JPH06275518A - Aligner for periphery of substrate - Google Patents

Aligner for periphery of substrate

Info

Publication number
JPH06275518A
JPH06275518A JP5060421A JP6042193A JPH06275518A JP H06275518 A JPH06275518 A JP H06275518A JP 5060421 A JP5060421 A JP 5060421A JP 6042193 A JP6042193 A JP 6042193A JP H06275518 A JPH06275518 A JP H06275518A
Authority
JP
Japan
Prior art keywords
substrate
exposure
deviation signal
wafer
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5060421A
Other languages
Japanese (ja)
Inventor
Masao Nakajima
正夫 中島
Masaki Naito
雅喜 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP5060421A priority Critical patent/JPH06275518A/en
Priority to US08/210,275 priority patent/US5420663A/en
Publication of JPH06275518A publication Critical patent/JPH06275518A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To stably perform the marginal exposure with high precision by a method wherein, when an irradiating means reaches a detected control unstable region in order to relatively shift the irradiating means along the marginal part of a substrate, the servo-gain to deflection signal of a relative position control means is decreased. CONSTITUTION:The title marginal aligner of substrate is provided with an irradiating means 101 capable of irradiating a substrate 100 with exposure flux E and a deflection signal output means 102 outputting the deflection signal corresponding to the deflection from the target value of the relative positions in the exposure width direction of the irradiating means 101 and the substrate 100. Furthermore, an unstable region detecting means 104 detecting a control unstable region on the marginal part of the substrate 100 according to the deflection signal, a gain changing means 105 decreasing the servo-gain to the deflection signal of a relative position control means 103 when the irradiating means 101 reaches the detected control unstable region are provided. Through these procedures, the deterioration in the stability of a control system due to the enlarged deflection can be avoided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体素子製造用の半
導体ウエハ等の基板の周縁部を露光する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for exposing a peripheral portion of a substrate such as a semiconductor wafer for manufacturing a semiconductor element.

【0002】[0002]

【従来の技術】半導体ウエハの製造工程では、基板の周
縁部でのレジストの剥がれを防止するため、基板の周縁
部を所定の露光幅(例えば1〜7mm程度)で露光するこ
とがある。この種の露光に用いる装置としては、例えば
特開平4−72614号公報に記載されているように、
基板に向けて露光光束を照射可能な照射部と、この照射
部を基板の半径方向に移動させる移動機構と、移動機構
の駆動量をサーボ制御する制御機構とを備え、照射部か
らの光束で基板の周縁部を照射しつつ基板を回転させる
とき、基板の照射幅と目標値との偏差が零となるように
移動機構をサーボ制御するものが知られている。
2. Description of the Related Art In the process of manufacturing a semiconductor wafer, in order to prevent the resist from peeling off at the peripheral edge of the substrate, the peripheral edge of the substrate may be exposed with a predetermined exposure width (for example, about 1 to 7 mm). As an apparatus used for this type of exposure, for example, as described in Japanese Patent Laid-Open No. 4-72614,
An irradiation unit capable of irradiating an exposure light beam toward the substrate, a moving mechanism for moving the irradiation unit in the radial direction of the substrate, and a control mechanism for servo-controlling the drive amount of the moving mechanism are provided. It is known that when the substrate is rotated while irradiating the peripheral portion of the substrate, the moving mechanism is servo-controlled so that the deviation between the irradiation width of the substrate and the target value becomes zero.

【0003】[0003]

【発明が解決しようとする課題】上述した装置では、制
御機構のサーボゲインを高くすると基板の外周位置の変
化に対する照射部の追従性が高まるものの、基板の外周
形状が不連続に変化する位置、たとえばウエハの位置合
わせのために形成するオリエンテーションフラット(以
下、OFと呼ぶ。)の境界部、OFに代えて形成される
V字状のノッチ、あるいはウエハの周縁部に生じた欠損
部分では、偏差の急激な拡大に照射部が過剰に応答して
ハンチングが生じる等、制御系が不安定となって露光幅
にばらつきが発生する。これを避けるためにサーボゲイ
ンを低くすると制御系は安定するものの、基板の外周位
置の変化に対する照射部の追従性が低下して露光精度が
悪化する。
In the above-mentioned device, when the servo gain of the control mechanism is increased, the followability of the irradiation unit to the change of the outer peripheral position of the substrate is improved, but the position where the outer peripheral shape of the substrate changes discontinuously, For example, at the boundary portion of an orientation flat (hereinafter referred to as OF) formed for aligning the wafer, a V-shaped notch formed instead of OF, or a defective portion formed at the peripheral portion of the wafer, deviation is caused. Of the exposure section excessively responds to the rapid expansion of the exposure area and hunting occurs, and the control system becomes unstable and the exposure width varies. If the servo gain is lowered in order to avoid this, the control system becomes stable, but the followability of the irradiation unit with respect to changes in the outer peripheral position of the substrate decreases, and the exposure accuracy deteriorates.

【0004】本発明の目的は、外周形状が不連続に変化
する部分を有する基板でも、安定して精度良く周縁露光
を行なうことが可能な基板の周縁露光装置を提供するこ
とにある。
It is an object of the present invention to provide a substrate edge exposure apparatus capable of stably and accurately performing edge exposure even on a substrate having a portion whose outer peripheral shape changes discontinuously.

