JPH0626345B2 - FSK signal demodulator - Google Patents

FSK signal demodulator

Info

Publication number
JPH0626345B2
JPH0626345B2 JP22372489A JP22372489A JPH0626345B2 JP H0626345 B2 JPH0626345 B2 JP H0626345B2 JP 22372489 A JP22372489 A JP 22372489A JP 22372489 A JP22372489 A JP 22372489A JP H0626345 B2 JPH0626345 B2 JP H0626345B2
Authority
JP
Japan
Prior art keywords
signal
output
value
digital
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22372489A
Other languages
Japanese (ja)
Other versions
JPH0385948A (en
Inventor
慶太郎 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP22372489A priority Critical patent/JPH0626345B2/en
Publication of JPH0385948A publication Critical patent/JPH0385948A/en
Publication of JPH0626345B2 publication Critical patent/JPH0626345B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、マークとスペースと呼ばれる2種類の情報に
夫々所定の周波数を割当てることにより情報を符号化す
るFSK(周波数偏移電鍵)方式で変調した信号を、元
のマークとスペースで表される信号に復調するための復
調器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of use] The present invention is an FSK (Frequency Shift Key) system that encodes information by assigning predetermined frequencies to two types of information called marks and spaces. The present invention relates to a demodulator for demodulating a modulated signal into a signal represented by original marks and spaces.

[従来の技術] FSK変調は、例えば第4図に示すように、論理値
“1”のデジタルデータ(マーク)を周波数f1、論理
値“0”のデシタルデータ(スペース)を周波数f2
(但し、f1=f2)のFM波で表す周波数変調方式の
一種である。
[Prior Art] In FSK modulation, for example, as shown in FIG. 4, digital data (mark) having a logical value "1" has a frequency f1, and digital data (space) having a logical value "0" has a frequency f2.
(However, f1 = f2) is a kind of frequency modulation method represented by an FM wave.

従来、このFSK変調により変調された信号(以下、F
SK信号という)を復調して元のマークとスペースで表
される信号に復調するためには、無線受信機などにあっ
ては、高周波数のFSK信号をヘテロダインによって周
波数の相違する2種類の低周波数のFSK信号に変換
し、こられの信号についてマークとスペースの弁別復調
を行うのが一般的であった。
Conventionally, a signal modulated by this FSK modulation (hereinafter, F
In order to demodulate the signal (referred to as SK signal) to the signal represented by the original mark and space, in a radio receiver or the like, a high frequency FSK signal is divided into two types of low frequency signals by heterodyne. It was general to convert the signal into a frequency FSK signal and perform mark / space discrimination demodulation for these signals.

例えば、第5図に示す従来例の復調器にあっては、高周
波のFM波からなるFSK信号をSINを、夫々の共振周
波数が相違する一対の同調回路1,2に供給し、各同調
回路1,2に継続接続した整流回路3,4に発生した信
号S1,S2を電圧加算回路5で加算し、電圧加算回路
5の出力信号S3を比較器6が予め設定されている基準
電圧と比較して、該基準電圧との大小関係からマークと
スペースの2値レベル信号に弁別する。
For example, in the demodulator of the conventional example shown in FIG. 5, an FSK signal composed of a high-frequency FM wave is supplied to a pair of tuning circuits 1 and 2 having different resonance frequencies, and each tuning circuit is supplied. The signals S1 and S2 generated in the rectifier circuits 3 and 4 continuously connected to 1 and 2 are added by the voltage adding circuit 5, and the output signal S3 of the voltage adding circuit 5 is compared with a preset reference voltage by the comparator 6. Then, the binary level signal of the mark and the space is discriminated from the magnitude relationship with the reference voltage.

また、第6図に示すように、FSK信号SINと電圧制御
発振回路からの信号の位相を比較する位相比較回路7、
低域フィルタ8、及び低域フィルタの出力電圧に比例し
て発振周波数が変化する電圧制御発振回路9を備え、入
力のFSK信号の周波数と、電圧制御発振回路の発振周
波数とを、常に同一に保つように帰還を施したフェイズ
ロックトループを構成することにより、復調信号S0を
発生する復調器が知られている。
Further, as shown in FIG. 6, a phase comparison circuit 7 for comparing the phases of the FSK signal SIN and the signal from the voltage controlled oscillation circuit,
The low-pass filter 8 and the voltage-controlled oscillation circuit 9 whose oscillation frequency changes in proportion to the output voltage of the low-pass filter are provided, and the frequency of the input FSK signal and the oscillation frequency of the voltage-controlled oscillation circuit are always the same. There is known a demodulator that generates a demodulated signal S0 by forming a phase-locked loop that is fed back so as to keep it.

