JP2517028B2 - Frequency detection circuit - Google Patents

Frequency detection circuit

Info

Publication number
JP2517028B2
JP2517028B2 JP32103587A JP32103587A JP2517028B2 JP 2517028 B2 JP2517028 B2 JP 2517028B2 JP 32103587 A JP32103587 A JP 32103587A JP 32103587 A JP32103587 A JP 32103587A JP 2517028 B2 JP2517028 B2 JP 2517028B2
Authority
JP
Japan
Prior art keywords
output
phase difference
circuit
level
difference detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32103587A
Other languages
Japanese (ja)
Other versions
JPH01162402A (en
Inventor
健三 占部
勝實 牛山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP32103587A priority Critical patent/JP2517028B2/en
Publication of JPH01162402A publication Critical patent/JPH01162402A/en
Application granted granted Critical
Publication of JP2517028B2 publication Critical patent/JP2517028B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アナログ信号やデータ信号により周波数変
調された信号の復調や、入力信号の周波数偏差の計測等
に供せられる周波数検波回路に関する。
Description: TECHNICAL FIELD The present invention relates to a frequency detection circuit used for demodulating a signal frequency-modulated by an analog signal or a data signal, measuring a frequency deviation of an input signal, and the like.

〔従来の技術とその問題点〕[Conventional technology and its problems]

入力信号の瞬時周波数の、あらかじめ定められた中心
周波数に対する偏差量を検出する周波数検波回路として
は、従来から、セラミックディスクリミネータ、クオド
ラチャ検波回路等が広く用いられている。
Conventionally, a ceramic discriminator, a quadrature detection circuit, etc. have been widely used as a frequency detection circuit for detecting a deviation amount of an instantaneous frequency of an input signal with respect to a predetermined center frequency.

しかしながらこれらは、セラミック素子や90゜位相シ
フト用インダクタンス素子など、IC化に適さないデバイ
スを必要とし、また処理対象となる搬送波が特定の中間
周波に限定されるため、ヘテロダイン受信機にしか適用
できない等、小形化、汎用化に問題があった。
However, these require devices such as ceramic elements and inductance elements for 90 ° phase shift that are not suitable for IC integration, and the carrier wave to be processed is limited to a specific intermediate frequency, so they can only be applied to heterodyne receivers. There was a problem in downsizing and generalization.

このため、近年では、入力信号である受信波または中
間周波と同一の周波数を有し、互いに位相がπ/2ラジア
ンだけ異なる2つの局部発振波と入力信号とを周波数混
合することによって、2つの互いに直交するベースバン
ド信号を抽出し、これら2つのベースバンド信号の一方
のそれぞれをπ/2ラジアン移相した後に他方のそれぞれ
とアナログ乗算することによって得られる2つの乗算出
力の差を周波数検波出力とする、いわゆる直交検波形
が、IC化に適合する回路方式の一つとして着目されてい
る。
For this reason, in recent years, two local oscillation waves having the same frequency as the received wave or the intermediate frequency which is the input signal and having phases different from each other by π / 2 radians and the input signal are frequency-mixed. The frequency detection output is obtained by extracting baseband signals that are orthogonal to each other, phase-shifting each of these two baseband signals by π / 2 radians, and then performing analog multiplication with each of the other baseband signals. The so-called quadrature detection waveform is attracting attention as one of the circuit systems suitable for IC implementation.

この方法は中間周波を用いない場合にも適用できるの
で、汎用化、小形化に適するという利点があるが、2つ
のアナログ乗算器を必要とする。アナログ乗算器を実現
するには半導体の物理特性を利用するアナログ動作によ
る乗算器、またA/D変換器,D/A変換器を介したディジタ
ル乗算器の応用等か考えられるが,前者は特性の温度、
経年変化に問題があり、また後者は回路規模、消費電力
が増大する等、弊害が大きく、いずれも実用化への障害
が大きいという問題点があった。
Since this method can be applied even when no intermediate frequency is used, it has the advantage of being suitable for generalization and miniaturization, but it requires two analog multipliers. In order to realize an analog multiplier, it is possible to use a multiplier by analog operation that uses the physical characteristics of semiconductors, or an application of a digital multiplier via an A / D converter and a D / A converter. The temperature of
There is a problem of aging, and the latter has a problem that the circuit scale and the power consumption increase, and the practical problems are large.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、前記従来の直交検波形の回路における障害
を取り除くためになされたもので、周波数検波特性が理
論的には無歪であり、不要高調波を含まず、またこれを
実現するにあたり、回路規模が小さく、IC化に適合する
回路を提供しようとするものである。
The present invention was made in order to remove the obstacle in the circuit of the conventional quadrature detection waveform, the frequency detection characteristic is theoretically distortion-free, does not include unnecessary harmonics, and in realizing this, It is intended to provide a circuit that has a small circuit scale and is suitable for IC implementation.

