expansion valve) from the condensation temperature of the refrigerant in the water refrigerant heat exchanger 3 as follows. To.

Refrigerant supercooling degree = condensation temperature-temperature before expansion valve ... (1)

That is, the refrigerant supercooling degree is the temperature difference between the condensation temperature of the refrigerant in the water-refrigerant heat exchanger 3 and the temperature of the refrigerant flowing out from the water-refrigerant heat exchanger 3, and the larger the temperature difference, the higher the refrigerant supercooling degree. growing. In the present embodiment, the condensation temperature is converted from the pressure detected by the discharge pressure sensor 51, and the temperature before the expansion valve is the detected value of the refrigerant temperature sensor 55.

また、一般的には目標冷媒過冷却度は、水冷媒熱交換器3から流出して膨張弁4に流入するまでの冷媒が液相状態であることを前提に決定されるものである。目標冷媒過冷却度は、圧縮機1の回転数(冷媒の循環量)および吐出圧力(または凝縮温度)に応じて定まる可変値である。例えば、圧縮機1の回転数および吐出圧力(または凝縮温度)に対応させて目標冷媒過冷却度を定めたテーブル値を予め作成しておき、このテーブルを参照して目標冷媒過冷却度が決定される。このテーブル値は、制御ユニット60の記憶部602に格納される。目標冷媒過冷却度の具体例としては、例えば、運転条件に応じて3℃~5℃の範囲に設定される。 Further, in general, the target refrigerant supercooling degree is determined on the premise that the refrigerant flowing out from the water refrigerant heat exchanger 3 and flowing into the expansion valve 4 is in a liquid phase state. The target refrigerant supercooling degree is a variable value determined according to the rotation speed (circulation amount of the refrigerant) and the discharge pressure (or the condensation temperature) of the compressor 1. For example, a table value in which the target refrigerant supercooling degree is determined in advance corresponding to the rotation speed and discharge pressure (or condensation temperature) of the compressor 1 is created in advance, and the target refrigerant supercooling degree is determined with reference to this table. Will be done. This table value is stored in the storage unit 602 of the control unit 60. As a specific example of the target refrigerant supercooling degree, for example, it is set in the range of 3 ° C to 5 ° C depending on the operating conditions.

図3は、水冷媒熱交換器3から膨張弁4へ向かって流れる冷媒が液冷媒である場合の、過冷却度と膨張弁4の開度との関係を示すものである。図3に示すように、冷媒過冷却度は、膨張弁4の開度が大きくなるほど低下し、開度が最大となれば冷媒過冷却度が最小値となる。したがって、冷媒過冷却度の算出値が目標冷媒過冷却度Sc0よりも低い場合は膨張弁4の開度を小さくし、冷媒過冷却度の算出値が目標冷媒過冷却度Sc0よりも高い場合は膨張弁4の開度を大きくすることで、冷媒過冷却度を目標冷媒過冷却度ScOとすることができる。なお、図3では、冷媒過冷却度が目標冷媒過冷却度となったときの膨張弁4の開度を目標開度X0としている。 FIG. 3 shows the relationship between the degree of supercooling and the opening degree of the expansion valve 4 when the refrigerant flowing from the water refrigerant heat exchanger 3 to the expansion valve 4 is a liquid refrigerant. As shown in FIG. 3, the degree of refrigerant supercooling decreases as the opening degree of the expansion valve 4 increases, and when the opening degree becomes the maximum, the degree of refrigerant supercooling becomes the minimum value. Therefore, when the calculated value of the refrigerant supercooling degree is lower than the target refrigerant supercooling degree Sc0, the opening degree of the expansion valve 4 is reduced, and when the calculated value of the refrigerant supercooling degree is higher than the target refrigerant supercooling degree Sc0, the opening degree is reduced. By increasing the opening degree of the expansion valve 4, the degree of refrigerant supercooling can be set to the target degree of refrigerant supercooling ScO. In FIG. 3, the opening degree of the expansion valve 4 when the refrigerant supercooling degree becomes the target refrigerant supercooling degree is set as the target opening degree X0.

ところで、暖房運転時に水冷媒熱交換器3と膨張弁4との間を接続する液管3Aを流れる液冷媒が、冷媒配管11における水冷媒熱交換器3と膨張弁4との間を流れる際に受ける圧力損失により気液二相状態になる場合がある。このとき、圧力損失によって冷媒の温度が低下し、膨張弁前温度が冷媒が液相状態の場合と比べて低い温度となるため、算出する冷媒過冷却度が大きくなる。前述したように、目標冷媒過冷却度は、利用側熱交換器から流出して膨張弁に流入するまでの冷媒が、液管3Aが短くこれを流れる冷媒が受ける圧力損失が小さくて液相状態であることを前提に決められる、つまり、圧力損失を加味せずに決定されるため、算出する冷媒過冷却度が圧力損失の影響で変化すれば、図5を用いて後述するように、膨張弁4の過冷却制御を行ってもヒートポンプサイクル装置100で意図した暖房能力を発揮できないおそれがある。 By the way, when the liquid refrigerant flowing through the liquid pipe 3A connecting between the water-refrigerant heat exchanger 3 and the expansion valve 4 during the heating operation flows between the water-refrigerant heat exchanger 3 and the expansion valve 4 in the refrigerant pipe 11. A gas-liquid two-phase state may occur due to the pressure loss received in the air. At this time, the temperature of the refrigerant drops due to the pressure loss, and the temperature before the expansion valve becomes lower than that in the case where the refrigerant is in the liquid phase state, so that the calculated degree of refrigerant supercooling becomes large. As described above, the target refrigerant supercooling degree is the liquid phase state in which the refrigerant flowing out of the heat exchanger on the user side and flowing into the expansion valve has a short liquid pipe 3A and the pressure loss received by the refrigerant flowing through the liquid pipe 3A is small. That is, it is determined on the premise that the pressure loss is not taken into consideration. Therefore, if the calculated refrigerant supercooling degree changes due to the influence of the pressure loss, it expands as described later with reference to FIG. Even if the overcooling control of the valve 4 is performed, there is a possibility that the heating capacity intended by the heat pump cycle device 100 cannot be exhibited.