更に、無線通信などにおいて感度を向上させるために
は、伝送中に生じる各種の雑音を除去し、復調しようと
するマーク信号とスペース信号を能率良く検出する必要
がある。そこで、第5図に示したようなFSK信号復調
器にあっては、f1とf2の周波数で弁別する同調回路
のQを上げることによって通過帯域を狭くしたり、第6
図に示すようなPLL方式の復調器にあっては、ループ
フィルタの時定数を大きくすることで通過帯域を等価的
に狭くするなどの手法を採ることにより、信号のS/N
比を改善し、復調器の感度向上を図っていた。
Further, in order to improve the sensitivity in wireless communication or the like, it is necessary to remove various noises generated during transmission and efficiently detect the mark signal and space signal to be demodulated. Therefore, in the FSK signal demodulator as shown in FIG. 5, the pass band is narrowed by increasing the Q of the tuning circuit that discriminates between the frequencies f1 and f2, and
In the PLL type demodulator as shown in the figure, the S / N ratio of the signal is increased by adopting a technique such that the pass band is narrowed equivalently by increasing the time constant of the loop filter.
The ratio was improved to improve the sensitivity of the demodulator.

[発明が解決しようとする課題] しかしながら、このような従来のFSK信号復調器にあ
っては、同調回路のQを上げるにつれてリンギングなど
の過渡現象が発生することに起因して、弁別能力の低下
を招来する問題があった。本願発明者の実験によれば、
例えば45.5ボー、170HzシフトのFSK信号に対
してQを20以上に設定すると、かえって誤字率の増加
が認められた。
[Problems to be Solved by the Invention] However, in such a conventional FSK signal demodulator, the discrimination ability is deteriorated due to the occurrence of a transient phenomenon such as ringing as the Q of the tuning circuit is increased. There was a problem inviting. According to the experiment by the inventor of the present application,
For example, when Q is set to 20 or more for an FSK signal of 45.5 baud and 170 Hz shift, an increase in the error rate is recognized.

又、従来はアナログ技術を用いているため、アナログ回
路特有の調整が煩雑であったり、部品点数が多くなった
りた、装置全体が大型化するなどの欠点があった。
Further, conventionally, since the analog technology is used, there are drawbacks such that the adjustment peculiar to the analog circuit is complicated, the number of parts is increased, and the size of the entire apparatus is increased.

又、情報理論に基づいた理想的なFSK信号復調器を、
アナログ技術を用いて構成するものとすると、例えば第
7図に示すように、基準信号発生器10で、相互の位相
差が90°異なる同一周波数の正弦波信号Sf1,Sf
2を発生し、掛算器11でFSK信号SINと正弦波信号
Sf1との乗算演算処理を行わせてからその出力を積分
器13で積分演算することにより信号SINとSf1との
相互相関演算処理を行い、同様に、掛算器12において
FSK信号SINと正弦波信号Sf2との乗算演算処理を
行わせてからその出力を積分器14で積分演算すること
により信号SINとSf2との相互相関演算処理を行う。
In addition, an ideal FSK signal demodulator based on information theory
Assuming that the analog signal technology is used, for example, as shown in FIG. 7, in the reference signal generator 10, sinusoidal wave signals Sf1 and Sf having the same frequency with a mutual phase difference of 90 ° are different.
2 is generated, the multiplier 11 multiplies the FSK signal SIN and the sine wave signal Sf1, and then the output is integrated by the integrator 13, thereby performing the cross-correlation calculation process of the signals SIN and Sf1. Similarly, in the multiplier 12, the FSK signal SIN is multiplied by the sine wave signal Sf2, and then the output is integrated by the integrator 14, thereby performing the cross-correlation calculation process of the signals SIN and Sf2. To do.

そして、各積分器13,14から出力された相互相関値
出力の2乗演算を2乗演算器15,16で行って、それ
らの演算出力を加算器17で加算した後、平方根演算器
18で平方根(Square Root)を求め、この出力を復調
信号とする。
Then, the square operation of the cross-correlation value output output from each of the integrators 13 and 14 is performed by the square operators 15 and 16, and the operation outputs are added by the adder 17, and then the square root operator 18 is used. Obtain the square root, and use this output as the demodulated signal.