即ち、本発明回路は第1図示のように入力信号Rの中
心周波数と同一周波数を有し互いにπ/2ラジアンの位相
差を持つ第1,第2局部発振出力LI,LQを発生する局部発
振回路1と、入力信号Rと第1局部発振出力LIの位相差
及び入力信号Rと第2局部発振出力LQの位相差に対して
それぞれπラジアン毎に直線的上昇,下降を周期2πラ
ジアンで繰り返す位相差検出出力特性を有する第1,第2
位相差検出回路21,22と、第1,第2位相差検出回路21,22
の出力θIをそれぞれ2値論理値に整形する第1,第
2レベル比較器41,42と、第2レベル比較器42の出力CQ
を論理反転する論理反転器5と、第1,第2位相差検出回
路21,22のいずれか一方の出力を入力し,その最大値と
平均値の中間,並びに最小値と平均値の中間に位置する
2つのしきい値に入力レベルが挟まれるか否かを2値判
別するレベル判定回路7と、第1,第2位相差検出回路2
1,22に接続され,それぞれ微分器31,32と、極性切替入
力によって入力のアナログ極性を切替出力する極性切替
回路61,62との組み合わせからなる第1,第2縦続接続部
分71,72と、レベル判定回路7の出力Cに従って第1,第
2縦続接続部分71,72の出力D′I,D′のいずれか一方
を切替出力する切替回路8と、切替回路8の出力Dから
ベースバンド信号成分を抽出する低域濾波器9とを備
え、第1縦続接続部分71の極性切替回路61の極性切替入
力には論理反転器5の出力▲▼を接続し、第2縦続
接続部分72の極性切替回路62の極性切替入力には第1レ
ベル比較器41の出力CIを接続し、切替回路8の切替動作
としては第1位相差検出回路21の出力レベルがレベル判
定回路7内の2つのしきい値に挟まれた時には、第1縦
続接続部分71の出力D′を,第2位相差検出回路22の
出力レベルがレベル判定回路7内の2つのしきい値に挟
まれた時には第2縦続接続部分72の出力D′を切り替
えて出力する構成として第1,第2位相差検出回路21,22
の位相差検出特性の微分不連続点による影響を解消した
周波数検波出力Sを低域濾波器9より得る構成としたも
のである。
That is, the circuit of the present invention generates first and second local oscillation outputs L I and L Q having the same frequency as the center frequency of the input signal R and having a phase difference of π / 2 radian with each other as shown in the first diagram. The local oscillator circuit 1 and the phase difference between the input signal R and the first local oscillation output L I and the phase difference between the input signal R and the second local oscillation output L Q are linearly raised and lowered for each π radian. 1st and 2nd with phase difference detection output characteristics repeated at 2π radians
Phase difference detection circuits 21, 22 and first and second phase difference detection circuits 21, 22
Output Q I and θ Q of each of the first and second level comparators 41 and 42, respectively, and the output C Q of the second level comparator 42.
Input the output of either one of the first and second phase difference detection circuits 21 and 22 and the logic inverter 5 that logically inverts the A level judgment circuit 7 for making a binary judgment as to whether or not the input level is sandwiched between two threshold values located, and first and second phase difference detection circuits 2
First and second cascade connection parts 71, 72 each of which is connected to 1, 22 and is composed of a differentiator 31, 32 and a polarity switching circuit 61, 62 for switching and outputting the analog polarity of the input by the polarity switching input. , A switching circuit 8 for switching and outputting one of the outputs D ′ I and D ′ Q of the first and second cascade connection parts 71 and 72 according to the output C of the level determination circuit 7, and the output D of the switching circuit 8 to the base. A low pass filter 9 for extracting a band signal component, and the output ▲ ▼ of the logic inverter 5 is connected to the polarity switching input of the polarity switching circuit 61 of the first cascade connection portion 71, and the second cascade connection portion 72. The output C I of the first level comparator 41 is connected to the polarity switching input of the polarity switching circuit 62, and the switching operation of the switching circuit 8 is such that the output level of the first phase difference detection circuit 21 is within the level determination circuit 7. When sandwiched between two threshold values, the output D' I of the first cascade connection portion 71 is changed to the second phase difference. When the output level of the detection circuit 22 is sandwiched between two threshold values in the level determination circuit 7, the output D' Q of the second cascade connection portion 72 is switched and output. 21,22
The frequency detection output S in which the influence of the differential discontinuity point of the phase difference detection characteristic of 1 is eliminated is obtained from the low-pass filter 9.