ここで、暖房運転時に冷媒が気液二相状態になるような条件としては、例えば、液管3Aを冷媒が流れる際に受ける圧力損失が挙げられる。図4は、圧力損失と膨張弁4の開度との関係を示す説明図であり、「長」、「中」および「短」はそれぞれ液管3Aの長さに相当する。同図に示すように、液管3Aの配管長が長いほど圧力損失が大きくなる。また、膨張弁4の開度が大きいほど冷媒の循環量が多くなって圧力損失が大きくなる。つまり、液管3Aの配管長が長いほど、また、膨張弁4の開度が大きいほど、液管3Aを流れる冷媒が受ける圧力損失が大きくなって、気液二相状態におけるガス冷媒の比率が多くなって膨張弁前温度が低下する。 Here, as a condition for the refrigerant to be in the gas-liquid two-phase state during the heating operation, for example, there is a pressure loss received when the refrigerant flows through the liquid pipe 3A. FIG. 4 is an explanatory diagram showing the relationship between the pressure loss and the opening degree of the expansion valve 4, and “long”, “medium”, and “short” correspond to the length of the liquid pipe 3A, respectively. As shown in the figure, the longer the pipe length of the liquid pipe 3A, the larger the pressure loss. Further, the larger the opening degree of the expansion valve 4, the larger the circulation amount of the refrigerant and the larger the pressure loss. That is, the longer the pipe length of the liquid pipe 3A and the larger the opening degree of the expansion valve 4, the larger the pressure loss received by the refrigerant flowing through the liquid pipe 3A, and the ratio of the gas refrigerant in the gas-liquid two-phase state becomes larger. The temperature increases and the temperature before the expansion valve decreases.

図5は、液管3A内の冷媒が気液二相状態である場合の、冷媒過冷却度と膨張弁4の開度との関係を示す説明図である。液管3Aを流れる冷媒が気液二相状態となっていれば、図3に示した液管3Aを流れる冷媒が液相状態の場合のように膨張弁4の開度を大きくするほど冷媒過冷却度が低下するのではなく、膨張弁前温度が最高となって算出した冷媒過冷却度が目標冷媒過冷却度Sc0よりも小さい値の最小値となる、目標開度X0よりも大きい開度である開度X1がある。そして、膨張弁4の開度が開度X1よりも大きい場合は、開度を大きくするほど冷媒過冷却度は大きくなる。これは、図4を用いて説明したように、膨張弁4の開度が大きくなるほど液管3Aを流れる冷媒量が多くなって冷媒が受ける圧力損失が大きくなることで、気液二相状態の冷媒におけるガス冷媒の比率が多くなって膨張弁前温度が低下するためである。
なお、開度X1は、図4で示した液管3Aの配管長で決まる値であり、配管長が長いほど開度X1は目標開度X0に近づく。
FIG. 5 is an explanatory diagram showing the relationship between the degree of refrigerant supercooling and the opening degree of the expansion valve 4 when the refrigerant in the liquid pipe 3A is in a gas-liquid two-phase state. If the refrigerant flowing through the liquid pipe 3A is in the gas-liquid two-phase state, the refrigerant supercooled as the opening degree of the expansion valve 4 is increased as in the case where the refrigerant flowing through the liquid pipe 3A is in the liquid phase state as shown in FIG. The opening degree is larger than the target opening degree X0, where the liquidator supercooling degree calculated by maximizing the temperature before the expansion valve is the minimum value smaller than the target refrigerant supercooling degree Sc0, instead of lowering the cooling degree. There is an opening X1 which is. When the opening degree of the expansion valve 4 is larger than the opening degree X1, the degree of refrigerant supercooling increases as the opening degree increases. This is because, as described with reference to FIG. 4, as the opening degree of the expansion valve 4 increases, the amount of the refrigerant flowing through the liquid pipe 3A increases and the pressure loss received by the refrigerant increases, so that the gas-liquid two-phase state is achieved. This is because the ratio of the gas refrigerant to the refrigerant increases and the temperature before the expansion valve decreases.
The opening degree X1 is a value determined by the pipe length of the liquid pipe 3A shown in FIG. 4, and the longer the pipe length, the closer the opening degree X1 approaches the target opening degree X0.