このような復調器によれば、積分器の時定数の逆数に相
当する極めて狭い通過帯域を信号の歪みを招来すること
なく実現することができ、高感度の信号検出を可能にす
ることができる。
With such a demodulator, an extremely narrow pass band corresponding to the reciprocal of the time constant of the integrator can be realized without causing signal distortion, and high-sensitivity signal detection can be realized. .

しかしながら、このような復調器を実現するには、相互
に90°の位相差を有する正弦波信号を形成するための
信号発生器、アナログ信号を乗算演算するための複数の
掛算器、平方根演算を行うためのアナログ演算器などを
必要とすることから、回路が複雑となり、調整が困難で
あるなどの問題がある。
However, in order to realize such a demodulator, a signal generator for forming a sine wave signal having a phase difference of 90 °, a plurality of multipliers for multiplying an analog signal, and a square root operation are required. There is a problem that the circuit is complicated and adjustment is difficult because an analog calculator for performing the operation is required.

本発明は、このような課題に鑑みて成されたものであ
り、デジタル回路技術を適応して、製作が容易で極めて
小形なFSK信号復調器を提供することを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a FSK signal demodulator that is easy to manufacture and is extremely small, by applying digital circuit technology.

[課題を解決するための手段] 第1図は本発明の原理構成図である。同図に基づいて本
発明の原理を説明すると、伝送されてきたFSK信号S
INの振幅を一定レベルに制し且つ“H”と“L”の2値
レベルのデジタル信号に変換する波形整形回路19を備
え、波形整形回路19より出力したデジタル信号を4個
の掛算器20,21,22,23に供給する。
[Means for Solving the Problem] FIG. 1 is a block diagram showing the principle of the present invention. The principle of the present invention will be described with reference to the figure. The transmitted FSK signal S
A waveform shaping circuit 19 for controlling the amplitude of IN to a constant level and converting it to a binary signal of "H" and "L" is provided, and the digital signal output from the waveform shaping circuit 19 is multiplied by four multipliers 20. , 21, 22, 23.

基準信号発生器24はマークに対応するFM波と等しい
周波数fの基準信号S11を掛算器20に供給すると共
に、基準信号S11とは90°の位相差を有する周波数f
の基準信号S12を掛算器21に供給する。
The reference signal generator 24 supplies the reference signal S11 having a frequency f m equal to the FM wave corresponding to the mark to the multiplier 20, and the frequency f having a phase difference of 90 ° from the reference signal S11.
The reference signal S12 of m is supplied to the multiplier 21.

基準信号発生器25はスペースに対応するFM波と等し
い周波数fの基準信号S21を掛算器22に供給すると
共に、基準信号S21とは90°の位相差を有する周波数
の基準信号S22を掛算器23に供給する。
The reference signal generator 25 supplies the reference signal S21 of the frequency f s equal to the FM wave corresponding to the space to the multiplier 22, and also generates the reference signal S22 of the frequency f s having a phase difference of 90 ° from the reference signal S21. It is supplied to the multiplier 23.

尚、これらの掛算器20,21,22,23は排他的論
理和の否定演算を行うことにより掛算処理を実現する。
The multipliers 20, 21, 22, and 23 implement a multiplication process by performing a negation operation of the exclusive OR.

そして、各掛算器20,21,22,23で入力信号の
積演算を行い、夫々の出力を積分器26,27,28,
29で積分し、更に各積分結果を所定の閾値を有する比
較器30,31,32,33で比較し、閾値との大小関
係に従った2値レベルのデジタル値信号を形成する。そ
して、比較器30,31で出力したデジタル値信号の論
理和演算を判定回路34において、比較器32,33で
出力したデジタル値信号の論理和演算を判定回路35に
おいて夫々行い、判定回路34の出力が真及び判定回路
35の出力が偽ならば“H”レベルの出力、判定回路3
4の出力が偽及び判定回路35の出力が真ならば“L”
レベルの出力、更に判定回路34と35の出力が共に真
又は偽ならば従前の判定結果と同一のレベルの出力を合
成回路36で発生する構成とする。
Then, each multiplier 20, 21, 22, 23 performs a product operation of the input signal, and outputs the respective outputs by integrators 26, 27, 28,
29, and the respective integration results are compared by comparators 30, 31, 32, 33 having a predetermined threshold value, and a binary value digital value signal according to the magnitude relationship with the threshold value is formed. Then, the logical sum operation of the digital value signals output from the comparators 30 and 31 is performed in the determination circuit 34, and the logical sum operation of the digital value signals output from the comparators 32 and 33 is performed in the determination circuit 35, respectively. If the output is true and the output of the determination circuit 35 is false, the output of the "H" level, the determination circuit 3
If the output of 4 is false and the output of the determination circuit 35 is true, "L"
If the level output and the outputs of the determination circuits 34 and 35 are both true or false, the synthesizing circuit 36 generates an output of the same level as the previous determination result.