〔作 用〕[Work]

入力信号Rの中心周波数と同一周波数を有し互いにπ
/2ラジアンの位相差を持つ第1,第2局部発振出力LI,LQ
が局部発振回路1より取り出され、入力信号Rと第1局
部発振出力LIの位相差及び入力信号Rと第2局部発振出
力LQの位相差に対してそれぞれπラジアン毎に直線的上
昇,下降を周期2πラジアンで繰り返す位相差検出出力
θIがそれぞれ第1,第2位相差検出回路21,22より
得られる。これらの位相差検出出力θIはそれぞれ
第1,第2レベル比較器41,42により2値論理値に整形さ
れ、第2レベル比較器42の出力CQは論理反転器5により
反転され、論理反転出力▲▼となる。
It has the same frequency as the center frequency of the input signal R and has π
First and second local oscillation outputs L I , L Q with a phase difference of / 2 radian
Is taken out from the local oscillator circuit 1 and linearly rises every π radian with respect to the phase difference between the input signal R and the first local oscillation output L I and the phase difference between the input signal R and the second local oscillation output L Q , Phase difference detection outputs θ I and θ Q , which repeat the fall with a period of 2π radians, are obtained from the first and second phase difference detection circuits 21 and 22, respectively. These phase difference detection outputs θ I and θ Q are shaped into binary logic values by the first and second level comparators 41 and 42, respectively, and the output C Q of the second level comparator 42 is inverted by the logic inverter 5. Then, the logic inversion output ▲ ▼ is obtained.

第1,第2位相差検出回路21,22のいずれか一方の出力
はレベル判定回路7によりその最大値と平均値の中間,
並びに最小値と平均値の中間に位置する2つのしきい値
に入力レベルが挟まれるか否かを2値判別され、レベル
判定回路7よりレベル判定出力Cが得られる。
The output of one of the first and second phase difference detection circuits 21 and 22 is determined by the level determination circuit 7 between the maximum value and the average value,
In addition, whether or not the input level is sandwiched between two threshold values located between the minimum value and the average value is binary-determined, and the level determination circuit 7 obtains the level determination output C.

また、第1,第2位相差検出回路21,22の出力θI
はそれぞれ微分器31,32と極性切替回路61,62との組み合
わせからなる第1,第2縦続接続部分71,72に入力され、
この第1,第2縦続接続部分71,72の極性切替回路61,62に
はそれぞれ論理反転器5の出力▲▼と第1レベル比
較器41の出力CIが入力されることにより入力のアナログ
極性が切り替えられ、レベル判定回路7の出力Cに従っ
て第1,第2縦続接続部分71,72の出力D′I,D′のいず
れか一方が切替回路8により切替出力される。
Further, the outputs θ I and θ Q of the first and second phase difference detection circuits 21 and 22
Are input to the first and second cascade connection parts 71 and 72, which are combinations of differentiators 31 and 32 and polarity switching circuits 61 and 62,
The polarity switching circuits 61, 62 of the first and second cascade connection parts 71, 72 are respectively fed with the output ▲ ▼ of the logic inverter 5 and the output C I of the first level comparator 41 to input analog signals. The polarity is switched, and one of the outputs D ′ I and D ′ Q of the first and second cascade connection parts 71 and 72 is switched and output by the switching circuit 8 according to the output C of the level determination circuit 7.

即ち、切替回路8は第1位相差検出回路21の出力レベ
ルがレベル判定回路7内の2つのしきい値に挟まれた時
は第1縦続接続部分71の出力D′を,第2位相差検出
回路22の出力レベルがレベル判定回路7内の2つのしき
い値に挟まれた時には第2縦続接続部分72の出力D′
を切り替え出力する。低域濾波器9はこの出力D′
たはD′(出力Dで表す)からベースバンド信号成分
を抽出し、第1,第2位相差検出回路21,22の位相差検出
特性の微分不連続点による影響を解消した周波数検波出
力Sを出力することになる。
That is, when the output level of the first phase difference detection circuit 21 is sandwiched between the two threshold values in the level determination circuit 7, the switching circuit 8 changes the output D' I of the first cascade connection portion 71 to the second level. When the output level of the phase difference detection circuit 22 is sandwiched between the two threshold values in the level determination circuit 7, the output D' Q of the second cascade connection portion 72.
And output. The low-pass filter 9 extracts a baseband signal component from the output D' I or D' Q (represented by the output D), and differentiates the phase difference detection characteristics of the first and second phase difference detection circuits 21 and 22. The frequency detection output S in which the influence of continuous points is eliminated is output.