【0005】[0005]

【課題を解決するための手段】図1に対応付けて説明す
ると、本発明は、基板100に対して露光光束Eを照射
可能な照射手段101と、照射手段101を基板100
の周縁部に沿って相対移動させるとき、照射手段101
と基板100の露光幅方向の相対位置の目標値からの偏
差に対応した偏差信号を出力する偏差信号出力手段10
2と、偏差信号に基づいて偏差が小さくなるように相対
位置を制御する相対位置制御手段103とを備えた基板
の周縁露光装置に適用される。そして、上述した目的
は、偏差信号に基づいて基板100の周縁部上の制御不
安定領域を検出する不安定領域検出手段104と、照射
手段101を基板100の周縁部に沿って相対移動させ
る際、照射手段101が検出された制御不安定領域に達
すると相対位置制御手段103の偏差信号に対するサー
ボゲインを低下させるゲイン変更手段105とを設ける
ことで達成される。不安定領域検出手段104は、例え
ば偏差信号が所定値を越えたとき、あるいは偏差信号が
発散傾向にあるときに制御不安定領域と判別する。
The present invention will be described with reference to FIG. 1. In the present invention, an irradiation means 101 capable of irradiating a substrate 100 with an exposure light flux E, and an irradiation means 101 for the substrate 100.
When the relative movement is performed along the peripheral portion of the
And a deviation signal output means 10 for outputting a deviation signal corresponding to the deviation of the relative position of the substrate 100 in the exposure width direction from the target value.
2 and the relative position control means 103 for controlling the relative position so as to reduce the deviation based on the deviation signal. The above-described purpose is to move the irradiation region 101 relative to the unstable region detection unit 104 that detects the control unstable region on the peripheral region of the substrate 100 based on the deviation signal and the irradiation unit 101. This is achieved by providing gain changing means 105 that lowers the servo gain for the deviation signal of the relative position control means 103 when the irradiation means 101 reaches the detected control unstable region. The unstable region detecting means 104 determines that the control signal is an unstable region when the deviation signal exceeds a predetermined value or when the deviation signal tends to diverge.

【0006】[0006]

【作用】不安定領域検出手段104が検出した制御不安
定領域に照射手段101が達すると、ゲイン変更手段1
05が相対位置制御手段103の偏差信号に対するサー
ボゲインを低下させ、偏差の拡大による制御系の安定性
の劣化を防止する。
When the irradiation means 101 reaches the control unstable area detected by the unstable area detecting means 104, the gain changing means 1
Reference numeral 05 reduces the servo gain for the deviation signal of the relative position control means 103, and prevents the stability of the control system from being deteriorated due to the expansion of the deviation.

【0007】[0007]

【実施例】以下、図2〜図6を参照して本発明の一実施
例を説明する。図2は本実施例に係る露光装置の概略構
成を示す図で、1は露光対象のウエハ、2はウエハ1を
吸着保持するターンテーブル(以下、テーブルと略称す
る。)、3はテーブル2を回転駆動させるモータ、4は
モータ3の回転位置に対応した信号を出力する例えばロ
ータリーエンコーダ等の回転位置検出器、5はテーブル
2を回転自在に支持するベースである。モータ3の回転
軸とほぼ垂直な平面内でウエハ1が回転するように、モ
ータ3はテーブル2を回転駆動する。6は超高圧水銀灯
等を用いた光源で、その照明光は楕円鏡7、ミラー8、
シャッタ9および波長選択フィルタ10を介してレンズ
11に入射し、光ファイバー12の端面に集光されて照
射部14に導かれる。13は波長選択フィルタ10を光
路中に挿入したり、光路から退出させる駆動部で、フィ
ルタ10が光路中に挿入されると、ウエハ1のレジスト
に対する感応性が高い波長域の照明光がカットされる。
このフィルタ10でカットされる波長域の光束が露光光
束であり、以下ではフィルタ10を通過した光束、すな
わち露光光束を含まない光束を非露光光束と呼ぶ。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 2 is a diagram showing a schematic configuration of an exposure apparatus according to the present embodiment. Reference numeral 1 is a wafer to be exposed, 2 is a turntable (hereinafter, abbreviated as a table) that sucks and holds the wafer 1, and 3 is a table 2. A motor 4 for rotational driving, a rotational position detector such as a rotary encoder for outputting a signal corresponding to a rotational position of the motor 3, and a reference numeral 5 are bases for rotatably supporting the table 2. The motor 3 rotationally drives the table 2 so that the wafer 1 rotates in a plane substantially perpendicular to the rotation axis of the motor 3. 6 is a light source using an ultra-high pressure mercury lamp or the like, the illumination light of which is an elliptical mirror 7, a mirror 8,
The light enters the lens 11 via the shutter 9 and the wavelength selection filter 10, is condensed on the end face of the optical fiber 12, and is guided to the irradiation unit 14. Reference numeral 13 denotes a drive unit for inserting the wavelength selection filter 10 in the optical path or for retracting it from the optical path. When the filter 10 is inserted in the optical path, the illumination light in the wavelength range having high sensitivity to the resist of the wafer 1 is cut. It
The light flux in the wavelength range cut by the filter 10 is the exposure light flux, and hereinafter, the light flux that has passed through the filter 10, that is, the light flux that does not include the exposure light flux is referred to as a non-exposure light flux.

【0008】15は照射部14から照射される照明光束
16を所望形状(本実施例では矩形状)に成形する絞
り、17は照明光束16を受光して受光状態に応じた信
号を出力する受光部、18は照射部14および受光部1
7を一体に保持するホルダである。ホルダ18は、ベー
ス5に取り付けたリニアガイド21上をスライダ22と
ともに移動可能とされ、このホルダ18をウエハ1側に
接近させたとき照射部14と受光部17との間にウエハ
1の周縁部が入り込む。ホルダ18をウエハ1から最も
離れた領域へ移動させると、照射部14と受光部17と
の間にダミーウエハ20が入り込む。19はホルダ18
が図の左端位置から一定範囲にあるときのホルダ18の
位置を検出する位置検出器である。
Reference numeral 15 is a diaphragm for shaping the illumination light beam 16 emitted from the irradiation unit 14 into a desired shape (rectangular shape in this embodiment), and 17 is a light receiving device for receiving the illumination light beam 16 and outputting a signal according to the light receiving state. And 18 are an irradiation unit 14 and a light receiving unit 1.
It is a holder that integrally holds 7. The holder 18 is movable along with a slider 22 on a linear guide 21 attached to the base 5, and when the holder 18 is brought closer to the wafer 1 side, a peripheral portion of the wafer 1 is provided between the irradiation section 14 and the light receiving section 17. Goes in. When the holder 18 is moved to the region farthest from the wafer 1, the dummy wafer 20 is inserted between the irradiation unit 14 and the light receiving unit 17. 19 is a holder 18
Is a position detector for detecting the position of the holder 18 when the position is within a certain range from the left end position in the figure.