[作用] このような構成を有する本発明にあっては、判定回路3
4と35の出力が各周波数fとfの検波結果となる
ので、夫々の出力の論理値の関係からマークとスペース
を判定し、そしてマークに対して“H”、スペースに対
して“L”レベルの論理信号を出力することにより弁別
復調を行うことができる。
[Operation] In the present invention having such a configuration, the determination circuit 3
Since the outputs of 4 and 35 are the detection results of the respective frequencies f m and f s , the mark and the space are judged from the relationship of the logical values of the respective outputs, and “H” is given to the mark and “H” is given to the space. Discrimination demodulation can be performed by outputting a logic signal of L ″ level.

又、判定回路34と35の出力が共に同一の論理値とな
った場合には、従前の復調結果を踏襲することとしたの
で、伝送中の雑音等を除去することができる。
Further, when the outputs of the determination circuits 34 and 35 both have the same logical value, it is decided to follow the previous demodulation result, so that noise and the like during transmission can be removed.

[実施例] 以下、本発明の一実施例を図面と共に説明する。[Embodiment] An embodiment of the present invention will be described below with reference to the drawings.

まず第2図に基づいて構成を説明すると、37はリミッ
タ機能を有する波形整形回路であり、第3図に示すよう
に、入力されたFSK信号SINを振幅制限して“H”と
“L”レベルのデジタル信号SDに変換する。
First, the configuration will be described with reference to FIG. 2. Reference numeral 37 denotes a waveform shaping circuit having a limiter function. As shown in FIG. 3, the input FSK signal SIN is amplitude-limited to "H" and "L". The digital signal SD of the level is converted.

38はマークに対応するFM波の4倍の周波数4×f
の矩形信号列を発振するマルチバイブレータであり、こ
の矩形信号列を4分の1分周回路39で分周することに
より周波数がfの第1の基準信号S11を形成すると共
に、一方、JKフリップフロップから成る遅延回路40
で一周期分の遅延を行ってから4分の1分周回路41で
分周することにより周波数がf且つ位相差90°の第
2の基準信号S12を形成する。
38 4 times the frequency 4 × f m of the FM wave corresponding to the mark
Is a multi-vibrator that oscillates a rectangular signal sequence, and the rectangular signal sequence is divided by a quarter frequency dividing circuit 39 to form a first reference signal S11 having a frequency of f m . Delay circuit 40 consisting of a flip-flop
Then, the second reference signal S12 having a frequency f m and a phase difference of 90 ° is formed by delaying by one cycle and then dividing by the quarter frequency dividing circuit 41.

デジタル信号SDと第1の基準信号S11は排他的論理和
回路(以下、EXOR)42で論理演算された後、イン
バータ回路43で否定演算され、抵抗44と容量素子4
5から成る所定時定数の積分回路へ供給される。
The digital signal SD and the first reference signal S11 are logically operated by the exclusive OR circuit (hereinafter, EXOR) 42, and then are negatively operated by the inverter circuit 43, and the resistor 44 and the capacitive element 4 are operated.
5 is supplied to an integrating circuit having a predetermined time constant.

又、デジタル信号SDと第2の基準信号S12はEXOR
46で論理演算された後、インバータ回路47で否定演
算され、抵抗48と容量素子49から成る所定時定数の
積分回路へ供給される。
The digital signal SD and the second reference signal S12 are EXOR
After being logically operated by 46, the inverter circuit 47 performs a negative operation, and the result is supplied to an integrating circuit having a predetermined time constant composed of a resistor 48 and a capacitive element 49.

なお、インバータ43,47は適当な論理変換を施すこ
とにより別の部分に移したり、あるいは省略することも
できる。
The inverters 43 and 47 can be moved to another part or omitted by performing an appropriate logic conversion.

50はCMOS構造により予め所定の閾値THが設定さ
れた論理和回路であり、容量素子45,49の各両端に
発生する各積分信号D11,D12″と閾値THとの大小関
係を比較すると同時に論理和演算処理を行う。したがっ
て、次表に示す論理出力D13が発生する。
Reference numeral 50 denotes a logical sum circuit in which a predetermined threshold value TH is set in advance by the CMOS structure, and compares the magnitude relationship between the integrated signals D11 and D12 ″ generated at both ends of the capacitive elements 45 and 49 with the threshold value TH, and at the same time logically compares them. A sum operation process is performed, so that a logical output D13 shown in the following table is generated.