膨張弁4の開度が開度X1よりも大きい場合は、上述したように膨張弁4の開度が大きくなるほど冷媒過冷却度が大きくなるため、図5に示すように開度X1から膨張弁4の最大開度X2の間には、算出した冷媒過冷却度が目標冷媒過冷却度Sc0となる開度Xaがある。ここで、算出した冷媒過冷却度と目標冷媒過冷却度Sc0との差に応じて膨張弁4の開度を調整する場合、算出した冷媒過冷却度が目標冷媒過冷却度Sc0よりも低いときは膨張弁の開度が小さくされる、つまり、開度X1を超えて目標開度X0に近づくため問題はない。一方、算出した冷媒過冷却度が目標冷媒過冷却度Sc0よりも高いときは膨張弁4の開度が大きくされるが、このときは膨張弁4の開度を大きくするほど膨張弁前温度が低くなって算出する冷媒過冷却度が大きくなるため、膨張弁4の開度が最大開度X2に到達しても目標とする冷媒過冷却度が得られなくなる。その結果、所望とする暖房性能を発揮できないおそれがある。 When the opening degree of the expansion valve 4 is larger than the opening degree X1, the degree of refrigerant supercooling increases as the opening degree of the expansion valve 4 increases as described above. Therefore, as shown in FIG. 5, the expansion valve starts from the opening degree X1. Between the maximum opening degree X2 of 4, there is an opening degree Xa in which the calculated refrigerant supercooling degree becomes the target refrigerant supercooling degree Sc0. Here, when the opening degree of the expansion valve 4 is adjusted according to the difference between the calculated refrigerant supercooling degree and the target refrigerant supercooling degree Sc0, when the calculated refrigerant supercooling degree is lower than the target refrigerant supercooling degree Sc0. In other words, the opening degree of the expansion valve is reduced, that is, the opening degree X1 is exceeded and the target opening degree X0 is approached, so that there is no problem. On the other hand, when the calculated refrigerant supercooling degree is higher than the target refrigerant supercooling degree Sc0, the opening degree of the expansion valve 4 is increased. In this case, the larger the opening degree of the expansion valve 4, the higher the temperature before the expansion valve. Since the degree of refrigerant supercooling calculated to be low becomes large, the target degree of refrigerant supercooling cannot be obtained even if the opening degree of the expansion valve 4 reaches the maximum opening degree X2. As a result, the desired heating performance may not be exhibited.

図6に示すのは、ヒートポンプサイクル装置100で暖房運転を行っているときに、膨張弁4の開度が開度Xaより大きくなって算出した過冷却度を目標過冷却度とできない状態を実験で再現したものである。この例では、外気温度が10℃である場合に、室内ユニット40を循環する温水の設定温度を55℃、液管3Aの配管長を30mとしている。図6(A)は、温度センサ58で検出される温水往き温度と、温度センサ59で検出される温水戻り温度と、暖房能力の時間変化を示しており、図6(B)は、膨張弁パルス(開度)と圧縮機回転数の時間変化を示している。 FIG. 6 shows an experiment in which the supercooling degree calculated when the opening degree of the expansion valve 4 becomes larger than the opening Xa cannot be set as the target supercooling degree during the heating operation by the heat pump cycle device 100. It is reproduced in. In this example, when the outside air temperature is 10 ° C., the set temperature of the hot water circulating in the indoor unit 40 is 55 ° C., and the pipe length of the liquid pipe 3A is 30 m. FIG. 6A shows the hot water flow temperature detected by the temperature sensor 58, the hot water return temperature detected by the temperature sensor 59, and the time change of the heating capacity, and FIG. 6B shows the expansion valve. It shows the time change of the pulse (opening) and the compressor rotation speed.

図6(A),(B)に示すように、運転が開始し、圧縮機1の回転数が安定する通常運転に達した後は、温水往き温度とともに暖房能力が上昇する。しかし、温水往き温度が最大値に到達した当たりから暖房能力が急激に低下する。これは、液管3Aを流れる冷媒が圧力損失により気液二相状態となっているためである。つまり、冷媒が気液二相状態になっていると、暖房運転開始直後から膨張弁4の開度が図5に示す開度Xaより大きい開度(冷媒過冷却度の算出値が目標冷媒過冷却度より高い場合)となることがあり、この場合は膨張弁4の開度を大きくしても目標冷媒過冷却度に到達せずに増加を続け、最終的に膨張弁4の開度は最大開度X2に達して過冷却度制御ができなくなってしまい、暖房能力が発揮されなくなる(図6(A)参照)。 As shown in FIGS. 6A and 6B, after the operation is started and the normal operation at which the rotation speed of the compressor 1 is stable is reached, the heating capacity increases with the hot water flow temperature. However, the heating capacity drops sharply when the hot water flow temperature reaches the maximum value. This is because the refrigerant flowing through the liquid pipe 3A is in a gas-liquid two-phase state due to pressure loss. That is, when the refrigerant is in the gas-liquid two-phase state, the opening degree of the expansion valve 4 is larger than the opening degree Xa shown in FIG. 5 immediately after the start of the heating operation (the calculated value of the refrigerant supercooling degree is the target refrigerant excess). (When the degree of cooling is higher), in this case, even if the opening degree of the expansion valve 4 is increased, the target refrigerant supercooling degree is not reached and continues to increase, and finally the opening degree of the expansion valve 4 is increased. When the maximum opening degree X2 is reached, the degree of supercooling cannot be controlled, and the heating capacity cannot be exhibited (see FIG. 6A).