〔実施例〕〔Example〕

以下図面について本発明の実施例を説明する。 Embodiments of the present invention will be described with reference to the drawings.

第1図は本発明回路の一実施例を示すブロック図であ
る。
FIG. 1 is a block diagram showing an embodiment of the circuit of the present invention.

第1図において1は局部発振回路で、入力信号Rの中
心周波数と同一周波数を有し互いにπ/2ラジアンの位相
差をもつ第1,第2局部発振出力LI,LQを発生する。この
例では第1局部発振出力LIに対し第2局部発振出力LQ
π/2ラジアンの位相遅延している。
In FIG. 1, reference numeral 1 denotes a local oscillation circuit which generates first and second local oscillation outputs L I and L Q having the same frequency as the center frequency of the input signal R and having a phase difference of π / 2 radian. In this example, the second local oscillation output L Q has a phase delay of π / 2 radian with respect to the first local oscillation output L I.

21,22は第1,第2位相差検出回路で、入力信号Rと第
1局部発振出力LI,および入力信号Rと第2局部発振出
力LQを入力し、それぞれ両者の位相差θに対し周期2π
ラジアンでπラジアン毎に直線的上昇および下降を示す
位相差検出特性を有すものであり、それぞれ位相差検出
出力θIを発する。これらの検出回路21,22の特性
は第2図(a)示のようになっている。
Reference numerals 21 and 22 denote the first and second phase difference detection circuits, which input the input signal R and the first local oscillation output L I , and the input signal R and the second local oscillation output L Q, and input the phase difference θ between them. For period 2π
It has a phase difference detection characteristic that shows a linear rise and a fall for every π radian, and outputs phase difference detection outputs θ I and θ Q , respectively. The characteristics of these detection circuits 21 and 22 are as shown in FIG.

このような特性を有する第1,第2相差検出回路21,22
は、トランジスタを用いた入力信号Rと第1局部発振出
力LI,入力信号Rと第2局部発振出力LQによるオンオフ
スイッチング動作を行う回路構成あるいは第1,第2局部
発振出力LI,LQと入力信号Rとの排他的論理和出力を低
域濾波する回路構成により容易に実現できる。θI
はそれぞれ第1,第2位相差検出回路21,22の位相差検出
出力で、実際の位相差θとの間には第2図(a)の位相
差検出特性の関係が成立している。
The first and second phase difference detection circuits 21 and 22 having such characteristics
Is a circuit configuration for performing an on / off switching operation based on an input signal R and a first local oscillation output L I using a transistor, an input signal R and a second local oscillation output L Q, or the first and second local oscillation outputs L I , L This can be easily realized by a circuit configuration for low-pass filtering the exclusive OR output of Q and the input signal R. θ I , θ Q
Are the phase difference detection outputs of the first and second phase difference detection circuits 21 and 22, respectively, and the relationship of the phase difference detection characteristics of FIG.

31,32はそれぞれ位相差検出出力θIを入力し、
これを微分する微分器で、DI,DQはその微分出力であ
る。41,42は第1,第2レベル比較器で、それぞれθI
を入力し、それぞれの平均値をしきい値として大小関
係を判定し、2値論理値(H,Lレベル)に変換する。CI,
CQはそれぞれの比較出力である。
31 and 32 respectively input the phase difference detection outputs θ I and θ Q ,
This is a differentiator that differentiates it, and D I and D Q are the differential outputs. 41 and 42 are first and second level comparators, respectively θ I and θ
Q is input, the magnitude relationship is determined by using each average value as a threshold value, and the binary value (H, L level) is converted. C I ,
C Q is the output of each comparison.

5は論理反転器(インバータ)で、比較出力CQを入力
し、その論理反転出力▲▼を発する。61,62はそれ
ぞれ微分出力DIと論理反転出力▲▼,及び微分出力
DQと比較出力CIを入力し、それぞれ▲▼及びCIの2
値状態Hレベル,Lレベルに従ってDI,DQの極性を切り替
えて出力する極性切替回路である。D′ID′はそれぞ
れの極性切替出力である。
Reference numeral 5 is a logic inverter (inverter), which inputs the comparison output C Q and outputs its logic inversion output ▲ ▼. 61 and 62 are differential output D I , logical inversion output ▲ ▼, and differential output, respectively.
Input D Q and comparative output C I, and input ▲ ▼ and C I respectively.
It is a polarity switching circuit for switching and outputting the polarities of D I and D Q according to the value states H level and L level. D' I D' Q are respective polarity switching outputs.