【0009】図3に示すように、受光部17は、ホルダ
18の移動方向(矢印S方向)に延在する一対の長方形
状の受光素子17aと、照明光束16のウエハ1側のエ
ッジから所定距離Lだけ離間して配置されたピンホール
状のエッジセンサ17bと、照明光束16のウエハ1と
反対側のエッジの近傍に配置された受光素子17cとを
有する。受光素子17aはホルダ18の移動に応じてそ
の一部がウエハ1の周縁部またはダミーウエハ20のエ
ッジ20aに覆われ、これらで遮光されることなく受光
部17へ到達した照明光束16(図2参照)の光量に応
じた信号Seを出力する。エッジセンサ17bは照明光
束16を受光するか否かでレベルが異なる信号Bを出力
する。そして、受光素子17cはホルダ18の位置に関
係なく常にその全面で照明光束16を受光し、照明光束
16の強度に応じた信号Cを出力する。
As shown in FIG. 3, the light receiving portion 17 has a pair of rectangular light receiving elements 17a extending in the moving direction of the holder 18 (direction of arrow S) and a predetermined edge from the edge of the illumination light beam 16 on the wafer 1 side. It has a pinhole-shaped edge sensor 17b spaced apart by a distance L, and a light-receiving element 17c arranged near the edge of the illumination light beam 16 on the side opposite to the wafer 1. A part of the light receiving element 17a is covered by the peripheral portion of the wafer 1 or the edge 20a of the dummy wafer 20 according to the movement of the holder 18, and the illumination light beam 16 reaches the light receiving portion 17 without being shielded by these (see FIG. 2). ) The signal Se corresponding to the light intensity of The edge sensor 17b outputs a signal B having a different level depending on whether or not the illumination luminous flux 16 is received. The light-receiving element 17c always receives the illumination light beam 16 on its entire surface regardless of the position of the holder 18, and outputs a signal C corresponding to the intensity of the illumination light beam 16.

【0010】図2に示すように、スライダ22の下面に
取り付けられた移動ブロック23は不図示のばねにより
図中右方へ常時付勢され、回転アーム24の回転位置に
応じてローラ25,26のいずれかと圧接する。これに
より、モータ27で回転アーム24を回転させると、そ
の回転方向および回転量に応じて移動ブロック23がリ
ニアガイド21上を移動してホルダ18の位置が変化す
る。モータ27の回転位置は図4に示すロータリーエン
コーダ等の回転位置検出器28で検出される。
As shown in FIG. 2, the moving block 23 attached to the lower surface of the slider 22 is constantly urged to the right in the drawing by a spring (not shown), and the rollers 25, 26 are responsive to the rotational position of the rotary arm 24. Press contact with any of. Accordingly, when the rotating arm 24 is rotated by the motor 27, the moving block 23 moves on the linear guide 21 according to the rotating direction and the amount of rotation, and the position of the holder 18 changes. The rotational position of the motor 27 is detected by a rotational position detector 28 such as a rotary encoder shown in FIG.

【0011】図4は本実施例の露光装置の制御系のブロ
ック図である。制御部30は駆動回路31,32へ駆動
信号を出力してモータ3,27の回転を制御するととも
に、駆動部13へ駆動信号を出力してフィルタ10の動
作を制御する。制御部30には、制御のための情報とし
て、回転位置検出器4,28が出力するモータ3,27
の回転位置に応じた信号と、位置検出器19が出力する
ホルダ18の位置に応じた信号と、受光部17が出力す
る受光状態に応じた信号とが入力され、これらの信号に
基づいて制御部30は後述する各種の処理を実行する。
33は制御部30の外部メモリである。なお、制御部3
0には不図示の指令器によりウエハ1の種類および露光
条件に関する情報が与えられる。この情報には、ウエハ
1の直径やOFの有無、OFがあればその形状寸法、ウ
エハ1の露光量、周縁部の目標露光幅に関する情報が含
まれる。
FIG. 4 is a block diagram of a control system of the exposure apparatus of this embodiment. The control unit 30 outputs a drive signal to the drive circuits 31 and 32 to control the rotation of the motors 3 and 27, and outputs a drive signal to the drive unit 13 to control the operation of the filter 10. As information for control, the control unit 30 outputs the motors 3, 27 output by the rotational position detectors 4, 28.
, A signal corresponding to the position of the holder 18 output by the position detector 19, and a signal corresponding to the light receiving state output by the light receiving unit 17 are input, and control is performed based on these signals. The unit 30 executes various processes described below.
33 is an external memory of the control unit 30. The control unit 3
Information about the type of wafer 1 and exposure conditions is given to 0 by a commander (not shown). This information includes information about the diameter of the wafer 1, the presence / absence of OF, the shape and size of the OF, the exposure amount of the wafer 1, and the target exposure width of the peripheral portion.

【0012】駆動回路32は、制御部30から与えられ
る偏差信号SdまたはSfが零となるようにモータ27
を駆動する。偏差信号Sfに対する駆動回路32のサー
ボゲインは、第2の制御部34からのサーボゲイン設定
信号に応じて設定される。なお、偏差信号Sd,Sfお
よび第2の制御部34での処理は後述する。
The drive circuit 32 controls the motor 27 so that the deviation signal Sd or Sf given from the control unit 30 becomes zero.
To drive. The servo gain of the drive circuit 32 for the deviation signal Sf is set according to the servo gain setting signal from the second control unit 34. The deviation signals Sd and Sf and the processing in the second controller 34 will be described later.