[制御ユニットの詳細]
このような問題を解消するため、制御ユニット60のCPU601は、算出部611、調整部612および補正部613を有する(図2参照)。算出部611は、暖房運転時において、吐出圧力センサ51の検出値である吐出圧力と冷媒温度センサ55の検出値である膨張弁前温度とに基づいて冷媒過冷却度を算出する。調整部613は、算出した冷媒過冷却度が所定の目標冷媒過冷却度となるように膨張弁4の開度を調整する。補正部613は、膨張弁4の開度が所定の閾開度より大きいとき、目標冷媒過冷却温度を所定値だけ増加させる。
[Details of control unit]
In order to solve such a problem, the CPU 601 of the control unit 60 has a calculation unit 611, an adjustment unit 612, and a correction unit 613 (see FIG. 2). The calculation unit 611 calculates the degree of supercooling of the refrigerant based on the discharge pressure, which is the detection value of the discharge pressure sensor 51, and the temperature before the expansion valve, which is the detection value of the refrigerant temperature sensor 55, during the heating operation. The adjusting unit 613 adjusts the opening degree of the expansion valve 4 so that the calculated refrigerant supercooling degree becomes a predetermined target refrigerant supercooling degree. When the opening degree of the expansion valve 4 is larger than the predetermined threshold opening degree, the correction unit 613 increases the target refrigerant supercooling temperature by a predetermined value.

図7は、補正部613の作用を説明するための冷媒過冷却度と膨張弁開度との関係を示す図であり、液管3Aを流れる冷媒が気液二相状態である場合について、図5に以下に説明する閾開度Xおよび補正値Yを追記したものである。補正部613は、膨張弁4の開度が所定の閾開度Xより大きいとき、目標冷媒過冷却度Sc0を所定値Yだけ増加させる。ここでは、目標冷媒過冷却度Sc0から所定値Y増加させた冷媒過冷却度を、補正目標冷媒過冷却度Sc1という。 FIG. 7 is a diagram showing the relationship between the degree of refrigerant supercooling and the opening degree of the expansion valve for explaining the operation of the correction unit 613, and is a diagram showing a case where the refrigerant flowing through the liquid pipe 3A is in a gas-liquid two-phase state. The threshold opening X and the correction value Y described below are added to 5. When the opening degree of the expansion valve 4 is larger than the predetermined threshold opening degree X, the correction unit 613 increases the target refrigerant supercooling degree Sc0 by a predetermined value Y. Here, the refrigerant supercooling degree obtained by increasing a predetermined value Y from the target refrigerant supercooling degree Sc0 is referred to as a correction target refrigerant supercooling degree Sc1.

ここで、閾開度Xは、液管3Aの配管長と、開度X1および開度Xaとを用いて決定される。具体的には、想定される液管3Aの最大の配管長で暖房負荷を異ならせてヒートポンプ式温水暖房装置100で暖房運転を試験的に行い、それぞれの暖房負荷時の開度X1と開度Xaを求めて、開度X1の最大値と開度Xaの最小値との間の開度を閾開度Xと定める。また、目標冷媒過冷却度Sc0の補正量であるYの値は、予め試験などを行って求められた値であり、例えば、5℃である。この補正量Yは、補正目標冷媒過冷却度Sc1が、膨張弁4の開度が全開(開度X2)とされた場合の冷媒過冷却度よりも大きな値となるように設定されるものであり、ヒートポンプ式温水暖房装置100によって個別に定められるものである。 Here, the threshold opening X is determined by using the pipe length of the liquid pipe 3A and the opening X1 and the opening Xa. Specifically, the heating operation was performed on a trial basis by the heat pump type hot water heating device 100 with different heating loads at the maximum pipe length of the assumed liquid pipe 3A, and the opening X1 and the opening at the time of each heating load were tested. Xa is obtained, and the opening degree between the maximum value of the opening degree X1 and the minimum value of the opening degree Xa is defined as the threshold opening degree X. Further, the value of Y, which is the correction amount of the target refrigerant supercooling degree Sc0, is a value obtained by conducting a test or the like in advance, and is, for example, 5 ° C. This correction amount Y is set so that the correction target refrigerant supercooling degree Sc1 becomes a value larger than the refrigerant supercooling degree when the opening degree of the expansion valve 4 is fully opened (opening X2). Yes, it is individually determined by the heat pump type hot water heating device 100.