このような機能は演算増幅器による極性反転回路の出
力と、その入力とをアナログスイッチにより切替出力す
る構成や、演算増幅器の正極側の基準入力をアナログス
イッチにより開放、接地することにより反転,非反転動
作の切替を行わせる構成等によって容易に実現できる。
Such a function is such that the output of the polarity reversing circuit by the operational amplifier and its input are switched and output by the analog switch, and the reference input on the positive side of the operational amplifier is opened and grounded by the analog switch to invert or non-invert. This can be easily realized by a configuration for switching the operation.

7は第1,第2位相差検出回路21,22の位相差検出出力
θIのいずれか一方,この例ではθを入力し、入
力の最大値(+V)と平均値(O)との中間値(+
VT),及び入力の最小値(−V)と平均値(O)との中
間値(−VT)の2つのしきい値に対して入力レベルがこ
れらのしきい値に挟まれるか否かを2値判別する機能を
有するレベル判定回路である。このレベル判定回路7は
+VT,−VTをしきい値とする2つのレベル比較回路と、
論理和回路または論理積回路とを用いて簡単に構成でき
る。Cはそのレベル判定出力である。第2図(b)はレ
ベル判定回路7の出力特性例を示す。
7 is one of the phase difference detection outputs θ I and θ Q of the first and second phase difference detection circuits 21 and 22, and in this example, θ Q is input, and the maximum value (+ V) and the average value (O ) And the intermediate value (+
V T), and the minimum value of the input (intermediate value -V) and the average value (O) (whether the input level for two thresholds -V T) is sandwiched between these thresholds This is a level determination circuit having a function of performing binary determination of whether or not. The level determination circuit 7 includes two level comparison circuits having thresholds of + V T and −V T ,
It can be easily configured by using an OR circuit or an AND circuit. C is the level judgment output. FIG. 2B shows an example of output characteristics of the level judgment circuit 7.

8は極正切替出力D′I,D′を入力し、レベル判定
出力Cの極性に従ってD′I,D′のいずれか一方を切
替出力する切替回路で、アナログスイッチにより実現で
きる。Dはその切替出力である。9は切替出力Dを入力
し、この出力D中に含まれるベースバンド信号成分を抽
出し、伝送回線から混入した雑音成分を除去する低域濾
波器で、Sは抽出されたベースバンド信号からなる周波
数検波出力である。
Reference numeral 8 denotes a switching circuit which inputs the polar positive switching outputs D' I and D' Q and switches and outputs either D' I or D' Q according to the polarity of the level determination output C, which can be realized by an analog switch. D is the switching output. Reference numeral 9 is a low-pass filter which inputs the switching output D, extracts the baseband signal component contained in the output D, and removes the noise component mixed in from the transmission line, and S is composed of the extracted baseband signal. This is the frequency detection output.

上記の構成において本発明の実施例の作用を説明す
る。
The operation of the embodiment of the present invention having the above configuration will be described.

第2図(a),(b)はそれぞれ第1図の第1,第2位
相差検出回路21,22の位相差検出特性例およびレベル判
定回路7の出力特性例を示す図であって、縦軸はそれぞ
れ位相差検出出力θIのレベル及びレベル判定出力
Cの2値状態を示し、横軸はいずれも位相差θ(ラジア
ン)を示している。
FIGS. 2 (a) and 2 (b) are diagrams showing the phase difference detection characteristic examples of the first and second phase difference detection circuits 21 and 22 and the output characteristic example of the level determination circuit 7 in FIG. 1, respectively. The vertical axis represents the binary states of the phase difference detection outputs θ I and θ Q and the level determination output C, and the horizontal axis represents the phase difference θ (radian).

第2図(a)の実線で示した特性は位相差θを、第1
局部発振出力LIに対する入力信号Rの位相差としたとき
の位相差検出出力θの特性例であって、排他的論理和
動作に基づいており、同相時(θ=0)で最小値−Vに
達し、逆相時(θ=±π)で最大値+Vに達するV字形
の折れ線特性を1周期とする周期特性を呈している。
The characteristic shown by the solid line in FIG.
It is a characteristic example of the phase difference detection output θ I when the phase difference of the input signal R with respect to the local oscillation output L I , is based on the exclusive OR operation, and is the minimum value at the same phase (θ = 0). The V-shaped polygonal line characteristic that reaches V and reaches the maximum value + V in the reverse phase (θ = ± π) has one cycle.

