JPH0385948A - Fsk signal demodulator - Google Patents

Fsk signal demodulator

Info

Publication number
JPH0385948A
JPH0385948A JP22372489A JP22372489A JPH0385948A JP H0385948 A JPH0385948 A JP H0385948A JP 22372489 A JP22372489 A JP 22372489A JP 22372489 A JP22372489 A JP 22372489A JP H0385948 A JPH0385948 A JP H0385948A
Authority
JP
Japan
Prior art keywords
signal
output
value
circuit
digital
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22372489A
Other languages
Japanese (ja)
Other versions
JPH0626345B2 (en
Inventor
Keitaro Sekine
慶太郎 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP22372489A priority Critical patent/JPH0626345B2/en
Publication of JPH0385948A publication Critical patent/JPH0385948A/en
Publication of JPH0626345B2 publication Critical patent/JPH0626345B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a signal demodulator formed easily with small size by deciding a mark and a space according to the logical value of each output of a deciding circuit and outputting an H level logic signal to the mark and an L level logic signal to the space to attain discrimination and demodulation. CONSTITUTION:The output signal of a waveform shaping circuit 19 converting an FSK(frequency shift keying) signal into a digital signal is fed to multipliers 20-23, the output signals are integrated and each integration result is compared with a threshold level at a comparator to form the digital signal of a binary level according to the relation of quantity with respect to the threshold level. A deciding circuit 35 ORs the output signals of comparators 32, 33, and when the output of the deciding circuit 34 is true and the output of the deciding circuit 34 is false, an H level is outputted and when the output of the deciding circuit 34 is false and the output of the deciding circuit 35 is true, an L level is outputted from a synthesis circuit 36. Thus, the number of components is considerably reduced and the miniaturization of the device is attained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、マークとスペースと呼ばれる2種類の情報に
夫々所定の周波数を割当てることにより情報を符号化す
るFSK (周波数偏移電鍵)方式で変調した信号を、
元のマークとスペースで表される信号に復調するための
復調器に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention uses the FSK (Frequency Shift Keying) method, which encodes information by assigning predetermined frequencies to two types of information called marks and spaces. The modulated signal is
This invention relates to a demodulator for demodulating a signal represented by original marks and spaces.

[従来の技術] FSK変調は、例えば第4図に示すように、論理値“1
”のデジタルデータ(マーク)を周波数fl、論理値“
0”のデジタルデータ(スペース)を周波数f2  (
但し、fl=f2)のFM波で表す周波数変調方式の一
種である。
[Prior art] For example, as shown in FIG.
"Digital data (mark) of frequency fl, logical value"
0” digital data (space) at frequency f2 (
However, it is a type of frequency modulation method expressed by FM waves of fl=f2).

従来、このFSK変調により変調された信号(以下、F
SK信号という)を復調して元のマークとスペースで表
される信号に復調するためには、無線受信機などにあっ
ては、高周波数のFSK信号をヘテロゲインによって周
波数の相違する2種類の低周波数のFSK信号に変換し
、こられの信号についてマークとスペースの弁別復調を
行うのが一般的であった。
Conventionally, a signal modulated by this FSK modulation (hereinafter referred to as FSK modulation)
In order to demodulate a high-frequency FSK signal into the original signal represented by marks and spaces, a wireless receiver uses a hetero gain to convert the high-frequency FSK signal into two types of low-frequency signals with different frequencies. It has been common practice to convert the frequency into FSK signals and perform mark and space differential demodulation on these signals.

例えば、第5図に示す従来例の復調器にあっては、高周
波のFM波からなるFSK信号をSINを、夫々の共振
周波数が相違する一対の同調回路1゜2に供給し、各同
調回路1.2に継続接続した整流回路3.4に発生した
信号S1.S2を電圧加算回路5で加算し、電圧加算回
路5の出力信号S3を比較器6が予め設定されている基
準電圧と比較して、該基準電圧との大小関係からマーク
とスペースの2値しベル信号に弁別する。
For example, in the conventional example demodulator shown in FIG. The signal S1.1.2 generated in the rectifier circuit 3.4 is continuously connected to S1.1.2. S2 is added by a voltage adder circuit 5, and a comparator 6 compares the output signal S3 of the voltage adder circuit 5 with a preset reference voltage, and calculates the binary value of mark and space based on the magnitude relationship with the reference voltage. Discriminate into bell signal.