このように、膨張弁4の開度が閾開度Xより大きいときに、目標冷媒過冷却度Sc0を補正量Yで補正することで、算出部611により算出される冷媒過冷却度は補正目標冷媒過冷却度Sc1よりも大きくなることがなくなる。その結果、調整部612による膨張弁4の開度調整は、常に膨張弁開度を小さくする方向に行われるため、膨張弁4の開度が目標開度X0へ向けて小さくなる。そして、膨張弁4の開度が閾開度Xより小さくなれば、元の目標冷媒過冷却度に戻す。これにより、液管3Aを流れる冷媒が圧力損失の影響により気液二相状態となっているときに、目標冷媒過冷却度Sc0を補正することによって膨張弁4の開度を大きくすることがなくなる、つまり、冷媒過冷却度が大きくなることがなくなるため、冷媒過冷却度を目標冷媒過冷却度とすることができ、所望とする暖房能力が維持される。 As described above, when the opening degree of the expansion valve 4 is larger than the threshold opening degree X, the target refrigerant supercooling degree Sc0 is corrected by the correction amount Y, and the refrigerant supercooling degree calculated by the calculation unit 611 is the correction target. It will not be larger than the refrigerant supercooling degree Sc1. As a result, the opening degree of the expansion valve 4 is always adjusted by the adjusting unit 612 in the direction of reducing the opening degree of the expansion valve, so that the opening degree of the expansion valve 4 becomes smaller toward the target opening degree X0. Then, when the opening degree of the expansion valve 4 becomes smaller than the threshold opening degree X, the original target refrigerant supercooling degree is restored. As a result, when the refrigerant flowing through the liquid pipe 3A is in a gas-liquid two-phase state due to the influence of pressure loss, the opening degree of the expansion valve 4 is not increased by correcting the target refrigerant supercooling degree Sc0. That is, since the refrigerant supercooling degree does not increase, the refrigerant supercooling degree can be set as the target refrigerant supercooling degree, and the desired heating capacity is maintained.

なお、閾開度Xは、開度Xaであってもよい。前述したように、液管3Aを流れる冷媒が気液二相状態である場合は、膨張弁4が開度Xaより大きな開度となれば、冷媒過冷却度が目標冷媒過冷却度Sc0より大きい場合に、膨張弁4の開度を大きくしても冷媒過冷却度が低下しないため、膨張弁4の開度が開度Xaより大きくなれば目標冷媒過冷却度Sc0を補正する。この場合は、膨張弁4の開度調整のばらつきを考慮して、閾開度Xを開度Xaよりも多少小さい開度に設定してもよい。具体的には、閾開度Xは、開度Xaよりも、制御パルスの1パルス分に相当する開度を減じた値、あるいは、更にこれに加えて開度調整のばらつきを考慮した任意の値を減じた値であってもよい。 The threshold opening X may be the opening Xa. As described above, when the refrigerant flowing through the liquid pipe 3A is in a gas-liquid two-phase state, if the expansion valve 4 has an opening larger than the opening Xa, the refrigerant supercooling degree is larger than the target refrigerant supercooling degree Sc0. In this case, since the refrigerant supercooling degree does not decrease even if the opening degree of the expansion valve 4 is increased, the target refrigerant supercooling degree Sc0 is corrected when the opening degree of the expansion valve 4 becomes larger than the opening degree Xa. In this case, the threshold opening X may be set to an opening slightly smaller than the opening Xa in consideration of the variation in the opening adjustment of the expansion valve 4. Specifically, the threshold opening X is a value obtained by subtracting the opening corresponding to one pulse of the control pulse from the opening Xa, or in addition to this, any variation in the opening adjustment is taken into consideration. It may be a value obtained by subtracting the value.

また、閾開度Xは、開度X1であってもよい。ただ、膨張弁4の開度が開度X1であるときは、冷媒過冷却度が目標過冷却度Sc0より小さい値であり、かつ、膨張弁4の開度が開度X1より大きい場合と比べて液管3Aを流れる冷媒が圧力損失の影響を受けていない。このときに目標冷媒過冷却度Sc0を補正して大きな値とすれば、冷媒過冷却度と補正目標冷媒過冷却度Sc1との差が補正前より大きくなり、膨張弁4の開度がより小さくされるため、水冷媒熱交換器3を流れる冷媒量が少なくなって暖房能力が低下するおそれがある。このため、閾開度Xは開度X1よりも大きな開度とすることが好ましい。 Further, the threshold opening X may be the opening X1. However, when the opening degree of the expansion valve 4 is the opening degree X1, the degree of refrigerant supercooling is smaller than the target degree of supercooling degree Sc0, and the opening degree of the expansion valve 4 is larger than the opening degree X1. The refrigerant flowing through the liquid pipe 3A is not affected by the pressure loss. At this time, if the target refrigerant supercooling degree Sc0 is corrected to a large value, the difference between the refrigerant supercooling degree and the corrected target refrigerant supercooling degree Sc1 becomes larger than before the correction, and the opening degree of the expansion valve 4 becomes smaller. Therefore, the amount of the refrigerant flowing through the water-refrigerant heat exchanger 3 may be reduced and the heating capacity may be lowered. Therefore, it is preferable that the threshold opening X is larger than the opening X1.

図8は、制御ユニット60により実行される暖房運転時の膨張弁4の開度調整に関わる処理を示すフローチャートである。以下、図8を参照して本実施形態のヒートポンプ式温水暖房装置100の作用について説明する。 FIG. 8 is a flowchart showing a process related to the opening degree adjustment of the expansion valve 4 during the heating operation executed by the control unit 60. Hereinafter, the operation of the heat pump type hot water heating device 100 of the present embodiment will be described with reference to FIG.

暖房運転が開始されると、制御ユニット60は、圧縮機1の回転数と、圧縮機1から吐出される冷媒の圧力(吐出圧力)を読み込む(ステップ101)。圧縮機1の回転数は、図示しない回転数センサの検出値から取得でき、吐出圧力は、吐出圧力センサ51から取得できる。 When the heating operation is started, the control unit 60 reads the rotation speed of the compressor 1 and the pressure (discharge pressure) of the refrigerant discharged from the compressor 1 (step 101). The rotation speed of the compressor 1 can be obtained from a detection value of a rotation speed sensor (not shown), and the discharge pressure can be obtained from the discharge pressure sensor 51.