51はスペースに対応するFM波の4倍の周波数4×f
の矩形信号列を発振するマルチバイブレータであり、
この矩形信号列を4分の1分周回路52で分周すること
により周波数がfの第3の基準信号S21を形成すると
共に、一方、JKフリップフロップから成る遅延回路5
3で一周期分の遅延を行ってから4分の1分周回路54
で分周することにより周波数がf且つ位相差90°の
第4の基準信号S22を形成する。
51 is a frequency 4 × f which is four times as high as the FM wave corresponding to the space.
is a multivibrator that oscillates a rectangular signal sequence of s ,
This rectangular signal sequence is divided by a quarter divider 52 to form a third reference signal S21 having a frequency f s , while the delay circuit 5 including a JK flip-flop is used.
After delaying one cycle in 3, the quarter divider circuit 54
By dividing by, a fourth reference signal S22 having a frequency of f s and a phase difference of 90 ° is formed.

デジタル信号SDと第3の基準信号S21はEXOR56
で論理演算された後、インバータ回路57で否定演算さ
れ、抵抗58と容量素子59から成る所定時定数の積分
回路へ供給される。
The digital signal SD and the third reference signal S21 are EXOR56
Then, the inverter circuit 57 performs a negative operation, and the result is supplied to an integrating circuit having a predetermined time constant composed of a resistor 58 and a capacitive element 59.

又、デジタル信号SDと第4の基準信号S22はEXOR
60で論理演算された後、インバータ回路61で否定演
算され、抵抗62と容量素子63から成る所定時定数の
積分回路へ供給される。尚、インバータ回路57,61
は前述の43,47同様、移動,省略が可能である。
The digital signal SD and the fourth reference signal S22 are EXOR
After being logically operated by 60, the inverter circuit 61 performs a negative operation, and the result is supplied to an integrating circuit having a predetermined time constant composed of a resistor 62 and a capacitive element 63. The inverter circuits 57, 61
Can be moved or omitted like 43 and 47 described above.

64はCMOS構造により予め所定の閾値THが設定さ
れた論理和回路であり、容量素子59,63の各両端に
発生する各積分信号D21,D22と閾値THとの大小関係
を比較すると同時に論理和演算処理を行う。したがっ
て、次表に示す論理出力D23が発生する。
Reference numeral 64 denotes a logical sum circuit in which a predetermined threshold value TH is set in advance by the CMOS structure, and compares the magnitude relation between the integrated signals D21 and D22 generated at both ends of the capacitive elements 59 and 63 with the threshold value TH, and at the same time, performs a logical sum. Perform arithmetic processing. Therefore, the logical output D23 shown in the following table is generated.

次に、第1図の判定回路34,35及び合成回路36に
相当する回路を説明すると、論理積回路65がインバー
タ回路66で反転された信号D′23と信号D13との論理
積演算を行い、論理積回路67がインバータ回路68で
反転された信号D′13と信号D′23を論理積演算を行
い、論理積回路69が信号D13とD23を論理積演算し、
論理積回路67,69の論理出力を論理和回路70で論
理和演算する。
Next, a circuit corresponding to the decision circuits 34 and 35 and the synthesizing circuit 36 of FIG. 1 will be described. A logical product circuit 65 performs a logical product operation of the signal D'23 and the signal D13 inverted by the inverter circuit 66. The AND circuit 67 performs the AND operation on the signal D'13 and the signal D'23 inverted by the inverter circuit 68, and the AND circuit 69 performs the AND operation on the signals D13 and D23,
A logical sum circuit 70 performs a logical sum operation on the logical outputs of the logical product circuits 67 and 69.

71は論理積回路65の出力と出力端子72との間の開
閉動作を論理和回路70の出力信号に従って制御するア
ナログスイッチであり、出力側接点に容量素子73が接
続されている。
Reference numeral 71 is an analog switch for controlling the opening / closing operation between the output of the logical product circuit 65 and the output terminal 72 according to the output signal of the logical sum circuit 70, and the capacitance element 73 is connected to the output side contact.

そして、信号D13とD23の論理値レベルに応じて、出力
端子72には次表に示す復調信号Sが出力される。
Then, the demodulated signal S 0 shown in the following table is output to the output terminal 72 according to the logic level of the signals D13 and D23.