また、第6図に示すように、FSX信号SINと電圧制
御発振回路からの信号の位相を比較する位相比較回路7
、低域フィルタ8、及び低域フィルタの出力電圧に比例
して発振周波数が変化する電圧制御発振回路9を備え、
入力のFSK信号の周波数と、電圧制御発振回路の発振
周波数とを、常に同一に保つように帰還を施したフェイ
ズロックドループを構成することにより、復調信号SO
を発生する復調器が知られている。
Further, as shown in FIG. 6, a phase comparison circuit 7 compares the phase of the FSX signal SIN and the signal from the voltage controlled oscillation circuit.
, a low-pass filter 8, and a voltage-controlled oscillation circuit 9 whose oscillation frequency changes in proportion to the output voltage of the low-pass filter,
The demodulated signal SO
A demodulator that generates is known.

更に、無線通信などにおいて感度を向上させるためには
、伝送中に生じる各種の雑音を除去し、復調しようとす
るマーク信号とスペース信号を能率良く検出する必要が
ある。そこで、第5図に示したようなFSK信号復調器
にあっては、flとflの周波数で弁別する同調回路の
Qを上げることによって通過帯域を狭くしたり、第6図
に示すようなPLL方式の復調器にあっては、ループフ
ィルタの時定数を大きくすることで通過帯域を等価的に
狭くするなどの手法を採ることにより、信号のS/N比
を改善し、復調器の感度向上を図っていた。
Furthermore, in order to improve sensitivity in wireless communications, etc., it is necessary to remove various noises generated during transmission and efficiently detect mark signals and space signals to be demodulated. Therefore, in the FSK signal demodulator shown in Fig. 5, the passband is narrowed by increasing the Q of the tuning circuit that discriminates between fl and fl frequencies, or the PLL signal demodulator shown in Fig. 6 is used. In this type of demodulator, by increasing the time constant of the loop filter to equivalently narrow the passband, the S/N ratio of the signal is improved and the sensitivity of the demodulator is improved. was aiming for

[発明が解決しようとする課題] しかしながら、このような従来のFSK信号復調器にあ
っては、同調回路のQを上げるにつれてリンギングなど
の過渡現象が発生することに起因して、弁別能力の低下
を招来する問題があった。
[Problems to be Solved by the Invention] However, in such a conventional FSK signal demodulator, as the Q of the tuning circuit is increased, transient phenomena such as ringing occur, resulting in a decrease in discrimination ability. There was a problem that led to

本願発明者の実験によれば、例えば45.5ボー170
HzシフトのFSX信号に対してQを20以上に設定す
ると、かえって誤字率の増加が認められた。
According to the inventor's experiments, for example, 45.5 baud 170
When Q was set to 20 or more for the Hz-shifted FSX signal, the error rate was found to increase.

又、従来はアナログ技術を用いているため、アナログ回
路特有の調整が煩雑であったり、部品点数が多くなった
りた、装置全体が大型化するなどの欠点があった。
Furthermore, since analog technology has been used in the past, there have been disadvantages such as complicated adjustments specific to analog circuits, an increase in the number of parts, and an increase in the size of the entire device.

又、情報理論に基づいた理想的なFSX信号復調器を、
アナログ技術を用いて構成するものとすると、例えば第
7図に示すように、基準信号発生器10で、相互の位相
差が90°異なる同一周波数の正弦波信号Sfl、Sf
2を発生し、掛算器11でFSK信号SINと正弦波信
号Sflとの乗算演算処理を行わせてからその出力を積
分器13で積分演算することにより信号SINとSfl
 との相互相関演算処理を行い、同様に、掛算器12に
おいてFSK信号SINと正弦波信号Sf2との乗算演
算処理を行わせてからその出力を積分器14で積分演算
することにより信号SINとSF3との相互相関演算処
理を行う。
In addition, an ideal FSX signal demodulator based on information theory,
If the structure is constructed using analog technology, for example, as shown in FIG.
2, the multiplier 11 multiplies the FSK signal SIN and the sine wave signal Sfl, and the output is integrated by the integrator 13 to obtain the signals SIN and Sfl.
Similarly, the multiplier 12 multiplies the FSK signal SIN and the sine wave signal Sf2, and the output is integrated by the integrator 14 to obtain the signals SIN and SF3. Performs cross-correlation calculation processing with

そして、各積分器13.14から出力された相互相関値
出力の2乗演算を2乗演算器15.16で行って、それ
らの演算出力を加算器17で加算した後、平方根演算器
18で平方根(S quareRoot )を求め、こ
の出力を復調信号とする。
Then, the cross-correlation value output from each integrator 13.14 is squared by a square calculator 15.16, the calculated outputs are added by an adder 17, and then a square root calculator 18 is used. The square root (S squareRoot ) is calculated and the output is used as a demodulated signal.