続いて、制御ユニット60は、圧縮機1の回転数および吐出圧力に基づき、目標冷媒過冷却度Sc0を算出する(ステップ102)。目標冷媒過冷却度Sc0は、上述のように、圧縮機1の回転数および吐出圧力(または凝縮温度)との対応関係を基に予め作成したテーブル値を参照して決定される。 Subsequently, the control unit 60 calculates the target refrigerant supercooling degree Sc0 based on the rotation speed and the discharge pressure of the compressor 1 (step 102). As described above, the target refrigerant supercooling degree Sc0 is determined with reference to the table value prepared in advance based on the correspondence between the rotation speed of the compressor 1 and the discharge pressure (or the condensation temperature).

続いて、制御ユニット60は、膨張弁4の開度が閾開度X以上であるか否かを判定する(ステップ103)。膨張弁4の開度が閾開度X未満のとき(ステップ103において「N」)、ステップ105に移行する。一方、膨張弁4の開度が閾開度X以上のとき(ステップ103において「Y」)、制御ユニット60は、目標冷媒過冷却度Sc0をY℃補正することで、目標冷媒過冷却度Sc0を補正目標冷媒過冷却度Sc1に設定する(ステップ104、図7)。 Subsequently, the control unit 60 determines whether or not the opening degree of the expansion valve 4 is equal to or greater than the threshold opening degree X (step 103). When the opening degree of the expansion valve 4 is less than the threshold opening degree X (“N” in step 103), the process proceeds to step 105. On the other hand, when the opening degree of the expansion valve 4 is equal to or greater than the threshold opening degree X (“Y” in step 103), the control unit 60 corrects the target refrigerant supercooling degree Sc0 by Y ° C. to correct the target refrigerant supercooling degree Sc0. Is set to the correction target refrigerant supercooling degree Sc1 (step 104, FIG. 7).

続いて、制御ユニット60は、吐出圧力センサ51の検出値に基づいて、水冷媒熱交換器3における冷媒の凝縮温度を算出する(ステップ105)。さらに制御ユニット60は、冷媒温度センサ55の検出値である膨張弁前温度を取り込む(ステップ106)。そして制御ユニット60は、ステップ105,106で算出した凝縮温度と膨張弁前温度との差分である現在の冷媒過冷却度を算出する(ステップ107)。 Subsequently, the control unit 60 calculates the condensation temperature of the refrigerant in the water refrigerant heat exchanger 3 based on the detected value of the discharge pressure sensor 51 (step 105). Further, the control unit 60 takes in the temperature before the expansion valve, which is the detection value of the refrigerant temperature sensor 55 (step 106). Then, the control unit 60 calculates the current degree of refrigerant supercooling, which is the difference between the condensation temperature calculated in steps 105 and 106 and the temperature before the expansion valve (step 107).

続いて、制御ユニット60は、目標冷媒過冷却度から現在の冷媒過冷却度を減じた値である偏差Zを算出し(ステップ108)、偏差Zが-1℃以上+1℃以下であるか否かを判定する(ステップ109)。偏差Zが-1℃以上+1℃以下の場合(ステップ109において「Y」)、制御ユニット60は、現在の冷媒過冷却度が目標冷媒過冷却度に一致すると判定し、膨張弁4の開度(膨張弁パルス数)を変更することなく、現在の開度に維持する(ステップ110)。 Subsequently, the control unit 60 calculates a deviation Z which is a value obtained by subtracting the current refrigerant supercooling degree from the target refrigerant supercooling degree (step 108), and whether or not the deviation Z is -1 ° C. or more and + 1 ° C. or less. (Step 109). When the deviation Z is -1 ° C. or higher and + 1 ° C. or lower (“Y” in step 109), the control unit 60 determines that the current refrigerant supercooling degree matches the target refrigerant supercooling degree, and opens the expansion valve 4. The current opening degree is maintained without changing (the number of expansion valve pulses) (step 110).

また、偏差Zが-1℃以上+1℃以下でない場合(ステップ109において「N」)、制御ユニット60は、偏差Zが+1℃より高いか否かを判定する(ステップ111)。偏差Zが冷媒過冷却度よりも1℃超低い場合(ステップ111において「Y」)は、制御ユニット60は、膨張弁パルス数を所定量減算することで、膨張弁4を所定量閉じる(ステップ112)。これにより、膨張弁4の開度が、目標開度X0より大きい開度から目標開度X0に向かうように調整される(図7参照)。 Further, when the deviation Z is not -1 ° C. or higher and + 1 ° C. or lower (“N” in step 109), the control unit 60 determines whether or not the deviation Z is higher than + 1 ° C. (step 111). When the deviation Z is more than 1 ° C. lower than the degree of refrigerant supercooling (“Y” in step 111), the control unit 60 closes the expansion valve 4 by a predetermined amount by subtracting the number of expansion valve pulses by a predetermined amount (step). 112). As a result, the opening degree of the expansion valve 4 is adjusted so as to move from an opening degree larger than the target opening degree X0 toward the target opening degree X0 (see FIG. 7).