【0013】次に、制御部30による処理を図6および
図7を参照して説明する。なお、以下の説明では、図5
(a)に示すようにOFを有するウエハ1の周縁部を一
定幅Mにて露光する場合を例とする。ウエハ1の周縁部
のOFの近傍には略V字状の欠損Dが生じているものと
する。
Next, the processing by the control unit 30 will be described with reference to FIGS. 6 and 7. In addition, in the following description, FIG.
As an example, as shown in (a), the peripheral portion of the wafer 1 having OF is exposed with a constant width M. It is assumed that there is a substantially V-shaped defect D near the OF in the peripheral portion of the wafer 1.

【0014】図6は制御部30による一連の処理を示す
フローチャートである。露光すべきウエハ1がテーブル
2に吸着され、その種類および露光条件に関する情報が
入力されると図示の処理が開始される。まず、ステップ
S1では、受光部17の受光素子17cからの信号Cに
基づいて、ウエハ1のレジストに適した露光量にて露光
が行なわれるようにモータ3の回転速度を演算し、演算
結果を速度情報として記憶する。
FIG. 6 is a flow chart showing a series of processing by the control unit 30. The wafer 1 to be exposed is attracted to the table 2, and when the information regarding the type and the exposure condition is input, the illustrated process is started. First, in step S1, the rotation speed of the motor 3 is calculated based on the signal C from the light receiving element 17c of the light receiving unit 17 so that exposure is performed with an exposure amount suitable for the resist of the wafer 1, and the calculation result is obtained. It is stored as speed information.

【0015】ステップS2では目標露光幅Mに対応する
受光部17の出力信号を測定するキャリブレーション処
理を行なう。すなわち、ダミーウエハ20のエッジ20
aに向けて徐々にホルダ18を移動させ、エッジ20a
がエッジセンサ17bに達して信号Bのレベルが変化し
た位置を位置検出器19で検出する。そして、目標露光
幅Mと距離L(図3参照)との差分だけホルダ18をウ
エハ1側またはその反対側へ移動させ、そのときの受光
素子17aの信号Seを受光素子17cの信号Cで除し
た値Se/Cを基準信号Sbとして記憶する。信号Se
を受光素子17cの信号Cで除した値を用いるのは、照
明光束16の強度変化による信号Seの変化の影響を排
除するためである。以下では便宜上、Se/Cを受光部
17からの出力信号と呼ぶ。
In step S2, a calibration process for measuring the output signal of the light receiving section 17 corresponding to the target exposure width M is performed. That is, the edge 20 of the dummy wafer 20
a by gradually moving the holder 18 toward the edge 20a.
The position detector 19 detects a position at which the signal B has reached the edge sensor 17b and the level of the signal B has changed. Then, the holder 18 is moved to the wafer 1 side or the opposite side by the difference between the target exposure width M and the distance L (see FIG. 3), and the signal Se of the light receiving element 17a at that time is divided by the signal C of the light receiving element 17c. The calculated value Se / C is stored as the reference signal Sb. Signal Se
Is used to eliminate the influence of the change in the signal Se due to the change in the intensity of the illumination light beam 16. Hereinafter, for convenience, Se / C is referred to as an output signal from the light receiving unit 17.

【0016】ステップS3ではウエハ1のOF位置を検
出する。すなわち、照明光束16の一部がウエハ1の周
縁部と重なる位置にホルダ18を固定し、かつフィルタ
10を照明光の光路中に挿入して照明光束16を非露光
光束とした状態で、ウエハ1を一定速度で回転させて受
光部17からの信号Se/Cの変化を記録する。記録さ
れた波形は、図7(a)に示すようにウエハ1の偏心状
態に応じて緩やかに変化するとともに、OFおよび欠損
D上にて受光素子17aの受光量が逐次変化するのに伴
って急激に変化する。この信号Se/Cが急変する領域
AnのいずれがOFに相当するかを、予め与えられたO
Fの形状寸法に関する情報に基づいて判別する。判別情
報としては、例えば変化領域Anの中心角θnやSe/
Cの変化量δを用いる。信号Se/Cを微分した波形に
より判別してもよい。OFと判別した領域A2の中心を
OFの中心位置としてテーブル2の回転位置に対応付け
て記憶する。記憶した情報は、後の処理においてウエハ
1の回転位置の割出し等に用いる。
In step S3, the OF position of the wafer 1 is detected. That is, with the holder 18 fixed at a position where a part of the illumination light beam 16 overlaps the peripheral edge of the wafer 1, and the filter 10 is inserted in the optical path of the illumination light to make the illumination light beam 16 a non-exposure light beam, 1 is rotated at a constant speed to record the change in the signal Se / C from the light receiving unit 17. The recorded waveform gradually changes according to the eccentricity state of the wafer 1 as shown in FIG. 7A, and the received light amount of the light receiving element 17a on the OF and the defect D changes sequentially. It changes rapidly. Which of the regions An in which the signal Se / C suddenly changes corresponds to the OF is given as O beforehand.
The determination is made based on the information regarding the shape and size of F. As the discrimination information, for example, the central angle θn of the change area An or Se /
The change amount δ of C is used. It may be determined by a waveform obtained by differentiating the signal Se / C. The center of the area A2 determined to be OF is stored as the center position of OF in association with the rotation position of the table 2. The stored information is used for indexing the rotational position of the wafer 1 and the like in the subsequent processing.

【0017】なお、図5(a)に示すように、露光装置
のウエハ把持用の爪との接触に備えて当該爪との当接部
45a〜45cの露光幅を目標露光幅Mよりも大きく設
定するときは、当接部45a〜45cのOFの中心位置
からの角度α1〜α3を予めウエハ1に関する情報とし
て与え、この情報と検出したOFの位置とに基づいて当
接部45a〜45cの位置を割出せばよい。
As shown in FIG. 5A, the exposure width of the contact portions 45a to 45c with the claw for holding the wafer of the exposure apparatus is made larger than the target exposure width M in preparation for contact with the claw for holding the wafer. When setting, the angles α1 to α3 from the center position of the OF of the contact portions 45a to 45c are given in advance as information regarding the wafer 1, and based on this information and the detected position of the OF, the contact portions 45a to 45c are set. Just figure out the position.