このような復調器によれば、積分器の時定数の逆数に相
当する極めて狭い通過帯域を信号の歪みを招来すること
なく実現することができ、高感度の信号検出を可能にす
ることができる。
According to such a demodulator, an extremely narrow passband corresponding to the reciprocal of the integrator time constant can be realized without causing signal distortion, and highly sensitive signal detection can be achieved. .

しかしながら、このような復調器を実現するには、相互
に90°の位相差を有する正弦波信号を形成するための
信号発生器、アナログ信号を乗算演算するための複数の
掛算器、平方根演算を行うためのアナログ演算器などを
必要とすることから、回路が複雑となり、調整が困難で
あるなどの問題がある。
However, in order to realize such a demodulator, a signal generator for forming sine wave signals with a phase difference of 90 degrees, multiple multipliers for multiplying analog signals, and a square root operation are required. Since an analog arithmetic unit and the like are required to carry out the calculation, the circuit becomes complicated and there are problems such as difficulty in adjustment.

本発明は、このような課題に鑑みて成されたものであり
、デジタル回路技術を適応して、製作が容易で極めて小
形なFSK信号復調器を提供することを目的とする。
The present invention has been made in view of these problems, and an object of the present invention is to provide an FSK signal demodulator that is easy to manufacture and extremely compact by applying digital circuit technology.

[課題を解決するための手段] 第1図は本発明の原理構成図である。同図に基づいて本
発明の詳細な説明すると、伝送されてきたFSK信号S
INの振幅を一定レベルに制し且つ“H″と“L”の2
値レベルのデジタル信号に変換する波形整形回路19を
備え、波形整形回路19より出力したデジタル信号を4
個の掛算器20゜21.22.23に供給する。
[Means for Solving the Problems] FIG. 1 is a diagram showing the principle configuration of the present invention. To explain the present invention in detail based on the figure, the transmitted FSK signal S
Control the amplitude of IN to a constant level and
It is equipped with a waveform shaping circuit 19 that converts the digital signal into a value level digital signal, and converts the digital signal outputted from the waveform shaping circuit 19 into
multipliers 20°21.22.23.

基準信号発生器24はマークに対応するFM波と等しい
周波数fmの基準信号811を掛算器20に供給すると
共に、基準信号Sllとは90°の位相差を有する周波
数f+nの基準信号SI2を掛算器21に供給する。
The reference signal generator 24 supplies a reference signal 811 with a frequency fm equal to the FM wave corresponding to the mark to the multiplier 20, and also supplies a reference signal SI2 with a frequency f+n having a phase difference of 90° from the reference signal Sll to the multiplier 20. 21.

基準信号発生器25はスペースに対応するFM波と等し
い周波数fsの基準信号S2+を掛算器22に供給する
と共に、基準信号S21とは90°の位相差を有する周
波数fsの基準信号322を掛算器23に供給する。
The reference signal generator 25 supplies a reference signal S2+ with a frequency fs equal to the FM wave corresponding to the space to the multiplier 22, and also supplies a reference signal 322 with a frequency fs having a phase difference of 90 degrees from the reference signal S21 to the multiplier 22. 23.

尚、これらの掛算器20,21.22.23は排他的論
理和の否定演算を行うことにより掛算処理を実現する。
Note that these multipliers 20, 21, 22, and 23 realize multiplication processing by performing a negative operation of exclusive OR.

そして、各掛算器20,21.22.23で入力信号の
積演算を行い、夫々の出力を積分器26゜27.28.
29で積分し、更に各積分結果を所定の閾値を有する比
較器30. 31. 32. 33で比較し、閾値との
大小関係に従った2値レベルのデジタル値信号を形成す
る。そして、比較器30.31で出力したデジタル値信
号の論理和演算を判定回路34において、比較器32.
33で出力したデジタル値信号の論理和演算を判定回路
35において夫々行い、判定回路34の出力が真及び判
定回路35の出力が偽ならばn”レベルの出力、判定回
路34の出力が偽及び判定回路35の出力が真ならば“
L”レベルの出力、更に判定回路34と35の出力が共
に真又は偽ならば従前の判定結果と同一のレベルの出力
を合成回路36で発生する構成とする。
Then, each multiplier 20, 21, 22, 23 performs a product operation of the input signals, and the respective outputs are sent to an integrator 26, 27, 28, 26, 27, 28, .
29, and each integration result is integrated by a comparator 30 having a predetermined threshold value. 31. 32. 33 to form a binary level digital value signal according to the magnitude relationship with the threshold value. Then, a logical sum operation of the digital value signals output from the comparators 30, 31 is performed in the determination circuit 34, and the comparators 32, 32, .
The logical sum operation of the digital value signals outputted in step 33 is performed in the judgment circuit 35, and if the output of the judgment circuit 34 is true and the output of the judgment circuit 35 is false, the output is n'' level, and the output of the judgment circuit 34 is false and false. If the output of the judgment circuit 35 is true, “
If the L'' level output and the outputs of the determination circuits 34 and 35 are both true or false, the synthesis circuit 36 generates an output of the same level as the previous determination result.

