JPH06275532A - Manufacture of iii-v compound semiconductor - Google Patents

Manufacture of iii-v compound semiconductor

Info

Publication number
JPH06275532A
JPH06275532A JP8786493A JP8786493A JPH06275532A JP H06275532 A JPH06275532 A JP H06275532A JP 8786493 A JP8786493 A JP 8786493A JP 8786493 A JP8786493 A JP 8786493A JP H06275532 A JPH06275532 A JP H06275532A
Authority
JP
Japan
Prior art keywords
group
raw material
boat
temperature
iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8786493A
Other languages
Japanese (ja)
Inventor
Hiroaki Fukuhara
裕明 福原
Yasushi Sugano
保至 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP8786493A priority Critical patent/JPH06275532A/en
Publication of JPH06275532A publication Critical patent/JPH06275532A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the productivity of a semiconductor without lowering the synthesizing temperature by separately arranging a sealed boat filled up with a raw material of a group III element and another raw material of a group V element and passing an introducing pipe for introducing the vapor of the group V element through the partition between the boat and the raw material of the group V element, and then, controlling the temperature of an area containing the partition, entrance of the introducing pipe, and group V element to a value lower than a specific value. CONSTITUTION:A raw material 9 of a group V element vaporized by sublimation enters an introducing pipe 5 from its entrance and reacts to another raw material 2 of a group III element in a boat 1, resulting in the solution of a III-V compound semiconductor. When the solution is solidified by gradually lowering the temperature of the solution from one end of the boat 1, polycrystalline grains or single crystal of the semiconductor is obtained. At this time, the temperature of an area containing a partition 6, the entrance of the pipe 5, and raw material of the group V element is controlled to <1,050 deg.C so as to suppress the reaction between the raw material of the group V element and a sealed quartz tube. Therefore, the risk of the occurrence of such a case that SiO is introduced to the boat 1 through the pipe 5 and gets mixed in the semiconductor can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、石英封管を用いたIII
−V族化合物半導体の製造方法に関する。
BACKGROUND OF THE INVENTION The present invention uses a quartz tube III
The present invention relates to a method for manufacturing a group V compound semiconductor.

【0002】[0002]

【従来の技術】GaPやGaAsなどのIII −V族化合
物半導体は、レーザーダイオード、発光ダイオードのよ
うなオプトデバイスやHEMTのような高速デバイスな
どの材料に利用されている。これらのIII −V族化合物
半導体は、ほとんどの場合、石英封管中にIII 族元素と
V族元素を別々に配置、真空封止して、GF法、ブリッ
ジマン法、帯溶融法などの方法で直接合成して製造され
ている。しかし、これらの方法において、III 族元素を
充填するボートは舟型やV族元素を導入するスリットを
設けた円筒型のものなどを用いており、石英封管とV族
元素の反応、例えばPの場合、 P4 (g)+4SiO2 (s)→4SiO(g)+PO(g) 4SiO(g)+P4 (g)→Si(s)+PO(g) …(1) (g):気体、(s):固体 また、Asの場合 As4 (g)+4SiO2 (s)→4SiO(g)+AsO(g) 4SiO(g)+As4 (g)→Si(s)+AsO(g) …(2) によって、SiOが直接ボート内に侵入し、合成された
III −V族化合物半導体の多結晶または単結晶中にSi
が混入する。Siは、III −V族化合物半導体中におい
てドナーになりやすく、後工程の単結晶引上やエピタキ
シャル成長におけるキャリア濃度の制御に影響を及ぼす
ので、低減する必要のある不純物である。(1)、
(2)式に示される石英封管とV族元素の反応は、石英
の粘性低下が起こる1050℃以上の温度で促進されや
すい。そこで、従来ではSiの混入を抑制するために製
造時における合成温度およびV族元素の蒸気圧を下げた
りしている。しかし、合成温度およびV族元素の蒸気圧
を下げると、合成時間が長くなったり、III 族元素過剰
のものができやすくなったりして、生産性が悪くなると
いう欠点があった。
2. Description of the Related Art III-V group compound semiconductors such as GaP and GaAs are used as materials for optical devices such as laser diodes and light emitting diodes and high speed devices such as HEMTs. In most of these III-V group compound semiconductors, a group III element and a group V element are separately arranged in a quartz sealed tube and vacuum-sealed, and a method such as GF method, Bridgman method, or zone melting method is used. It is manufactured by directly synthesizing in. However, in these methods, as the boat for filling the group III element, a boat type or a cylindrical type boat having a slit for introducing the group V element is used, and the reaction between the quartz sealed tube and the group V element, for example, P In the case of, P 4 (g) + 4SiO 2 (s) → 4SiO (g) + PO (g) 4SiO (g) + P 4 (g) → Si (s) + PO (g) (1) (g): gas, (S): Solid In the case of As, As 4 (g) + 4SiO 2 (s) → 4SiO (g) + AsO (g) 4SiO (g) + As 4 (g) → Si (s) + AsO (g) (2) ), SiO directly penetrated into the boat and was synthesized.
Si in III-V compound semiconductor polycrystal or single crystal
Is mixed in. Si is an impurity that needs to be reduced because it easily serves as a donor in the III-V compound semiconductor and affects the control of the carrier concentration in the subsequent single crystal pulling and epitaxial growth. (1),
The reaction between the sealed quartz tube and the group V element represented by the formula (2) is likely to be promoted at a temperature of 1050 ° C. or higher at which the viscosity of quartz is lowered. Therefore, conventionally, in order to suppress the mixing of Si, the synthesis temperature and the vapor pressure of the group V element at the time of manufacturing are lowered. However, when the synthesis temperature and the vapor pressure of the group V element are lowered, the synthesis time becomes long, and the excess of the group III element is likely to be formed, resulting in a drawback that productivity is deteriorated.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、上記
問題点を解決し、合成温度を下げずに生産性が良く、S
i混入が抑制されたIII −V族化合物半導体の製造方法
を提供する事にある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, to improve productivity without lowering the synthesis temperature, and to improve S
An object of the present invention is to provide a method for producing a III-V group compound semiconductor in which i contamination is suppressed.