尚、D13=“H”、D23=“H”のとき又は、D13=
“L”、D23=“L”のときは、論理和回路70の出力
が“L”レベルとなるので、アナログスイッチ71が非
導通となり、従前のタイミングで容量素子73に保持さ
れたレベルの電圧がそのまま復調信号S0となり、雑音
成分による誤った復調を防止する。
When D13 = "H" and D23 = "H", or when D13 =
When “L” and D23 = “L”, the output of the OR circuit 70 becomes “L” level, so that the analog switch 71 becomes non-conductive, and the voltage of the level held in the capacitive element 73 at the previous timing. Becomes the demodulated signal S0 as it is, and erroneous demodulation due to noise components is prevented.

このように、この実施例によれば、復調器における信号
の通過帯域は、上記積分器の時定数で決定されることと
なり、これは、同一速度の符号で変調されたFSK信号
の復調で比較すれば、従来のアナログ方式に較べてこの
実施例の方が約5倍程度狭くなり、その分だけS/N比
が向上すると同時に復調感度が向上する。
As described above, according to this embodiment, the pass band of the signal in the demodulator is determined by the time constant of the integrator, which is compared in the demodulation of the FSK signal modulated with the code of the same speed. In this case, this embodiment is about 5 times narrower than the conventional analog system, and the S / N ratio is improved by that amount, and at the same time the demodulation sensitivity is improved.

又、従来のアナログ技術を使用しないので調整が容易と
なり、又、回路が簡素となり装置の小形化を実現するこ
とができる。
Further, since the conventional analog technology is not used, the adjustment becomes easy, the circuit becomes simple, and the device can be downsized.

尚、この実施例では、処理機能毎に個々の回路で構成し
た場合を示すが、電子計算機による電子的演算処理、即
ちコンピュータプログラムに従った演算処理を行うマイ
クロプロセッサなどを回路の一部又は全部に置き換え
て、同様の処理機能を発揮させるようにしてもよい。
In this embodiment, the case where each processing function is configured by an individual circuit is shown. However, a part or all of the circuit includes an electronic arithmetic processing by an electronic computer, that is, a microprocessor for performing arithmetic processing according to a computer program. The same processing function may be achieved by replacing

[発明の効果] 以上説明してきたように、本発明はデジタル論理演算技
術により構成するので、従来のアナログ方式のような容
量素子、抵抗、インダクタンス素子などの部品点数を大
幅に低減し、装置の小形化が可能になる。又、インダク
タンス素子は全く必要としないので、集積回路(IC、
LSI)化に適している。又、マイクロコンピュータな
どを併存した装置の実現も容易である。又、マイクロコ
ンピュータなどの電子演算装置を用いて実現することも
容易であり、装置の高機能化や小形化に適している。
[Effects of the Invention] As described above, since the present invention is configured by the digital logic operation technique, the number of parts such as the capacitive element, the resistance, and the inductance element as in the conventional analog method is significantly reduced, and It can be miniaturized. Also, since no inductance element is required, an integrated circuit (IC,
Suitable for LSI). In addition, it is easy to realize a device including a microcomputer and the like. Further, it can be easily realized by using an electronic arithmetic unit such as a microcomputer, and it is suitable for high performance and miniaturization of the unit.

又、アナログ技術特有の温度補償などの調整が殆ど無く
なることから調整が容易で信頼性向上を図ることができ
る。
Also, since adjustments such as temperature compensation peculiar to analog technology are almost eliminated, adjustments are easy and reliability can be improved.