[作用] このような構成を有する本発明にあっては、判定回路3
4と35の出力が各周波数fmとfSの検波結果となる
ので、夫々の出力の論理値の関係からマークとスペース
を判定し、そしてマークに対してH”、スペースに対し
て“L”レベルの論理信号を出力することにより弁別復
調を行うことができる。
[Operation] In the present invention having such a configuration, the determination circuit 3
Since the outputs of 4 and 35 are the detection results of each frequency fm and fS, mark and space are determined from the relationship of the logical values of each output, and the level is set to "H" for marks and "L" for spaces. Discriminative demodulation can be performed by outputting a logical signal.

又、判定回路34と35の出力が共に同一の論理値とな
った場合には、従前の復調結果を踏襲することとしたの
で、伝送中の雑音等を除去することができる。
Further, when the outputs of the determination circuits 34 and 35 both have the same logical value, the previous demodulation result is followed, so that noise during transmission can be removed.

[実施例] 以下、本発明の一実施例を図面と共に説明する。[Example] An embodiment of the present invention will be described below with reference to the drawings.

まず第2図に基づいて構成を説明すると、37はリミッ
タ機能を有する波形整形回路であり、第3図に示すよう
に、人力されたFSK信号SINを振幅制限してH”と
′L″ レベルのデジタル信号SDに変換する。
First, the configuration will be explained based on FIG. 2. 37 is a waveform shaping circuit having a limiter function, and as shown in FIG. is converted into a digital signal SD.

38はマークに対応するFM波の4倍の周波数4Xfm
の矩形信号列を発振するマルチバイブレタであり、この
矩形信号列を4分の1分周回路39で分周することによ
り周波数がfIllの第1の基準信号811を形成する
と共に、一方、JKフリップフロップから成る遅延回路
40で一周期分の遅延を行ってから4分の1分周回路4
1−で分周することにより周波数がfIll且つ位相差
90°の第2の基準信号812を形成する。
38 is the frequency 4Xfm, which is four times the frequency of the FM wave corresponding to the mark.
This is a multivibrator that oscillates a rectangular signal train, and by dividing this rectangular signal train by a quarter frequency dividing circuit 39, a first reference signal 811 having a frequency fIll is formed. After the delay circuit 40 consisting of the
By dividing the frequency by 1-, a second reference signal 812 having a frequency of fIll and a phase difference of 90° is formed.

デジタル信号SDと第1の基準信号Sllは排他的論理
和回路(以下、EXOR)42で論理演算された後、イ
ンバータ回路43で否定演算され、抵抗44と容量素子
45から成る所定時定数の積分回路へ供給される。
The digital signal SD and the first reference signal Sll are subjected to a logical operation in an exclusive OR circuit (hereinafter referred to as EXOR) 42, then inverted in an inverter circuit 43, and integrated with a predetermined time constant consisting of a resistor 44 and a capacitive element 45. Supplied to the circuit.

又、デジタル信号SDと第2の基準信号S12はEXO
R46で論理演算された後、インバータ回路47で否定
演算され、抵抗48と容量素子49から成る所定時定数
の積分回路へ供給される。
Moreover, the digital signal SD and the second reference signal S12 are EXO
After a logical operation is performed in R46, a negative operation is performed in an inverter circuit 47, and the resultant signal is supplied to an integrating circuit having a predetermined time constant and consisting of a resistor 48 and a capacitive element 49.

なお、インバータ43.47は適当な論理変換を施すこ
とにより別の部分に移したり、あるいは省略することも
できる。
Incidentally, the inverters 43, 47 can be moved to another part or can be omitted by performing appropriate logic conversion.

50はCMO8構造により予め所定の閾値THが設定さ
れた論理和回路であり、容量素子45゜49の各両端に
発生する各積分信号D1.I、 [2”と閾値THとの
大小関係を比較すると同時に論理和演算処理を行う。し
たがって、次表に示す論理出力DI3が発生する。
Reference numeral 50 denotes an OR circuit in which a predetermined threshold value TH is set in advance using a CMO8 structure, and each integrated signal D1 . At the same time as comparing the magnitude relationship between I, [2'' and the threshold value TH, a logical sum calculation process is performed. Therefore, the logical output DI3 shown in the following table is generated.