一方、偏差Zが+1℃より高くない場合(ステップ111において「N」)、つまり、現在の冷媒過冷却度が目標冷媒過冷却度よりも1℃超高い場合は、制御ユニット60は、膨張弁パルス数を所定量加算することで、膨張弁4を所定量開く(ステップ113)。これにより、膨張弁4の開度が、目標開度X0より小さい開度から目標開度X0に向かうように調整される(図7参照)。 On the other hand, when the deviation Z is not higher than + 1 ° C. (“N” in step 111), that is, when the current refrigerant supercooling degree is more than 1 ° C. higher than the target refrigerant supercooling degree, the control unit 60 is a expansion valve. By adding a predetermined amount of pulses, the expansion valve 4 is opened by a predetermined amount (step 113). As a result, the opening degree of the expansion valve 4 is adjusted so as to move from an opening degree smaller than the target opening degree X0 toward the target opening degree X0 (see FIG. 7).

その後、制御ユニット60は、ステップ101に復帰し、再び上述した処理を実行する。これらの処理を所定周期ごとに繰り返し実行することにより、膨張弁4の開度を目標開度X0に合わせ込むことができる。なお、偏差Zのバラツキ量を示す温度範囲は±1℃に限られず、任意の値に設定可能である。また、図8に示すフローでは記載を省略しているが、ステップ103において膨張弁4の開度が閾開度X未満である場合に、目標冷媒過冷却度が補正量Yで補正されていた場合は、元の目標冷媒過冷却度に戻す。 After that, the control unit 60 returns to step 101 and executes the above-mentioned process again. By repeatedly executing these processes at predetermined intervals, the opening degree of the expansion valve 4 can be adjusted to the target opening degree X0. The temperature range indicating the amount of variation in the deviation Z is not limited to ± 1 ° C., and can be set to any value. Further, although the description is omitted in the flow shown in FIG. 8, when the opening degree of the expansion valve 4 is less than the threshold opening degree X in step 103, the target refrigerant supercooling degree is corrected by the correction amount Y. If so, return to the original target refrigerant supercooling degree.

以上のように本実施形態によれば、膨張弁4の開度が閾開度以上であるときは目標冷媒過冷却度Sc0を補正目標冷媒過冷却度Sc1に設定するようにしているため、液管3Aを流れる冷媒が気液二相状態になっている場合においても、膨張弁4の開度が閾開度Xより大きな開度領域において算出される冷媒過冷却度を目標冷媒過冷却度よりも小さくすることができる。これにより、冷媒過冷却度が目標冷媒過冷却度よりも所定量低い場合は常に、膨張弁4の開度を小さくする制御が実現されるので、液管3Aを流れる冷媒の圧力損失の影響を受けることなく安定した過冷却度制御を実現し、所望とする暖房能力を維持することができる。 As described above, according to the present embodiment, when the opening degree of the expansion valve 4 is equal to or larger than the threshold opening degree, the target refrigerant supercooling degree Sc0 is set to the correction target refrigerant supercooling degree Sc1. Even when the refrigerant flowing through the pipe 3A is in a gas-liquid two-phase state, the refrigerant supercooling degree calculated in the opening region where the opening degree of the expansion valve 4 is larger than the threshold opening X is set from the target refrigerant supercooling degree. Can also be made smaller. As a result, whenever the refrigerant supercooling degree is lower than the target refrigerant supercooling degree by a predetermined amount, the control to reduce the opening degree of the expansion valve 4 is realized, so that the influence of the pressure loss of the refrigerant flowing through the liquid pipe 3A is affected. It is possible to realize stable supercooling degree control without receiving it and maintain the desired heating capacity.

以上、本発明の実施形態について説明したが、本発明は上述の実施形態にのみ限定されるものではなく種々変更を加え得ることは勿論である。
例えば、以上の実施形態では、ヒートポンプサイクル装置として、ヒートポンプ式温水暖房装置100を例に挙げて説明したが、これに限られず、ヒートポンプ式給湯装置やヒートポンプ式温冷水空気調和機などのヒートポンプサイクル装置にも、本発明は適用可能である。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and it goes without saying that various modifications can be made.
For example, in the above embodiment, the heat pump type hot water heating device 100 has been described as an example of the heat pump cycle device, but the present invention is not limited to this, and the heat pump cycle device such as a heat pump type hot water supply device or a heat pump type hot / cold water air conditioner is used. Also, the present invention is applicable.

1…圧縮機
2…四方弁(流路切替弁)
3…水冷媒熱交換器(利用側熱交換器)
4…膨張弁
5…熱源側熱交換器
10…冷媒回路
20…温水回路
30…循環ポンプ
40…室内ユニット
60…制御ユニット
611…算出部
612…調整部
613…補正部
100…ヒートポンプ式温水暖房装置(ヒートポンプサイクル装置)
1 ... Compressor 2 ... Four-way valve (flow path switching valve)
3 ... Water refrigerant heat exchanger (heat exchanger on the user side)
4 ... Expansion valve 5 ... Heat source side heat exchanger 10 ... Refrigerant circuit 20 ... Hot water circuit 30 ... Circulation pump 40 ... Indoor unit 60 ... Control unit 611 ... Calculation unit 612 ... Adjustment unit 613 ... Correction unit 100 ... Heat pump type hot water heating device (Heat pump cycle device)