【0018】ステップS4ではダミートラッキング処理
を行なう。この処理では、フィルタ10を照明光の光路
中に挿入したままウエハ1を少なくとも一回転させ、ス
テップS2のキャリブレーション処理で検出した基準信
号Sb(目標露光幅Mに対応する信号Se/C)と、現
時点での受光部17からの出力信号Se/Cとの偏差に
相当する偏差信号Sdを駆動回路32へ出力し、偏差信
号Sdが零となるようにウエハ1の回転位置に応じてホ
ルダ18の位置を調整する。ダミートラッキング時に
は、回転位置検出器28の出力信号に基づいてウエハ1
の半径方向におけるホルダ18の位置を検出し、検出結
果をウエハ1の回転位置と対応させてメモリ33に記憶
する。ダミートラッキングでは、目標露光幅Mが維持さ
れるようにホルダ18がウエハ1の半径方向に移動する
ので、メモリ33に記憶されたホルダ18の位置に関す
るデータは、ウエハ1の露光幅を目標露光幅Mに維持す
るために必要なウエハ1の回転位置毎のホルダ18の目
標位置を示す。
In step S4, dummy tracking processing is performed. In this process, the wafer 1 is rotated at least once while the filter 10 is inserted in the optical path of the illumination light, and the reference signal Sb (the signal Se / C corresponding to the target exposure width M) detected in the calibration process of step S2 is used. , The deviation signal Sd corresponding to the deviation from the output signal Se / C from the light receiving unit 17 at the present time is output to the drive circuit 32, and the holder 18 is moved according to the rotational position of the wafer 1 so that the deviation signal Sd becomes zero. Adjust the position of. At the time of dummy tracking, the wafer 1 is detected based on the output signal of the rotational position detector 28.
The position of the holder 18 in the radial direction is detected, and the detection result is stored in the memory 33 in association with the rotational position of the wafer 1. In the dummy tracking, since the holder 18 moves in the radial direction of the wafer 1 so that the target exposure width M is maintained, the data regarding the position of the holder 18 stored in the memory 33 is the exposure width of the wafer 1 as the target exposure width. The target position of the holder 18 for each rotational position of the wafer 1 required to maintain M is shown.

【0019】ダミートラッキング終了後はステップS5
に進んで露光を行なう。この露光では、フィルタ10を
光路中から退避させて照明光束16を露光光束とした上
で、テーブル2をステップS1で求めた速度で回転させ
る。そして、テーブル2の回転位置に対応してメモリ3
3からホルダ18の目標位置を読み込み、目標位置と回
転位置検出器28が検出するホルダ18の現在位置との
偏差に相当する偏差信号Sfを駆動回路32および第2
の制御部34へ出力する。このとき、駆動回路32は、
第2の制御部34から出力されるゲイン設定信号に応じ
たサーボゲインにて上述した偏差信号Sfが零となるよ
うにモータ27を駆動する。これによりホルダ18がウ
エハ1の外周に倣って移動して露光幅が目標露光幅Mに
維持される。
After completion of dummy tracking, step S5
Proceed to and perform exposure. In this exposure, the filter 10 is retracted from the optical path, the illumination light beam 16 is used as the exposure light beam, and the table 2 is rotated at the speed obtained in step S1. Then, the memory 3 corresponding to the rotation position of the table 2
3, the target position of the holder 18 is read, and the deviation signal Sf corresponding to the deviation between the target position and the current position of the holder 18 detected by the rotational position detector 28 is output to the drive circuit 32 and the second position.
To the control unit 34. At this time, the drive circuit 32
The motor 27 is driven so that the above-mentioned deviation signal Sf becomes zero by the servo gain according to the gain setting signal output from the second control unit 34. As a result, the holder 18 moves along the outer periphery of the wafer 1 and the exposure width is maintained at the target exposure width M.

【0020】図8は上述した露光時における第2の制御
部34の処理を示すフローチャートである。制御部30
から偏差信号Sfが出力されると図示の処理が開始され
る。ステップS11ではサーボゲインを予め定めた初期
値に設定する。この初期値は、露光幅の制御精度を優先
して比較的高く設定する。ステップS12では制御部3
0から偏差信号Sfを受け取る。ステップS13では、
偏差信号Sfの絶対値が予め定めた閾値THよりも高い
か否か、および今回入力した偏差信号Sfの絶対値と前
回の偏差信号Sfの絶対値との差ΔSfが零より大きい
か否かを判別し、いずれか一方でも肯定されたときはス
テップS14に進む。ステップS13が否定されるとき
は、ステップS11へ戻ってサーボゲインを初期値に設
定する。なお、ΔSfが零より大きいか否かにより、ホ
ルダ18の目標位置と現在位置との偏差が発散傾向にあ
るか否かが判明する。偏差の発散傾向は、前回と今回の
偏差信号Sfの絶対値の差のみならず、連続する3以上
の偏差信号Sfの絶対値を比較して判断してもよい。
FIG. 8 is a flow chart showing the processing of the second control section 34 during the above-mentioned exposure. Control unit 30
When the deviation signal Sf is output from, the illustrated process is started. In step S11, the servo gain is set to a predetermined initial value. This initial value is set relatively high, giving priority to the control accuracy of the exposure width. In step S12, the control unit 3
The deviation signal Sf is received from 0. In step S13,
Whether the absolute value of the deviation signal Sf is higher than a predetermined threshold value TH, and whether the difference ΔSf between the absolute value of the deviation signal Sf input this time and the absolute value of the previous deviation signal Sf is larger than zero is determined. If it is determined that either one is affirmative, the process proceeds to step S14. When step S13 is denied, it returns to step S11 and sets a servo gain to an initial value. It should be noted that whether or not the deviation between the target position and the current position of the holder 18 tends to diverge is determined by whether or not ΔSf is greater than zero. The divergence tendency of the deviation may be judged not only by the difference between the absolute values of the deviation signal Sf of the previous time and this time but also by comparing the absolute values of three or more deviation signals Sf that are consecutive.