51はスペースに対応するFM波の4倍の周波数4Xf
sの矩形信号列を発振するマルチバイブレータであり、
この矩形信号列を4分の1分周回路52で分周すること
により周波数がfsの第3の基準信号S21を形成する
と共に、一方、JKフリップフロップから成る遅延回路
53で一周期分の遅延を行ってから4分の1分周回路5
4で分周することにより周波数がfs且つ位相差90°
の第4の基準信号822を形成する。
51 is the frequency 4Xf, which is four times the frequency of the FM wave corresponding to the space.
It is a multivibrator that oscillates a rectangular signal train of s,
A third reference signal S21 having a frequency of fs is formed by dividing this rectangular signal train by a quarter frequency divider circuit 52, and a delay circuit 53 consisting of a JK flip-flop delays one period. After performing 1/4 frequency divider circuit 5
By dividing the frequency by 4, the frequency becomes fs and the phase difference is 90°.
A fourth reference signal 822 is formed.

デジタル信号SDと第3の基準信号S21はEXOR5
6で論理演算された後、インバータ回路57で否定演算
され、抵抗58と容量素子59から成る所定時定数の積
分回路へ供給される。
Digital signal SD and third reference signal S21 are EXOR5
After the logic operation is performed in step 6, the signal is inverted in an inverter circuit 57, and is supplied to an integrating circuit with a predetermined time constant, which is made up of a resistor 58 and a capacitive element 59.

又、デジタル信号SDと第4の基準信号822はEXO
R60で論理演算された後、インバータ回路61で否定
演算され、抵抗62と容量素子63から成る所定時定数
の積分回路へ供給される。尚、インバータ回路57.6
1は前述の43.47同様、移動、省略が可能である。
Moreover, the digital signal SD and the fourth reference signal 822 are EXO
After a logical operation is performed in R60, a negative operation is performed in an inverter circuit 61, and the resultant signal is supplied to an integrating circuit having a predetermined time constant, which includes a resistor 62 and a capacitive element 63. In addition, the inverter circuit 57.6
1 can be moved or omitted like 43.47 described above.

64はCMO8構造により予め所定の閾値THが設定さ
れた論理和回路であり、容量素子59゜63の各両端に
発生する各積分信号D21. D22と閾値THとの大
小関係を比較すると同時に論理和演算処理を行う。した
がって、次表に示す論理出力D23が発生する。
64 is an OR circuit in which a predetermined threshold value TH is set in advance using a CMO8 structure, and each integrated signal D21 . At the same time as comparing the magnitude relationship between D22 and the threshold value TH, a logical sum calculation process is performed. Therefore, the logic output D23 shown in the following table is generated.

次に、第1図の判定回路34.35及び合成回路36に
相当する回路を説明すると、論理積回路65がインバー
タ回路66で反転された信号D′23と信号DI3との
論理積演算を行い、論理積回路67がインバータ回路6
8で反転された信号D′13と信号D′23を論理積演
算を行い、論理積回路69が信号DHとD23を論理積
演算し、論理積回路67.69の論理出力を論理和回路
70で論理和演算する。
Next, to explain the circuits corresponding to the determination circuits 34 and 35 and the synthesis circuit 36 in FIG. , the AND circuit 67 is the inverter circuit 6
The AND circuit 69 performs an AND operation on the signal D'13 inverted at 8 and the signal D'23, and the AND circuit 69 performs an AND operation on the signal DH and D23. Performs a logical OR operation.

71は論理積回路65の出力と出力端子72との間の開
閉動作を論理和回路70の出力信号に従って制御するア
ナログスイッチであり、出力側接点に容量素子73が接
続されている。
Reference numeral 71 denotes an analog switch that controls the opening/closing operation between the output of the AND circuit 65 and the output terminal 72 according to the output signal of the OR circuit 70, and a capacitive element 73 is connected to the output side contact.

そして、信号D13とD23の論理値レベルに応じて、
出力端子72には次表に示す復調信号Soが出力される
Then, depending on the logical value levels of signals D13 and D23,
A demodulated signal So shown in the following table is output to the output terminal 72.