【0004】[0004]

【課題を解決するための手段】本発明は、上記目的を達
成するために、石英封管中にIII 族元素原料を充填した
密閉式ボートとV族元素原料を別々に配置し、該ボート
と該V族元素原料の間に該石英封管の内径より若干小さ
い仕切板を置き、該V族元素の蒸気を導入する導入管を
該ボートの一端からのばし該仕切板に貫通させて設置
し、該仕切板、該導入管の入口および該V族元素原料が
置かれた範囲の温度を1050℃未満にする事を特徴と
するIII −V族化合物半導体の製造方法を提供するもの
である。
In order to achieve the above-mentioned object, the present invention provides a closed boat in which a group III element raw material is filled in a quartz sealed tube and a group V element raw material, which are separately arranged. A partition plate slightly smaller than the inner diameter of the quartz sealed tube is placed between the group V element raw materials, and an introduction pipe for introducing the vapor of the group V element is extended from one end of the boat and installed through the partition plate. The present invention provides a method for producing a III-V group compound semiconductor, characterized in that the temperature in the range where the partition plate, the inlet of the introduction pipe and the group V element raw material are placed is less than 1050 ° C.

【0005】[0005]

【作用】本発明において、III 族元素原料を充填する密
閉式ボートは、グラファイト製の円筒型ボートで一端に
V族元素の蒸気を導入するための導入管の取り付け穴を
設けておく。該導入管は、グラファイト製の円筒管で、
V族元素の蒸気が管内で固化して詰まりを起こさない程
度の内径を有する事が重要で、内径5mm以上が好まし
い。該ボートとV族元素原料の間に設置する仕切板は、
不透明石英製で、これらを入れる石英封管の内径より若
干小さい外径を有し、該導入管を貫通させる穴を設け
る。該仕切板の外径と該石英封管の内径および該仕切板
の穴と該導入管の外径の差は、各々1mm以内が好まし
い。また、合成温度が石英の軟化しやすい高温度であ
り、高周波誘導加熱によって該ボートを高温に加熱する
場合は、該石英封管の破壊を防ぐため、該ボートを覆う
不透明石英製熱遮蔽管を設ける。そして、該石英封管に
V族元素原料を入れ、該ボートにIII 族元素原料を充填
し、該導入管の一方を該ボートの一端に設けられた穴に
取り付け、該導入管のもう一方の先に該仕切板を取り付
け、該熱遮蔽管が必要な場合は該ボートをこの中に挿入
し、この状態で該石英封管の中へ入れて、真空にして封
じ切る。封じ切った該石英封管を高圧容器を用いた炉の
中に設置し、該V族元素原料の蒸気圧上昇による該石英
封管の破裂を避けるために炉内を不活性ガスで数十kg
/cm3 に加圧する。その後、該ボートを合成温度まで
昇温させ、該V族元素原料を徐々に昇華させるよう温度
を上げていく。
In the present invention, the closed boat for filling the group III element raw material is a cylindrical boat made of graphite, and one end thereof is provided with a mounting hole for an introduction pipe for introducing the vapor of the group V element. The introduction tube is a cylindrical tube made of graphite,
It is important to have an inner diameter such that the vapor of the group V element does not solidify in the tube and cause clogging, and an inner diameter of 5 mm or more is preferable. The partition plate installed between the boat and the group V element raw material is
It is made of opaque quartz, has an outer diameter slightly smaller than the inner diameter of a quartz sealed tube in which these are put, and has a hole for penetrating the introduction tube. The difference between the outer diameter of the partition plate and the inner diameter of the quartz sealed tube and the difference between the outer diameter of the hole of the partition plate and the outer diameter of the introduction tube are each preferably within 1 mm. Further, when the synthesis temperature is a high temperature at which quartz is easily softened and the boat is heated to a high temperature by high-frequency induction heating, an opaque quartz heat shield tube covering the boat is used to prevent the quartz sealed tube from being broken. Set up. Then, a group V element raw material is put into the