【0021】ステップS14では、現在の偏差信号Sf
やΔSfに対応するサーボゲインを演算し、演算結果に
対応するゲイン設定信号を駆動回路32へ出力してその
サーボゲインをステップS11で設定した初期値より低
下させる。偏差信号SfやΔSfとサーボゲインの変化
との対応は、偏差信号SfやΔSfが大きくなるほど連
続的にサーボゲインを低下させる場合と、偏差信号Sf
やΔSfに対応して2段階もしくはそれ以上のステップ
状にサーボゲインを低下させる場合のいずれでもよい。
At step S14, the current deviation signal Sf
And a servo gain corresponding to ΔSf are calculated, and a gain setting signal corresponding to the calculation result is output to the drive circuit 32 to reduce the servo gain from the initial value set in step S11. The correspondence between the deviation signals Sf and ΔSf and the change in the servo gain is that the servo gain continuously decreases as the deviation signals Sf and ΔSf increase, and the deviation signal Sf changes.
Or the servo gain may be reduced in two or more steps corresponding to ΔSf.

【0022】図7(b)は同図(a)に示すウエハ1の
外周位置の変化に対応する偏差信号Sfを示すものであ
る。既述のように、ウエハ1の外周位置はOFおよび欠
損D(図5参照)上にて急激に変化するため、周方向に
長いOF(領域A2)ではその両端の境界部で、周方向
に短い欠損D(領域A1)ではその全域で偏差信号Sf
が大きく増減する。したがって、図7(b)の偏差信号
Sfに基づいて上述した第2の制御部34の処理を行な
うと、図中斜線で示すようにウエハ1に対する露光光束
が欠損DおよびOFの境界部に達したとき偏差信号Sf
の絶対値が閾値THを越えて駆動回路32のサーボゲイ
ンが低下し、偏差信号Sfに対するホルダ18の応答性
が低くなる。また、偏差信号Sfが正または負方向へ増
加する領域でもサーボゲインが低下する。
FIG. 7B shows the deviation signal Sf corresponding to the change in the outer peripheral position of the wafer 1 shown in FIG. As described above, since the outer peripheral position of the wafer 1 changes abruptly on the OF and the defect D (see FIG. 5), in the OF (area A2) that is long in the circumferential direction, the boundary position at both ends of the OF causes the circumferential direction in the circumferential direction. In the short defect D (area A1), the deviation signal Sf
Greatly increases and decreases. Therefore, when the processing of the second control unit 34 described above is performed based on the deviation signal Sf of FIG. 7B, the exposure light flux for the wafer 1 reaches the boundary portion between the defects D and OF as shown by the hatched lines in the figure. Deviation signal Sf
The absolute value of exceeds the threshold value TH, the servo gain of the drive circuit 32 decreases, and the responsiveness of the holder 18 to the deviation signal Sf decreases. Further, the servo gain also decreases in a region where the deviation signal Sf increases in the positive or negative direction.

【0023】この結果、図5(b)に示すように、OF
の境界部では露光幅(図中斜線部の幅)のばらつきが早
期に収束する。サーボゲインが高いままであると、同図
に二点鎖線で示すように、OFの境界部での露光幅のば
らつきの収束が遅くなる。また、欠損D上では露光光束
が欠損Dにほとんど追従することなく欠損Dの前後の外
周形状に沿うように通過する。このため、露光幅がウエ
ハ1の中心側へ不必要に拡大せず、ウエハ1の周縁露光
部分に囲まれた領域の面積が増加してチップの歩留りが
向上する。ちなみに、欠損D上でのサーボゲインが高い
ままであると、本来は無視すべき欠損Dでも、露光幅を
目標値に一致させるべくホルダ18がウエハ1の半径方
向に応答良く追従する結果、図中二点鎖線で示すよう
に、周縁露光部がウエハ1の中心側へ拡大してチップ歩
留りが悪化する。
As a result, as shown in FIG.
At the boundary portion of (3), the variation of the exposure width (width of the shaded portion in the figure) converges at an early stage. If the servo gain remains high, as shown by the chain double-dashed line in the figure, the convergence of the exposure width variation at the OF boundary is delayed. Further, on the defect D, the exposure light flux passes along the outer peripheral shape before and after the defect D with hardly following the defect D. For this reason, the exposure width does not unnecessarily expand toward the center of the wafer 1, the area of the region surrounded by the peripheral exposure portion of the wafer 1 increases, and the chip yield improves. By the way, if the servo gain on the defect D is still high, the holder 18 follows the wafer 1 in the radial direction of the wafer 1 with good response to match the exposure width with the target value even if the defect D should be ignored. As indicated by the two-dot chain line, the peripheral exposure portion expands toward the center of the wafer 1 and the chip yield deteriorates.

【0024】なお、実施例の装置において、図5(a)
に示す当接部45a〜45cで露光幅を変更するとき
は、ダミートラッキングで得たホルダ18の目標位置に
関するデータをこれら当接部45a〜45cの位置で修
正すれば良い。この場合、露光時に当接部45a〜45
cの境界部でも偏差信号Sfが拡大して第2の制御部3
4によるサーボゲインの変更が実行される。この結果、
当接部45a〜45cの境界部でも露光幅のばらつきが
早期に収束する。
In the apparatus of the embodiment, as shown in FIG.
When the exposure width is changed by the contact portions 45a to 45c shown in (4), the data regarding the target position of the holder 18 obtained by the dummy tracking may be corrected at the positions of the contact portions 45a to 45c. In this case, the contact portions 45a to 45 are exposed at the time of exposure.
The deviation signal Sf expands even at the boundary portion of c and the second control unit 3
The change of the servo gain by 4 is executed. As a result,
Even at the boundaries between the contact portions 45a to 45c, the variation in the exposure width is quickly converged.