尚、DI3= ”H”、D23=“H”(7)、l又G
i、D13=“L”、D23=″L”のときは、論理和
回路70の出力が“L@レベルとなるので、アナログス
イッチ71が非導通となり、従前のタイミングで容量素
子73に保持されたレベルの電圧がそのまま復調信号S
Oとなり、雑音成分による誤った復調を防止する。
In addition, DI3="H", D23="H" (7), l or G
i, D13="L", D23="L", the output of the OR circuit 70 becomes "L@ level", so the analog switch 71 becomes non-conductive, and the signal is held in the capacitive element 73 at the previous timing. The voltage at the same level is the demodulated signal S.
0, thereby preventing erroneous demodulation due to noise components.

このように、この実施例によれば、復調器における信号
の通過帯域は、上記積分器の時定数で決定されることと
なり、これは、同一速度の符号で変調されたFSK信号
の復調で比較すれば、従来のアナログ方式に較べてこの
実施例の方が約5倍程度狭くなり、その分だけS/N比
が向上すると同時に復調感度が向上する。
Thus, according to this embodiment, the passband of the signal in the demodulator is determined by the time constant of the integrator, and this is compared by demodulating FSK signals modulated with codes of the same speed. Then, compared to the conventional analog system, this embodiment becomes about five times narrower, and the S/N ratio improves accordingly, and at the same time, the demodulation sensitivity improves.

又、従来のアナログ技術を使用しないので調整が容易と
なり、又、回路が簡素となり装置の小形化を実現するこ
とができる。
Further, since conventional analog technology is not used, adjustment is easy, and the circuit is simple, making it possible to downsize the device.

尚、この実施例では、処理機能毎に個々の回路で構成し
た場合を示すが、電子計算機による電子的演算処理、即
ちコンピュータプログラムに従った演算処理を行うマイ
クロプロセッサなどを回路の一部又は全部に置き換えて
、同様の処理機能を発揮させるようにしてもよい。
Although this embodiment shows a case in which each processing function is configured with individual circuits, a part or all of the circuit may include a microprocessor that performs electronic arithmetic processing by an electronic computer, that is, arithmetic processing according to a computer program. It is also possible to perform the same processing function by replacing it with .

[発明の効果] 以上説明してきたように、本発明はデジタル論理演算技
術により構成するので、従来のアナログ方式のような容
量素子、抵抗、インダクタンス素子などの部品点数を大
幅に低減し、装置の小形化が可能になる。又、インダク
タンス素子は全く必要としないので、集積回路(IC1
LSI)化に適している。又、マイクロコンピュータな
どを併存した装置の実現も容易である。又、マイクロコ
ンビュータなどの電子演算装置を用いて実現することも
容易であり、装置の高機能化や小形化に適している。
[Effects of the Invention] As explained above, since the present invention is constructed using digital logic operation technology, the number of components such as capacitive elements, resistors, and inductance elements that are required in conventional analog systems can be significantly reduced, and the number of components of the device can be improved. It becomes possible to downsize. Also, since no inductance element is required, the integrated circuit (IC1
Suitable for LSI implementation. Furthermore, it is easy to realize a device that also includes a microcomputer or the like. Furthermore, it is easy to implement using an electronic arithmetic device such as a microcomputer, and is suitable for increasing the functionality and downsizing of the device.

又、アナログ技術特有の温度補償などの調整が殆ど無く
なることから調整が容易で信頼性向上を図ることができ
る。
Furthermore, since adjustments such as temperature compensation, which are unique to analog technology, are almost eliminated, adjustments are easy and reliability can be improved.

以上を総合して、本発明は、従来のアナログ方式に比較
して、高性能且つ小形軽量、しかも経済性に富み、優れ
たFSX信号復調器を提供することができる。
In summary, the present invention can provide an excellent FSX signal demodulator that is high-performance, compact, lightweight, and economical compared to the conventional analog system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明するための原理説明図; 第2図は本発明の一実施例の構成を示す回路図;第3図
は波形整形回路の機能を説明する説明図:第4図はFS
K方式の変調及び復調信号の関係を示す説明図; 第5図、第6図及び第7図は従来の復調器の構成を示す
従来構成説明図である。 図中の符号: 19.37;波形整形回路 20.21.22,23;掛算器 24.25;基準信号発生器 26.27,28.29;積分器 30.31.32.33;比較器 34.35;判定回路 36;合成回路 38.51;マルチバイブレータ 40.53;遅延回路 39.41.52,54;1/4分周回路42.46.
56.60;排他的論理和回路43、 47. 57.
 61゜ 66.68;インバータ回路 44.48,58.62;抵抗 45.49.59.63.73;容量素子5O,64,
70,論理和回路 65゜ 67゜ 69;論理積回路
Fig. 1 is a principle explanatory diagram for explaining the present invention in detail; Fig. 2 is a circuit diagram showing the configuration of an embodiment of the present invention; Fig. 3 is an explanatory diagram explaining the function of the waveform shaping circuit; Figure 4 is FS
Explanatory diagram showing the relationship between K-scheme modulation and demodulation signals; FIGS. 5, 6, and 7 are conventional configuration explanatory diagrams showing the configuration of a conventional demodulator. Codes in the figure: 19.37; Waveform shaping circuit 20.21.22, 23; Multiplier 24.25; Reference signal generator 26.27, 28.29; Integrator 30.31.32.33; Comparator 34.35; Judgment circuit 36; Synthesizing circuit 38.51; Multivibrator 40.53; Delay circuit 39.41.52, 54; 1/4 frequency divider circuit 42.46.
56.60; Exclusive OR circuit 43, 47. 57.
61°66.68; Inverter circuit 44.48, 58.62; Resistor 45.49.59.63.73; Capacitive element 5O, 64,
70, OR circuit 65゜67゜69; AND circuit