quartz sealed tube, the group III element raw material is filled in the boat, one of the introduction pipes is attached to a hole provided at one end of the boat, and the other of the introduction pipes is attached. First, the partition plate is attached, and when the heat shield tube is required, the boat is inserted thereinto, and in this state, the boat is put into the quartz sealed tube and vacuumed to be sealed. The sealed quartz sealed tube is placed in a furnace using a high-pressure container, and several tens of kg of inert gas is used in the furnace in order to prevent the quartz sealed tube from bursting due to an increase in vapor pressure of the group V element raw material.
Pressurize to / cm 3 . After that, the boat is heated to the synthesis temperature, and the temperature is raised so that the group V element raw material is gradually sublimated.

【0006】昇華して蒸気になった該V族元素原料は、
該導入管の入口から管内を通って該ボート内に充填され
たIII 族元素原料と反応してIII −V族化合物半導体の
融液を合成する。そして、該ボートの一端から温度を徐
々に下げてゆき該融液を固化させる事によってIII −V
族化合物半導体多結晶または単結晶が製造される。この
とき、該仕切板、該導入管の入口および該V族元素原料
のある領域の温度を1050℃未満に制御する事によっ
て、上記の(1)または(2)式で示される反応は起こ
り難くなり、SiOが該導入管を通って該ボート中に入
ってSiを混入させる可能性は小さくなる。また、該仕
切板と該石英封管および該仕切板と該導入管との間は、
完全に密封されておらず、狭い隙間が存在しているた
め、該V族元素原料が隙間を通って、該ボートの置かれ
た側に侵入し、高温に加熱された部分にある該石英封管
の内面または該熱遮蔽管の表面で(1)または(2)式
で示される反応を起こす。しかし、該V族元素原料が昇
華している間は、該仕切板を境に該V族元素原料が置か
れた側の内圧が該ボートが置かれた側の内圧より若干高
いので、発生したSiOが該V族元素原料が置かれた側
に侵入してくる可能性は小さく、Si混入の心配は少な
い。
The group V element raw material which has been sublimated into vapor is
The melt of the III-V group compound semiconductor is synthesized by reacting with the group III element raw material filled in the boat from the inlet of the introduction tube through the tube. Then, by gradually lowering the temperature from one end of the boat to solidify the melt, III-V
Group compound semiconductor polycrystals or single crystals are produced. At this time, by controlling the temperature of the partition plate, the inlet of the introduction pipe, and the region in which the group V element raw material is present to less than 1050 ° C., the reaction represented by the above formula (1) or (2) hardly occurs. Therefore, the possibility that SiO enters the boat through the introduction pipe and mixes Si is reduced. Further, between the partition plate and the quartz sealing tube and between the partition plate and the introduction tube,
Since it is not completely sealed and there is a narrow gap, the group V element raw material penetrates through the gap to the side where the boat is placed, and the quartz seal in the portion heated to high temperature The reaction represented by the formula (1) or (2) occurs on the inner surface of the tube or the surface of the heat shield tube. However, while the group V element raw material was sublimated, the internal pressure on the side where the group V element raw material was placed was slightly higher than the internal pressure on the side where the boat was placed, with the partition plate as a boundary. There is little possibility that SiO will enter the side where the group V element raw material is placed, and there is little concern that Si will be mixed.