以上を総合して、本発明は、従来のアナログ方式に比較
して、高性能且つ小形軽量、しかも経済性に富み、優れ
たFSK信号復調器を提供することができる。
Based on the above, the present invention can provide an FSK signal demodulator which is superior in performance, small in size and light in weight and excellent in economical efficiency as compared with the conventional analog system.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の原理を説明するための原理説明図; 第2図は本発明の一実施例の構成を示す回路図; 第3図は波形整形回路の機能を説明する説明図; 第4図はFSK方式の変調及び復調信号の関係を示す説
明図; 第5図、第6図及び第7図は従来の復調器の構成を示す
従来構成説明図である。 図中の符号: 19,37;波形整形回路 20,21,22,23;掛算器 24,25;基準信号発生器 26,27,28,29;積分器 30,31,32,33;比較器 34,35;判定回路 36;合成回路 38,51;マルチバイブレータ 40,53;遅延回路 39,41,52,54;1/4分周回路 42,46,56,60;排他的論理和回路 43,47,57,61,66,68;インバータ回路 44,48,58,62;抵抗 45,49,59,63,73;容量素子 50,64,70;論理和回路 65,67,69;論理積回路
FIG. 1 is a principle explanatory diagram for explaining the principle of the present invention; FIG. 2 is a circuit diagram showing a configuration of an embodiment of the present invention; FIG. 3 is an explanatory diagram for explaining the function of a waveform shaping circuit; FIG. 4 is an explanatory diagram showing the relationship between FSK modulation and demodulation signals; FIGS. 5, 6 and 7 are conventional configuration explanatory diagrams showing the configuration of a conventional demodulator. Reference numerals in the figure: 19, 37; waveform shaping circuit 20, 21, 22, 23; multiplier 24, 25; reference signal generator 26, 27, 28, 29; integrator 30, 31, 32, 33; comparator 34, 35; Judgment circuit 36; Combining circuit 38, 51; Multivibrator 40, 53; Delay circuit 39, 41, 52, 54; Quarter divider circuit 42, 46, 56, 60; Exclusive OR circuit 43 , 47, 57, 61, 66, 68; Inverter circuit 44, 48, 58, 62; Resistor 45, 49, 59, 63, 73; Capacitance element 50, 64, 70; OR circuit 65, 67, 69; Logic Product circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】マークとスペースの時系列信号を周波数の
相違する2種類の信号に変調して成るFSK信号を元の
時系列信号に復調するFSK信号復調器において、 前記FSK信号の振幅変調成分を除去して周波数成分の
みから成るデジタル信号を発生する波形整形手段と、 検出すべき第1の周波数に等しい矩形パルス波から成る
第1の基準信号と該デジタル信号との間で排他的論理和
演算を行い、且つ該論理演算による出力信号を積分した
後、該積分演算出力値と特定の閾値とを比較して夫々の
値の大小に応じたレベルの第1デジタル値信号に変換す
る第1の変換手段と、 検出すべき第1の周波数に等しく且つ上記第1の基準信
号とは相互に90°の位相差を有する第2の基準信号と
上記波形整形手段のデジタル信号との間で排他論理和演
算を行い、且つ該論理演算による出力信号を積分した
後、該積分演算出力値と特定の閾値とを比較して夫々の
値の大小に応じたレベルの第2デジタル値信号に変換す
る第2の変換手段と、 第1,第2の変換手段より出力した第1,第2デジタル
値信号の論理和演算を行う第1の演算手段と、 検出すべき第2の周波数に等しい矩形パルス波から成る
第3の基準信号と上記波形整形手段より出力するデジタ
ル信号との間で排他論理和演算を行い、且つ該論理演算
により出力信号を積分した後、該積分演算出力値と特定
の閾値とを比較して夫々の値の大小に応じたレベルの第
3デジタル値信号に変換する第3の変換手段と、 検出すべき第2の周波数に等しく且つ上記第2の基準信
号とは相互に90°の位相差を有する第4の基準信号と
上記波形整形手段のデジタル信号との間で排他論理和演
算を行い、且つ該論理和演算による出力信号を積分した
後、該積分演算出力値と特定の閾値とを比較して夫々の
値の大小に応じたレベルの第4デジタル値信号に変換す
る第4の変換手段と、 第3,第4の変換手段より出力した第3,第4デジタル
値信号の論理和演算を行う第2の演算手段と、 上記第1の演算手段の出力が真で第2の演算手段の出力
が偽の状態では真と判定し、第1の演算手段の出力が偽
で第2の演算手段の出力が真の状態では偽と判定し、第
1及び第2の演算手段が共に真又は偽のときは従前の判
定結果を適用して、真の判定の対してマーク信号、偽の
判定に対してスペース信号を発生することにより復調信
号を合成する合成手段と、 を備えたことを特徴とするFSK信号復調器。
1. An FSK signal demodulator for demodulating an FSK signal obtained by modulating a time-series signal of a mark and a space into two kinds of signals having different frequencies into an original time-series signal, and an amplitude modulation component of the FSK signal. , A waveform shaping means for generating a digital signal consisting only of frequency components, and an exclusive OR between the first reference signal consisting of a rectangular pulse wave equal to the first frequency to be detected and the digital signal. After performing an operation and integrating an output signal by the logical operation, the integrated operation output value is compared with a specific threshold value and converted into a first digital value signal of a level according to the magnitude of each value. And the second reference signal equal to the first frequency to be detected and having a phase difference of 90 ° with each other between the first reference signal and the digital signal of the waveform shaping means. Logical sum And integrating the output signal by the logical operation, comparing the integrated operation output value with a specific threshold value, and converting into a second digital value signal of a level according to the magnitude of each value. It comprises a conversion means, a first operation means for performing a logical sum operation of the first and second digital value signals outputted from the first and second conversion means, and a rectangular pulse wave having a second frequency to be detected. An exclusive OR operation is performed between the third reference signal and the digital signal output from the waveform shaping means, and the output signal is integrated by the logical operation, and then the integrated operation output value is compared with a specific threshold value. Then, the third converting means for converting into the third digital value signal of the level corresponding to the magnitude of each value and the second reference signal equal to the second frequency to be detected and having the second reference signal of 90 ° to each other. Fourth reference signal having a phase difference and the above waveform shaping After performing an exclusive OR operation with the digital signal of the stage and integrating the output signal by the OR operation, the output value of the integration operation is compared with a specific threshold value, and according to the magnitude of each value. Fourth converting means for converting into a fourth digital value signal of the level; second calculating means for performing a logical sum operation of the third and fourth digital value signals output from the third and fourth converting means; When the output of the first arithmetic means is true and the output of the second arithmetic means is false, it is determined to be true, and when the output of the first arithmetic means is false and the output of the second arithmetic means is false. When both the first and second arithmetic means are true or false, the previous determination result is applied to generate a mark signal for true determination and a space signal for false determination. FSK signal demodulator, characterized in that:
【請求項2】請求項(1)のFSK信号復調器におい
て、 前記各手段の一部又は全ての手段の処理を、電子演算手
段により行うことを特徴とするFSK信号復調器。
2. The FSK signal demodulator according to claim 1, wherein a part or all of the respective means are processed by an electronic arithmetic means.
JP22372489A 1989-08-30 1989-08-30 FSK signal demodulator Expired - Lifetime JPH0626345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22372489A JPH0626345B2 (en) 1989-08-30 1989-08-30 FSK signal demodulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22372489A JPH0626345B2 (en) 1989-08-30 1989-08-30 FSK signal demodulator