【0025】本実施例では、ダミートラッキング処理で
得たホルダ18の目標位置と露光時のホルダ18の現在
位置との偏差に相当する偏差信号Sdにより露光幅を制
御する装置を例としたが、本発明はこれに限るものでは
ない。ダミートラッキングを省略し、キャリブレーショ
ン処理で得た受光部17からの基準信号Sbと現在の受
光部17からの出力信号Se/Cとの偏差に相当する偏
差信号Sdにより露光幅を制御する場合も、偏差信号S
dに応じてサーボゲインを変更すればよい。また、ダミ
ートラッキング中に偏差信号Sdに基づいてサーボゲイ
ンを変更してもよい。ダミートラッキング中および露光
時の双方で、制御部30から出力される偏差信号Sd,
Sfに基づいてサーボゲインを変更してもよい。
In the present embodiment, the apparatus for controlling the exposure width by the deviation signal Sd corresponding to the deviation between the target position of the holder 18 obtained by the dummy tracking process and the current position of the holder 18 at the time of exposure is taken as an example. The present invention is not limited to this. Even when the dummy tracking is omitted and the exposure width is controlled by the deviation signal Sd corresponding to the deviation between the reference signal Sb from the light receiving unit 17 obtained by the calibration process and the current output signal Se / C from the light receiving unit 17, , Deviation signal S
The servo gain may be changed according to d. Further, the servo gain may be changed based on the deviation signal Sd during the dummy tracking. The deviation signal Sd output from the control unit 30 during both dummy tracking and exposure
The servo gain may be changed based on Sf.

【0026】以上の実施例と請求項との対応において、
ウエハ1が基板を、照射部14が照射手段を、制御部3
0が偏差信号出力手段を、駆動回路32およびモータ2
7が相対位置制御手段を、第2の制御部34が不安定領
域検出手段およびゲイン変更手段を構成する。照射手段
からの光束と基板との相対回転は、光束側を基板に沿っ
て回転させても得られる。照射手段からの光束と基板と
の露光幅方向の相対移動は、基板側を移動させても得ら
れる。基板は円形に限らず多角形のものでもよい。
In the correspondence between the above embodiment and the claims,
The wafer 1 is the substrate, the irradiation unit 14 is the irradiation means, and the control unit 3
0 is the deviation signal output means, the drive circuit 32 and the motor 2
Reference numeral 7 constitutes a relative position control means, and the second control portion 34 constitutes an unstable area detection means and a gain changing means. Relative rotation between the light flux from the irradiation means and the substrate can be obtained by rotating the light flux side along the substrate. The relative movement of the light flux from the irradiation means and the substrate in the exposure width direction can be obtained even by moving the substrate side. The substrate is not limited to a circular shape and may be a polygonal one.

【0027】[0027]

【発明の効果】本発明では、照射手段と基板との露光幅
方向の相対位置と目標値との偏差が拡大して制御系の安
定性が低下する領域でサーボゲインが低下するので、制
御系の本来のサーボゲインを高めに設定して露光幅の精
度を高く維持しつつ、基板の外周形状や露光幅が不連続
的に変化する領域での制御系の安定性を確保して、精度
の高い周縁露光を安定して行なうことができる。また、
特に露光幅を目標値に維持する必要がない微小な欠損部
分では、これを無視するごとく露光光束を相対移動させ
て基板の周縁露光部の不必要な拡大を防止できる。
According to the present invention, since the deviation between the relative position of the irradiation means and the substrate in the exposure width direction and the target value increases, the servo gain decreases in the area where the stability of the control system deteriorates. The original servo gain of is set to a high value to maintain high accuracy of the exposure width, while ensuring stability of the control system in the area where the outer peripheral shape of the substrate and the exposure width change discontinuously. High edge exposure can be stably performed. Also,
In particular, in a minute defective portion where it is not necessary to maintain the exposure width at the target value, the exposure light beam can be relatively moved so as to be ignored, and unnecessary expansion of the peripheral edge exposed portion of the substrate can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のクレーム対応図。FIG. 1 is a diagram corresponding to a claim of the present invention.

【図2】本発明の実施例の露光装置の概略構成を示す
図。
FIG. 2 is a diagram showing a schematic configuration of an exposure apparatus of an embodiment of the present invention.

【図3】図2の受光部の詳細を示す図。FIG. 3 is a diagram showing details of a light receiving unit in FIG.

【図4】図2の露光装置の制御系のブロック図4 is a block diagram of a control system of the exposure apparatus of FIG.

【図5】図2の露光装置が露光対象とするウエハの一例
を示す図で、(a)はウエハの平面図、(b)は露光後
のOF近傍の拡大図。
5A and 5B are diagrams showing an example of a wafer to be exposed by the exposure apparatus of FIG. 2, FIG. 5A is a plan view of the wafer, and FIG. 5B is an enlarged view of the vicinity of OF after exposure.

【図6】図4の制御部での処理手順を示すフローチャー
ト。
6 is a flowchart showing a processing procedure in the control unit of FIG.

【図7】図5のウエハを露光対象としたときの制御部の
入出力波形を示す図で、(a)はOF検出処理時の受光
部から制御部への入力波形を、(b)は露光時に制御部
から駆動回路および第2の制御部へ出力される偏差信号
Sfの波形を示す。
7A and 7B are diagrams showing input / output waveforms of the control unit when the wafer of FIG. 5 is an exposure target. FIG. 7A is an input waveform from the light receiving unit to the control unit during OF detection processing, and FIG. The waveform of the deviation signal Sf output from the control unit to the drive circuit and the second control unit during exposure is shown.

【図8】図4の第2の制御部の処理手順を示すフローチ
ャート。
FIG. 8 is a flowchart showing a processing procedure of a second control unit in FIG.