このとき、第2局部発振出力LQは第1局部発振出力LI
に対しπ/2ラジアンの位相遅延があるため、位相差検出
出力θの特性は、前記のLIとの位相差θに対して、破
線で示したようにθの特性をπ/2ラジアンだけシフト
した特性となる。
At this time, the second local oscillation output L Q is the first local oscillation output L I
Because for a certain phase delay of [pi / 2 radians, the characteristics of the phase difference detection output theta Q is the phase difference theta between said L I, the theta characteristics of I [pi / 2 as shown by a broken line The characteristics are shifted by radians.

第2図(b)のレベル判定出力Cの特性は、第2図
(a)のθのレベルが2つのしきい値+VTと−VTの中
間にある場合、および+VT以上、または−VT以下にある
場合に対応し、それぞれ“L"および“H"の2値状態を呈
する例を示している。
The characteristic of the level determination output C in FIG. 2 (b) is that the level of θ Q in FIG. 2 (a) is between two threshold values + V T and −V T , and is above + V T , or An example in which binary states of “L” and “H” are exhibited corresponding to the case of −V T or less is shown.

なお、レベル判定回路7の入力をθとする場合は、
入力に対し、前記とは逆の“H"および“L"の2値状態出
力を得るようにこの回路7を構成すれば特性は全く等価
となることは第2図(a)から明らかである。
When the input of the level determination circuit 7 is θ I ,
It is apparent from FIG. 2 (a) that the characteristics are completely equivalent if the circuit 7 is configured so as to obtain the binary state output of "H" and "L" opposite to the above with respect to the input. .

以上、第2図に示した諸特性例に基づき、第1図の構
成例による周波数検波動作の原理を、まず数式を用いて
具体的に説明する。
The principle of the frequency detection operation according to the configuration example of FIG. 1 will be specifically described first by using mathematical formulas based on the various characteristic examples shown in FIG.

今、第1図の各信号θIQ,DI,DQ,D′I,D′Q,D、お
よび第2図のθの時間波形をそれぞれθI(t)Q(t),D
I(t),DQ(t),D′I(t),D′Q(t),D(t)(t)とおき、またC
QおよびCIの2値状態“H",“L"をそれぞれ+1,−1の矩
形波に置換した時間波形をCQ(t),CI(t)とおく。このと
き、第1図及び第2図から、以下の諸関係式が導出でき
る。
Now, the time waveforms of the signals θ I , θ Q , D I , D Q , D ′ I , D ′ Q , D of FIG. 1 and θ of FIG. 2 are respectively θ I (t) , θ Q ( t) , D
I (t) , D Q (t) , D ′ I (t) , D ′ Q (t) , D (t) , θ (t) , and C
The time waveforms obtained by replacing the binary states “H” and “L” of Q and C I with +1 and −1 rectangular waves are designated as C Q (t) and C I (t) . At this time, the following relational expressions can be derived from FIGS. 1 and 2.

D′=−DI(t)・CQ(t) …………(5) D′Q(t)=DQ(t)・CI(t) …………(6) ここで{CQ(t)={CI(t)=1であることか
ら、(1),(3),(5)式よりD′I(t)が、また
(2),(4),(6)式よりD′Q(t)が、それぞれ以
下のように与えられる。
D' I = -D I (t)・ C Q (t) ………… (5) D ′ Q (t) = D Q (t)・ C I (t) ………… (6) where Since {C Q (t) } 2 = {C I (t) } 2 = 1, D ′ I (t) can be calculated from Eqs. (1), (3), and (5), and (2), From equations (4) and (6), D' Q (t) is given as follows.

(7),(8)式から、D′I(t)とD′Q(t)は理論的
には同一波形であり、かつ、dθ(t)/dt,即ち、入力信
号Rの中心角周波数に対する角周波数偏差Δωに比例す
るから、D′I(t),D′Q(t)はいずれも周波数検波出力S
となることが容易に理解できる。
From equations (7) and (8), D ′ I (t) and D ′ Q (t) are theoretically the same waveform, and dθ (t) / d t , that is, the center of the input signal R Since D ′ I (t) and D ′ Q (t) are both proportional to the angular frequency deviation Δω with respect to the angular frequency, the frequency detection output S
Can be easily understood.