【0007】[0007]

【実施例】以下に本発明の一実施例について図面を用い
て詳細に説明する。図1は、高周波誘導加熱を用いた水
平帯溶融法によるGaP合成の略式図および炉内の加熱
温度分布図である。図において、外径48mm、内径4
0mm、長さ約700mmのグラファイト製ボート1に
III 族元素原料であるGa2を約2kg充填し、外径4
8mm、厚さ10mmのグラファイト製キャップ3,4
でボート1の両端を密閉する。また、キャップ4には内
径12mmの貫通孔を設けてあり、その孔に外径12m
m、内径8mm、長さ200mmのグラファイト製導入
管5をはめ込む。そして、外径59mm、厚さ10mm
で内径12.5mmの貫通孔を有する不透明石英製仕切
板6を導入管5にはめ込み、その状態で外径56mm、
内径54mm、長さ800mmの不透明石英製熱遮蔽管
7の中へボート1を入れる。次に外径66mm,内径6
0mm、長さ12mmで片側の封止部分にシャフト接続
用リングの付いた透明石英封管8の中へV族元素原料で
あるP9のインゴットを約1kg入れた後、導入管5、
仕切板6を取り付けたボート1を熱遮蔽管7と共に入れ
る。その後、石英封管8の口をふさぎ、中を10-6To
rrオーダまで真空引きして封止切る。それから高圧容
器10を用いた炉の中へ石英封管8を封管移動用シャフ
ト11に接続した状態で押し入れ、キャップ4が加熱開
始時に異常に発熱し過ぎないよう、キャップ4が高周波
コイル12の一端から外側へ20mm〜30mm出る位
置に設置する。それから、加熱しながら高圧容器10内
に窒素ガスを入れ、40kg/cm2 になる様に加圧す
る。加熱温度は、高周波コイル12によってボート1の
一部をGaPの融点である1470℃付近で保持、抵抗
ヒータ13によってP9を300℃から700℃まで昇
温、抵抗ヒータ14によってボート1内のGa2を50
0℃から600℃の範囲で保持する。これによりP9は
昇華し蒸気となって導入管5の中を通ってボート1内の
1470℃付近の温度に加熱されたGa2と反応し、G
aP融液になる。そして、加熱開始2時間後に40mm
/Hrの速度で封管移動用シャフト11で石英封管8を
移動させ、GaPを端から徐々に固化させて、約19時
間で長さ約700mm、重量約2.9kgのGaP多結
晶インゴットを得る。このとき、導入管5の入口および
仕切板6付近の温度は、1050℃よりはるかに低い3
00℃から700℃で制御されているので、P9の蒸気
と仕切板6および石英封管8の内面との反応が起こり難
く、また、仕切板6と石英封管8との狭い隙間からP9
の蒸気が、ボート1の置かれた方に侵入し、一部147
0℃付近の温度に加熱された熱遮蔽管7表面と反応して
SiOが発生しても、ボート1は密閉されているので中
のGaP融液と接触する事がないし、仕切板6を挟んだ
P9側の内圧が、300℃から700℃まで昇温されて
いる間、ボート1側の内圧より若干高いため、SiOが
P9側の方に侵入して導入管の入口からボート1の中へ
入ってくる可能性も小さいので、合成中にGaPの中に
混入されるSiを少なく抑える事ができる。
An embodiment of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a schematic diagram of GaP synthesis by a horizontal zone melting method using high frequency induction heating and a heating temperature distribution diagram in a furnace. In the figure, outer diameter 48 mm, inner diameter 4
On a boat 1 made of graphite with a length of 0 mm and a length of about 700 mm
About 2 kg of Ga2, which is a group III element raw material, is filled and the outer diameter is 4
8mm, 10mm thick graphite caps 3, 4
Seal both ends of the boat 1 with. Further, the cap 4 is provided with a through hole having an inner diameter of 12 mm, and the hole has an outer diameter of 12 m.
A graphite introducing tube 5 having a diameter of m, an inner diameter of 8 mm and a length of 200 mm is fitted. And outer diameter 59mm, thickness 10mm
Then, an opaque quartz partition plate 6 having a through hole with an inner diameter of 12.5 mm is fitted into the introduction pipe 5, and in that state an outer diameter of 56 mm,
The boat 1 is put into an opaque quartz heat shield tube 7 having an inner diameter of 54 mm and a length of 800 mm. Next, outer diameter 66 mm, inner diameter 6
After putting about 1 kg of the P9 ingot, which is a group V element raw material, into the transparent quartz sealed tube 8 having a length of 0 mm, a length of 12 mm, and a shaft connecting ring on one side of the sealed portion, the introduction tube 5,
The boat 1 to which the partition plate 6 is attached is put together with the heat shield tube 7. After that, the mouth of the quartz sealed tube 8 is closed, and the inside is filled with 10 −6 To.
Vacuum up to rr order and cut off. Then, the quartz sealed tube 8 is pushed into the furnace using the high-pressure vessel 10 while being connected to the sealed tube moving shaft 11, and the cap 4 is placed in the high-frequency coil 12 so that the cap 4 does not generate excessive heat at the start of heating. It is installed at a position of 20 mm to 30 mm protruding from one end to the outside. Then, while heating, nitrogen gas is put into the high-pressure container 10 and pressurized to 40 kg / cm 2 . As for the heating temperature, a part of the boat 1 is kept near 1470 ° C. which is the melting point of GaP by the high frequency coil 12, P9 is raised from 300 ° C. to 700 ° C. by the resistance heater 13, and Ga2 in the boat 1 is raised by the resistance heater 14. Fifty
Hold in the range of 0 ° C to 600 ° C. As a result, P9 sublimates and becomes vapor, which passes through the introduction pipe 5 and reacts with Ga2 in the boat 1 heated to a temperature near 1470 ° C.
It becomes an aP melt. And 40 mm after 2 hours from the start of heating
The quartz sealed tube 8 is moved by the sealed tube moving shaft 11 at a speed of / Hr to gradually solidify GaP from the end, and a GaP polycrystalline ingot having a length of about 700 mm and a weight of about 2.9 kg is taken in about 19 hours. obtain. At this time, the temperature near the inlet of the introduction pipe 5 and the partition plate 6 is much lower than 1050 ° C.
Since the temperature is controlled from 00 ° C to 700 ° C, the reaction between the vapor of P9 and the inner surfaces of the partition plate 6 and the quartz sealed tube 8 is unlikely to occur, and the narrow gap between the partition plate 6 and the quartz sealed tube 8 causes P9
The steam of the invades the part where the boat 1 is placed, and part 147
Even if SiO reacts with the surface of the heat shield tube 7 heated to a temperature of about 0 ° C., the boat 1 is sealed, so that it does not come into contact with the GaP melt inside and the partition plate 6 is sandwiched. While the internal pressure on the P9 side is slightly higher than the internal pressure on the boat 1 side while the temperature is being raised from 300 ° C to 700 ° C, SiO enters the P9 side and enters the boat 1 from the inlet of the introduction pipe. Since it is unlikely to enter, it is possible to suppress Si mixed in GaP during the synthesis to be small.