Claims (2)

【特許請求の範囲】[Claims] (1)マークとスペースの時系列信号を周波数の相違す
る2種類の信号に変調して成るFSK信号を元の時系列
信号に復調するFSK信号復調器において、 前記FSK信号の振幅変調成分を除去して周波数成分の
みから成るデジタル信号を発生する波形整形手段と、 検出すべき第1の周波数に等しい矩形パルス波から成る
第1の基準信号と該デジタル信号との間で排他的論理和
演算を行い、且つ該論理演算による出力信号を積分した
後、該積分演算出力値と特定の閾値とを比較して夫々の
値の大小に応じたレベルの第1デジタル値信号に変換す
る第1の変換手段と、 検出すべき第1の周波数に等しく且つ上記第1の基準信
号とは相互に90゜の位相差を有する第2の基準信号と
上記波形整形手段のデジタル信号との間で排他論理和演
算を行い、且つ該論理演算による出力信号を積分した後
、該積分演算出力値と特定の閾値とを比較して夫々の値
の大小に応じたレベルの第2デジタル値信号に変換する
第2の変換手段と、 第1、第2の変換手段より出力した第1、第2デジタル
値信号の論理和演算を行う第1の演算手段と、 検出すべき第2の周波数に等しい矩形パルス波から成る
第3の基準信号と上記波形整形手段より出力するデジタ
ル信号との間で排他論理和演算を行い、且つ該論理演算
により出力信号を積分した後、該積分演算出力値と特定
の閾値とを比較して夫々の値の大小に応じたレベルの第
3デジタル値信号に変換する第3の変換手段と、 検出すべき第2の周波数に等しく且つ上記第2の基準信
号とは相互に90゜の位相差を有する第4の基準信号と
上記波形整形手段のデジタル信号との間で排他論理和演
算を行い、且つ該論理和演算による出力信号を積分した
後、該積分演算出力値と特定の閾値とを比較して夫々の
値の大小に応じたレベルの第4デジタル値信号に変換す
る第4の変換手段と、第3、第4の変換手段より出力し
た第3、第4デジタル値信号の論理和演算を行う第2の
演算手段と、 上記第1の演算手段の出力が真で第2の演算手段の出力
が偽の状態では真と判定し、第1の演算手段の出力が偽
で第2の演算手段の出力が真の状態では偽と判定し、第
1及び第2の演算手段が共に真又は偽のときは従前の判
定結果を適用して、真の判定の対してマーク信号、偽の
判定に対してスペース信号を発生することにより復調信
号を合成する合成手段と、 を備えたことを特徴とするFSK信号復調器。
(1) In an FSK signal demodulator that demodulates an FSK signal obtained by modulating mark and space time series signals into two types of signals with different frequencies into the original time series signal, the amplitude modulation component of the FSK signal is removed. waveform shaping means for generating a digital signal consisting only of frequency components; and performing an exclusive OR operation between the digital signal and a first reference signal consisting of a rectangular pulse wave equal to the first frequency to be detected. and after integrating the output signal of the logical operation, a first conversion of comparing the output value of the integral operation with a specific threshold value and converting it into a first digital value signal of a level corresponding to the magnitude of each value. and a second reference signal which is equal to the first frequency to be detected and has a phase difference of 90 degrees from the first reference signal, and the digital signal of the waveform shaping means. After performing the calculation and integrating the output signal resulting from the logical calculation, a second digital value signal that compares the output value of the integral calculation with a specific threshold value and converts it into a second digital value signal having a level corresponding to the magnitude of each value. a first calculation means that performs an OR operation of the first and second digital value signals output from the first and second conversion means; and a rectangular pulse wave equal to the second frequency to be detected. After performing an exclusive OR operation between the third reference signal and the digital signal output from the waveform shaping means, and integrating the output signal by the logical operation, the integral operation output value and a specific threshold value are A third conversion means that compares and converts the signal into a third digital value signal having a level corresponding to the magnitude of each value, and the second reference signal that is equal to the second frequency to be detected and is at an angle of 90 degrees from each other. After performing an exclusive OR operation between the fourth reference signal having a phase difference of 1 and the digital signal of the waveform shaping means, and integrating the output signal from the OR operation, a fourth conversion means that compares the signal with a threshold value and converts the signal into a fourth digital value signal having a level corresponding to the magnitude of each value; and third and fourth digital value signals output from the third and fourth conversion means. a second arithmetic means for performing a logical sum operation; and a state in which the output of the first arithmetic means is true and the output of the second arithmetic means is false, it is determined to be true, and the output of the first arithmetic means is false; If the output of the second calculation means is true, it is determined to be false, and when both the first and second calculation means are true or false, the previous determination result is applied and a mark is made for the determination of true. An FSK signal demodulator comprising: synthesis means for synthesizing demodulated signals by generating a space signal in response to a false determination.
(2)請求項(1)のFSK信号復調器において、前記
各手段の一部又は全ての手段の処理を、電子演算手段に
より行うことを特徴とするFSK信号復調器。
(2) The FSK signal demodulator according to claim 1, wherein processing of some or all of the means is performed by electronic calculation means.
JP22372489A 1989-08-30 1989-08-30 FSK signal demodulator Expired - Lifetime JPH0626345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22372489A JPH0626345B2 (en) 1989-08-30 1989-08-30 FSK signal demodulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22372489A JPH0626345B2 (en) 1989-08-30 1989-08-30 FSK signal demodulator