Claims (3)

圧縮機と、利用側熱交換器と、熱源側熱交換器と、前記利用側熱交換器と前記熱源側熱交換器との間に配置された膨張弁と、前記圧縮機から吐出される冷媒の流れ方向を切り替える流路切替弁と、を有する冷媒回路と、
前記圧縮機から吐出される冷媒の圧力である吐出圧力を検出する吐出圧力センサと、
前記圧縮機から吐出される冷媒の流れ方向が前記利用側熱交換器である暖房運転時において、前記利用側熱交換器から流出する冷媒の温度である膨張弁前温度を検出する冷媒温度センサと、
前記吐出圧力と前記膨張弁前温度とに基づいて冷媒過冷却度を算出する算出部と、算出した前記冷媒過冷却度が所定の目標冷媒過冷却度となるように前記膨張弁の開度を調整する調整部と、前記膨張弁の開度が所定の閾開度より大きいとき、前記目標冷媒過冷却度を所定値増加させる補正部と、を有する制御ユニットと
を備えるヒートポンプサイクル装置。
A compressor, a user-side heat exchanger, a heat source-side heat exchanger, an expansion valve arranged between the user-side heat exchanger and the heat source-side heat exchanger, and a refrigerant discharged from the compressor. A compressor circuit having a flow path switching valve for switching the flow direction of the
A discharge pressure sensor that detects the discharge pressure, which is the pressure of the refrigerant discharged from the compressor, and
A refrigerant temperature sensor that detects the temperature before the expansion valve, which is the temperature of the refrigerant flowing out from the user side heat exchanger during the heating operation in which the flow direction of the refrigerant discharged from the compressor is the user side heat exchanger. ,
The calculation unit that calculates the refrigerant supercooling degree based on the discharge pressure and the temperature before the expansion valve, and the opening degree of the expansion valve so that the calculated refrigerant supercooling degree becomes a predetermined target refrigerant supercooling degree. A heat pump cycle device including a control unit having an adjusting unit for adjusting and a correction unit for increasing the target refrigerant supercooling degree by a predetermined value when the opening degree of the expansion valve is larger than a predetermined threshold opening degree.
請求項1に記載のヒートポンプサイクル装置であって、
前記所定の閾開度は、前記冷媒過冷却度が前記目標冷媒過冷却度となる目標開度よりも大きい開度と、当該開度よりも大きい開度領域における前記冷媒過冷却度が前記目標冷媒過冷却度となる開度との間の任意の開度である
ヒートポンプサイクル装置。
The heat pump cycle device according to claim 1.
The predetermined threshold opening is such that the opening degree in which the refrigerant supercooling degree is larger than the target opening degree to be the target refrigerant supercooling degree and the refrigerant supercooling degree in the opening region larger than the opening degree are the targets. A heat pump cycle device that has an arbitrary opening between the opening that is the degree of refrigerant supercooling.
請求項1又は2に記載のヒートポンプサイクル装置であって、
前記目標冷媒過冷却度の前記補正値は、前記冷媒過冷却度が補正後の目標冷媒過冷却度より常に小さくなるように定められる
ヒートポンプサイクル装置。
The heat pump cycle device according to claim 1 or 2.
The correction value of the target refrigerant supercooling degree is determined so that the refrigerant supercooling degree is always smaller than the corrected target refrigerant supercooling degree.
JP2020210025A 2020-12-18 2020-12-18 Heat pump cycle device Pending JP2022096824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020210025A JP2022096824A (en) 2020-12-18 2020-12-18 Heat pump cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020210025A JP2022096824A (en) 2020-12-18 2020-12-18 Heat pump cycle device

Publications (1)

Publication Number Publication Date
JP2022096824A true JP2022096824A (en) 2022-06-30

Family

ID=82164980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020210025A Pending JP2022096824A (en) 2020-12-18 2020-12-18 Heat pump cycle device

Country Status (1)

Country Link
JP (1) JP2022096824A (en)

Similar Documents

Publication Publication Date Title
JP3972860B2 (en) Refrigeration equipment
WO2009119023A1 (en) Freezing apparatus
JP4905271B2 (en) Refrigeration equipment
JP5045524B2 (en) Refrigeration equipment
JP2008064439A (en) Air conditioner
JP2011069570A (en) Heat pump cycle device
JPWO2006006578A1 (en) Heat pump water heater
JP6672619B2 (en) Air conditioning system
JP3740380B2 (en) Heat pump water heater
WO2008069265A1 (en) Air-conditioner
JP2019163873A (en) Heat pump cycle device
JP5677198B2 (en) Air cooling heat pump chiller
US11506435B2 (en) Water regulator
JP2021071250A (en) Heat pump-type hot water heating system
JP2021055931A (en) Heat pump cycle device
US11585578B2 (en) Refrigeration cycle apparatus
JP2022096824A (en) Heat pump cycle device
CN113551437B (en) Air conditioning system and control method
JP2016109372A (en) Air conditioner
CN113614469B (en) Air conditioner
JP2019020093A (en) Air conditioner
JP7283172B2 (en) heat pump cycle device
JP2018132218A (en) Air conditioning device
JP2017067320A (en) Air conditioner
JP2021071248A (en) Heat pump-type hot water heating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240327