【符号の説明】[Explanation of symbols]

1 ウエハ 6 光源 14 照射部 16 照射光束 17 受光部 27 モータ 28 回転位置検出器 30 制御部 32 駆動回路 DESCRIPTION OF SYMBOLS 1 Wafer 6 Light source 14 Irradiation unit 16 Irradiation light flux 17 Light receiving unit 27 Motor 28 Rotation position detector 30 Control unit 32 Drive circuit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板に対して露光光束を照射可能な照射
手段と、 前記照射手段を前記基板の周縁部に沿って相対移動させ
るとき、当該照射手段と前記基板の露光幅方向の相対位
置の目標値からの偏差に対応した偏差信号を出力する偏
差信号出力手段と、 前記偏差信号に基づいて前記偏差が小さくなるように前
記相対位置を制御する相対位置制御手段とを備えた基板
の周縁露光装置において、 前記偏差信号に基づいて前記基板の周縁部上の制御不安
定領域を検出する不安定領域検出手段と、 前記照射手段を前記基板の周縁部に沿って相対移動させ
る際、前記照射手段が検出された前記制御不安定領域に
達すると前記相対位置制御手段の前記偏差信号に対する
サーボゲインを低下させるゲイン変更手段と、を設けた
ことを特徴とする基板の周縁露光装置。
1. An irradiation unit capable of irradiating a substrate with an exposure light beam, and a relative position of the irradiation unit and the substrate in an exposure width direction when the irradiation unit is relatively moved along a peripheral portion of the substrate. Edge exposure of a substrate provided with a deviation signal output means for outputting a deviation signal corresponding to a deviation from a target value, and a relative position control means for controlling the relative position so as to reduce the deviation based on the deviation signal. In the apparatus, an unstable area detection unit that detects a control unstable area on the peripheral edge of the substrate based on the deviation signal; and an irradiation unit when the irradiation unit is relatively moved along the peripheral edge of the substrate. And a gain changing means for reducing the servo gain of the relative position control means with respect to the deviation signal when the control unstable region is detected. Light equipment.
【請求項2】 前記不安定領域検出手段は、前記偏差信
号が所定値を越えたとき前記制御不安定領域と判別する
ことを特徴とする請求項1記載の基板の周縁露光装置。
2. The substrate edge exposure apparatus according to claim 1, wherein the unstable area detecting unit determines the control unstable area when the deviation signal exceeds a predetermined value.
【請求項3】 前記不安定領域検出手段は、前記偏差信
号が発散傾向にあるとき前記制御不安定領域と判別する
ことを特徴とする請求項1または2記載の基板の周縁露
光装置。
3. The substrate edge exposure apparatus according to claim 1, wherein the unstable area detecting unit determines the control unstable area when the deviation signal tends to diverge.
JP5060421A 1993-03-19 1993-03-19 Aligner for periphery of substrate Pending JPH06275518A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5060421A JPH06275518A (en) 1993-03-19 1993-03-19 Aligner for periphery of substrate
US08/210,275 US5420663A (en) 1993-03-19 1994-03-18 Apparatus for exposing peripheral portion of substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5060421A JPH06275518A (en) 1993-03-19 1993-03-19 Aligner for periphery of substrate

Publications (1)

Publication Number Publication Date
JPH06275518A true JPH06275518A (en) 1994-09-30

Family

ID=13141733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5060421A Pending JPH06275518A (en) 1993-03-19 1993-03-19 Aligner for periphery of substrate

Country Status (1)

Country Link
JP (1) JPH06275518A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1168082A2 (en) * 2000-06-22 2002-01-02 Ushiodenki Kabushiki Kaisha Device for exposure of the peripheral area of a film circuit board
JP2002343709A (en) * 2001-05-21 2002-11-29 Ushio Inc Peripheral exposing system
JP2003092243A (en) * 2001-09-17 2003-03-28 Ushio Inc Peripheral projection aligner
JP2003151893A (en) * 2001-11-19 2003-05-23 Dainippon Screen Mfg Co Ltd Substrate processing unit, substrate processing apparatus, and substrate processing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1168082A2 (en) * 2000-06-22 2002-01-02 Ushiodenki Kabushiki Kaisha Device for exposure of the peripheral area of a film circuit board
EP1168082A3 (en) * 2000-06-22 2005-05-04 Ushiodenki Kabushiki Kaisha Device for exposure of the peripheral area of a film circuit board
JP2002343709A (en) * 2001-05-21 2002-11-29 Ushio Inc Peripheral exposing system
JP2003092243A (en) * 2001-09-17 2003-03-28 Ushio Inc Peripheral projection aligner
JP2003151893A (en) * 2001-11-19 2003-05-23 Dainippon Screen Mfg Co Ltd Substrate processing unit, substrate processing apparatus, and substrate processing method

Similar Documents

Publication Publication Date Title
KR0148371B1 (en) Exposure apparatus
US5168021A (en) Method for exposing predetermined area of peripheral part of wafer
US5420663A (en) Apparatus for exposing peripheral portion of substrate
US5229811A (en) Apparatus for exposing peripheral portion of substrate
JPH06275518A (en) Aligner for periphery of substrate
JP3162580B2 (en) Dicing equipment
JP3275430B2 (en) Peripheral exposure apparatus, element manufacturing method and element
JPH053153A (en) Exposing device for unnecessary resist on wafer
KR20020061478A (en) Apparatus for Exposing Periphery of Wafer and Method for Exposing Periphery of Wafer
US6721037B2 (en) Device for exposure of a peripheral area of a wafer
JPH051610B2 (en)
JPH06275517A (en) Periphery exposure device of substrate
JP2874292B2 (en) Peripheral exposure apparatus and peripheral exposure method
JPH10242040A (en) Projection aligner
JP2559087B2 (en) Sensor setting method for web movement control device
JPH04291914A (en) Exposing method for unnecessary resist on wafer
JPH04291938A (en) Aligner and exposure method for inessential resist on wafer
JP2004330221A (en) Laser beam machining method and laser beam machining device
JP2886675B2 (en) Film exposure apparatus and film exposure method
JP2000293875A (en) Optical disk device
JP2003203855A (en) Exposure method and aligner, and device manufacturing method
JPH0465116A (en) Peripheral edge exposure device
JPH081366A (en) Laser beam machine and method for machining dam bar
CN112327579B (en) Exposure apparatus and method for manufacturing article
JPH06267827A (en) Sr aligner