しかしながら、実際の回路動作においては、微分出力
波形DI(t),DI(t)の時間波形と比較出力CQ,CIの矩形の時
間波形CQ(t),CI(t)とは、回路動作遅延の差により、わ
ずかに変化時間の差が生ずるため、極性切替回路61,62
の出力波形D′I(t),D′Q(t)には、時間的に交互に細い
パルスが発生し得る。このパルスの周期はCQ(t),CI(t)
の矩形変化点の周期に等しく、それぞれ位相差θがπラ
ジアン変化する毎に1回生じることになる。
However, in the actual circuit operation, the time waveforms of the differential output waveforms D I (t) , D I (t) and the rectangular time waveforms C Q (t) , C I (t) of the comparison outputs C Q , C I Means that there is a slight change in the change time due to the difference in circuit operation delay.
In the output waveforms D' I (t) and D' Q (t) of, the thin pulses can be generated alternately in time. The period of this pulse is C Q (t) , C I (t)
Is equal to the period of the rectangular change point of, and occurs once every phase difference θ changes by π radians.

以上の周波数検波動作やD′I(t),D′Q(t)上のパルス
発生現象を具体例、並びにその影響をレベル判定回路
7、切替回路8によって解消する動作例を第3図を用い
て次に説明する。
A specific example of the above frequency detection operation and the pulse generation phenomenon on D' I (t) , D' Q (t) and an operation example in which the influence thereof is eliminated by the level determination circuit 7 and the switching circuit 8 are shown in FIG. It will be described next.

第3図(a),(b)は中心角周波数に対する入力信
号Rの角周波数偏差Δωの絶対値が、それぞれ相対的に
大きい場合(Δω=±Δωとする)および小さい場合
(Δω=±Δω)即ち(Δω>Δω)の各時間波
形例を示すタイムチャートである。図中、実線で示した
波形はΔω=+ΔωH,+Δω>0の場合を、また、破
線で示した波形はΔω=−ΔωH,−Δω<0の場合を
それぞれ表している。
FIGS. 3A and 3B show that the absolute value of the angular frequency deviation Δω of the input signal R with respect to the central angular frequency is relatively large (Δω = ± Δω H ) and small (Δω = ±). 9 is a time chart showing an example of each time waveform of Δω L ), that is, (Δω H > Δω L ). In the figure, the waveform shown by the solid line shows the case of Δω = + Δω H , + Δω L > 0, and the waveform shown by the broken line shows the case of Δω = −Δω H , −Δω L <0.

第3図(a)では(b)に比べ位相差θの変化(位相
回転)が速いため、θI(t)Q(t)の三角波状の変化は
(a)の方が(b)よりも速くなる。このため、これら
の時間微分波形DI(t),DQ(t)の矩形波の振幅は(a)の
方が(b)よりも大きくなる。
In FIG. 3 (a), since the change (phase rotation) of the phase difference θ is faster than that in (b ) , the triangular wave-like changes in θ I (t) and θ Q (t) are (b) in (a). ) Will be faster than. For this reason, the amplitude of the rectangular wave of these time differential waveforms D I (t) and D Q (t) is larger in (a) than in (b).

このことは、DI(t),DQ(t)の最大値,最小値をそれぞ
れ(a)の場合+vH,および−vH、また(b)の場合+v
L,および+vLとおくと、(1)〜(4)式より、下式の
関係 が得られることからも明らかである。
This means that the maximum and minimum values of D I (t) and D Q (t) are + v H , and −v H in the case of (a), and + v H in the case of (b).
If L and + v L are set, the relation of the following equation is obtained from the equations (1) to (4). It is also clear from the fact that

一方、CQ(t)とCI(t)は図中していないが、それぞれθ
Q(t)とθI(t)の±1レベルへの2値整形波に等しいか
ら、それぞれ−DI(t)とDQ(t)の波形にほぼ等しくなり、
(5),(6)式の関係からD′I(t)とD′Q(t)はそれ
ぞれDI(t)とDQ(t)が全波整流された波形となる。ただ
し、Δω<0(破線)の場合はΔω>0(実線)の場合
に比べ、θI(t)を基準としたθQ(t)の位相がπラジアン
異なるため、D′I(t),D′Q(t)はいずれも負極方向に全
波整流される。
On the other hand, C Q (t) and C I (t) are not shown in the figure, but
Since it is equal to the binary shaped wave of Q (t) and θ I (t) to ± 1 level, it is almost equal to the waveform of −D I (t) and D Q (t) , respectively.
(5), and D 'I (t) and D' Q (t) is the waveform respectively D I (t) and D Q (t) is full-wave rectified from the relationship (6). However, in the case of Δω <0 (broken line), the phase of θ Q (t) based on θ I (t) is different from that of Δω> 0 (solid line) by π radian, so D ′ I (t) , D ′ Q (t) are both full-wave rectified in the negative direction.