Publications (2)

Publication Number Publication Date
JPH0385948A JPH0385948A (en) 1991-04-11
JPH0626345B2 true JPH0626345B2 (en) 1994-04-06

Family

ID=16802689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22372489A Expired - Lifetime JPH0626345B2 (en) 1989-08-30 1989-08-30 FSK signal demodulator

Country Status (1)

Country Link
JP (1) JPH0626345B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3860292B2 (en) * 1997-06-24 2006-12-20 大井電気株式会社 Demodulation method of frequency shift keying signal
JP4789189B2 (en) * 2006-03-14 2011-10-12 日本放送協会 Emergency warning signal receiving apparatus and method
JP2009055097A (en) * 2007-08-23 2009-03-12 Advanced Telecommunication Research Institute International Fsk demodulation circuit and method

Also Published As

Publication number Publication date
JPH0385948A (en) 1991-04-11

Similar Documents

Publication Publication Date Title
JPH0738455A (en) Radio receiver
JPS6024614B2 (en) timing recovery circuit
AU660878B2 (en) Differential detection demodulator
Roshna et al. Design and implementation of digital Costas loop and bit synchronizer in FPGA for BPSK demodulation
JP2579243B2 (en) Demodulator
JP2837982B2 (en) Delay detection demodulator
JPH0626345B2 (en) FSK signal demodulator
JP3553286B2 (en) FSK demodulation circuit
US5999577A (en) Clock reproducing circuit for packet FSK signal receiver
JPS5892162A (en) Method and apparatus for timing phase control
JP3658768B2 (en) FM receiver
JPH0626349B2 (en) FSK signal demodulator
JP3540393B2 (en) Costas Loop
JP2517035B2 (en) Frequency discrimination circuit
JPH06224948A (en) Data demodulator
JPS59168752A (en) Frequency detector
JP4230688B2 (en) Frequency demodulation circuit by digital signal processing
JP2517028B2 (en) Frequency detection circuit
JPS60139047A (en) Msk demodulating circuit
RU2195074C2 (en) Analog phase-modulated single-sideband signal receiver
RU1830631C (en) Device for restoration of signal carrier frequency through quadrature on/off keying
JPS60162304A (en) Digital demodulator
JPS6029003A (en) Fm demodulator
JPH08139770A (en) Direct converting receiver
JPH01152845A (en) Fsk detecting circuit