【0008】[0008]

【発明の効果】本発明によれば、V族元素と石英の反応
によって発生するSiOを抑制したり、SiOのIII −
V族化合物半導体融液への接触の可能性を小さくする事
ができるので、合成温度を下げなくてもIII −V族化合
物半導体中のSi濃度を小さくでき、従来方法で合成し
たGaPの場合、Si濃度が1.3ppm以上であった
のに対し、実施例では0.3ppm以下であった。
According to the present invention, SiO generated by the reaction between the group V element and quartz is suppressed, and the SiO-III-
Since the possibility of contact with the group V compound semiconductor melt can be reduced, the Si concentration in the group III-V compound semiconductor can be reduced without lowering the synthesis temperature, and in the case of GaP synthesized by the conventional method, The Si concentration was 1.3 ppm or more, whereas it was 0.3 ppm or less in the examples.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明の一実施例を示す高周波誘導加
熱を用いた水平帯溶融法によるGaP合成の略式図およ
び炉内の加熱温度分布図である。
FIG. 1 is a schematic diagram of GaP synthesis by a horizontal zone melting method using high frequency induction heating and a heating temperature distribution diagram in a furnace showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ボート 2 III 族元素原料 3,4 キャップ 5 導入管 6 仕切板 7 熱遮蔽管 8 石英封管 9 V族元素原料 10 高圧容器 11 封管移動用シャフト 12 高周波コイル 13,14 抵抗ヒータ 1 boat 2 group III element raw material 3,4 cap 5 introduction tube 6 partition plate 7 heat shield tube 8 quartz sealed tube 9 V group element raw material 10 high pressure vessel 11 shaft for moving sealed tube 12 high frequency coil 13,14 resistance heater