Publications (2)

Publication Number Publication Date
JPH0385948A true JPH0385948A (en) 1991-04-11
JPH0626345B2 JPH0626345B2 (en) 1994-04-06

Family

ID=16802689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22372489A Expired - Lifetime JPH0626345B2 (en) 1989-08-30 1989-08-30 FSK signal demodulator

Country Status (1)

Country Link
JP (1) JPH0626345B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1117748A (en) * 1997-06-24 1999-01-22 Oi Denki Kk Method for demodulating frequency shift keying signal
JP2007251337A (en) * 2006-03-14 2007-09-27 Nippon Hoso Kyokai <Nhk> Emergency alarm signal receiver
JP2009055097A (en) * 2007-08-23 2009-03-12 Advanced Telecommunication Research Institute International Fsk demodulation circuit and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1117748A (en) * 1997-06-24 1999-01-22 Oi Denki Kk Method for demodulating frequency shift keying signal
JP2007251337A (en) * 2006-03-14 2007-09-27 Nippon Hoso Kyokai <Nhk> Emergency alarm signal receiver
JP2009055097A (en) * 2007-08-23 2009-03-12 Advanced Telecommunication Research Institute International Fsk demodulation circuit and method

Also Published As

Publication number Publication date
JPH0626345B2 (en) 1994-04-06

Similar Documents

Publication Publication Date Title
JPH0738455A (en) Radio receiver
JPS6024614B2 (en) timing recovery circuit
JPH0385948A (en) Fsk signal demodulator
JP2579243B2 (en) Demodulator
JPS6331987B2 (en)
JP3658768B2 (en) FM receiver
US3157741A (en) Data transmission system
JPS60162304A (en) Digital demodulator
JPS5890854A (en) Sampling phase synchronism circuit
JPH0955646A (en) Pulse width modulator
JP2997352B2 (en) FSK modulated wave demodulation circuit
JPH06224948A (en) Data demodulator
JP2833829B2 (en) Demodulator
JPS6029003A (en) Fm demodulator
JP2003018228A (en) Symbol synchronizing circuit
JPH0626349B2 (en) FSK signal demodulator
JP2765753B2 (en) Digital FSK demodulation circuit
JPS59168753A (en) Device for demodulating fsk modulating wave
JP3057277B2 (en) Pulse detector
JPH04150338A (en) Clock extraction circuit
JPS6053977B2 (en) Frequency shift demodulation method
JPH04115726A (en) Training signal detector
JPH08139770A (en) Direct converting receiver
JPS6122501B2 (en)
JPH08331192A (en) Qam demodulator