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 石英封管中にIII 族元素原料を充填した
密閉式ボートとV族元素原料を別々に配置し、該ボート
と該V族元素原料の間に該石英封管の内径より若干小さ
い仕切板を置き、該V族元素の蒸気を導入する導入管を
該ボートの一端からのばし該仕切板に貫通させて設置
し、該仕切板、該導入管の入口および該V族元素原料が
置かれた範囲の温度を1050℃未満にする事を特徴と
するIII−V族化合物半導体の製造方法。
1. A closed boat in which a group III element raw material is filled in a quartz sealed tube and a group V element raw material are separately arranged, and the space between the boat and the group V element raw material is slightly smaller than the inner diameter of the quartz sealed tube. A small partition plate is placed, and an introduction pipe for introducing the vapor of the group V element is installed so as to extend from one end of the boat and penetrate the partition plate, and the partition plate, the inlet of the introduction pipe, and the group V element raw material are A method for producing a III-V group compound semiconductor, characterized in that the temperature of the placed range is less than 1050 ° C.
JP8786493A 1993-03-24 1993-03-24 Manufacture of iii-v compound semiconductor Pending JPH06275532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8786493A JPH06275532A (en) 1993-03-24 1993-03-24 Manufacture of iii-v compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8786493A JPH06275532A (en) 1993-03-24 1993-03-24 Manufacture of iii-v compound semiconductor

Publications (1)

Publication Number Publication Date
JPH06275532A true JPH06275532A (en) 1994-09-30

Family

ID=13926753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8786493A Pending JPH06275532A (en) 1993-03-24 1993-03-24 Manufacture of iii-v compound semiconductor

Country Status (1)

Country Link
JP (1) JPH06275532A (en)

Similar Documents

Publication Publication Date Title
JP4135239B2 (en) Semiconductor crystal, manufacturing method thereof and manufacturing apparatus
JP4416040B2 (en) Compound semiconductor crystal
JP2008239480A5 (en)
JP4120016B2 (en) Method for producing semi-insulating GaAs single crystal
US3902860A (en) Thermal treatment of semiconducting compounds having one or more volatile components
US4764350A (en) Method and apparatus for synthesizing a single crystal of indium phosphide
JP2010059052A (en) METHOD AND APPARATUS FOR PRODUCING SEMI-INSULATING GaAs SINGLE CRYSTAL
JPH06275532A (en) Manufacture of iii-v compound semiconductor
JPH11147785A (en) Production of single crystal
JPH06128096A (en) Production of compound semiconductor polycrystal
JP2690420B2 (en) Single crystal manufacturing equipment
JP2887978B2 (en) Method for synthesizing III-V compound semiconductor composition
JPS6065794A (en) Production of high-quality gallium arsenide single crystal
JPS6021900A (en) Apparatus for preparing compound semiconductor single crystal
JPS6090897A (en) Method and apparatus for manufacturing compound semiconductor single crystal
JPS6153186A (en) Heater for resistance heating
JP2773441B2 (en) Method for producing GaAs single crystal
JP2009067620A (en) Method and apparatus for producing compound semiconductor single crystal
JP2000327496A (en) Production of inp single crystal
JPH08217589A (en) Production of single crystal
JPH01264989A (en) Device for growing single crystal
JPS6077195A (en) Apparatus for producing compound semiconductor single crystal
JPS62197397A (en) Production of single crystal
JPH10167873A (en) Device for producing compound crystal and production of compound crystal, using the same
JPH01122995A (en) Growth of compound semiconductor single crystal