Δω>0,Δω<0のいずれの場合も、全波整流動作に
おける転流時点は−DI(t)とCQ(t)、およびDQ(t)とCI(t)
の変化が厳密には一致せず、わずかな時間差が存在する
ため、図示したように細い逆極パルスが発生することに
なる。
In both cases of Δω> 0 and Δω <0, the commutation points in full-wave rectification operation are −D I (t) and C Q (t) , and D Q (t) and C I (t).
Since the changes in S do not exactly coincide with each other and there is a slight time difference, a narrow reverse polarity pulse is generated as shown in the figure.

このパルスは角周波数2Δωで発生するのでΔωが小
さい場合、その基本波は周波数検波出力Sのベースバン
ド信号帯域内に落ち込み、低域濾波器9では除去できな
い歪成分となるため、伝送品質に影響を与える。
Since this pulse is generated at an angular frequency of 2Δω, when Δω is small, the fundamental wave falls into the baseband signal band of the frequency detection output S and becomes a distortion component that cannot be removed by the low-pass filter 9, thus affecting the transmission quality. give.

ここでレベル判定回路7のレベル判定出力Cの2値論
理波形をC(t)とおくと、C(t)は第2図で説明したように +VT>θQ(t)>−VTで“L",θQ(t)>+V(t)Q(t)
−VTで“H"となる動きを示すから第3図(a),(b)
の下から2段目に示したような波形となる。従って、こ
の場合、切替回路8の切替出力波形D(t)となるように切替回路8の動作論理を構成すれば、D′
I(t)とD′Q(t)のパルス発生点を回避した交互切替出力
をD(t)とすることになり、第3図最下段に示すようにD
(t)はベースバンド信号帯域内に歪を持たない周波数検
波出力信号となる。
When the binary logic waveform of the level judgment output C of the level judgment circuit 7 is C (t) , C (t) is + V T > θ Q (t) > −V T as described in FIG. At “L”, θ Q (t) > + V (t) , θ Q (t) <
Since it shows the movement to "H" at -V T , Fig. 3 (a), (b)
The waveform is as shown in the second row from the bottom. Therefore, in this case, the switching output waveform D (t) of the switching circuit 8 is If the operation logic of the switching circuit 8 is configured so that
The alternate switching output that avoids the pulse generation points of I (t) and D' Q (t) is set as D (t), and as shown in the bottom row of FIG.
(t) is a frequency detection output signal having no distortion in the baseband signal band.

なお、以上のレベル判定回路7,切替回路8による不要
パルスの解消の効果によって、第1図の微分器31又は32
と極正切替回路61または62の、縦続接続順序を入れ換え
た構成においてもD(t)に関しては全く等価な動作を得る
ことができる。
It should be noted that, due to the effect of eliminating unnecessary pulses by the level determination circuit 7 and the switching circuit 8 described above, the differentiator 31 or 32 shown in FIG.
Even in the configuration in which the cascade connection order of the positive polarity switching circuit 61 or 62 is switched, a completely equivalent operation can be obtained with respect to D (t) .

即ち、θ及びθにまず極性切替回路61,62が先に
それぞれ接続される場合は、これに後続する微分器31,3
2の入力から見た等価な位相差検出特性は、周期πラジ
アンの鋸歯状特性(第2図(a)のθの特性のうち、
0>θ>−πの区間を極性反転した特性)となり、微分
器31,32の入力波形は角周波数2Δωの鋸歯状波となる
ため、その微分出力、即ち、切換回路8への入力はΔω
に比例する波形レベル部分と角周波数2Δωの大きなイ
ンパルス列によって構成される。従って切替回路8によ
りインパルス列を回避した切替動作により、前記と等価
な出力D(t)を得ることができる。
That is, when the polarity switching circuits 61 and 62 are first connected to θ I and θ Q , respectively, differentiators 31, 3 that follow the polarity switching circuits 61 and 62 are connected.
The equivalent phase difference detection characteristic seen from the input of 2 is the sawtooth characteristic of the period π radian (of the characteristic of θ 1 in FIG. 2 (a),
(0>θ> −π), and the input waveforms of the differentiators 31 and 32 are sawtooth waves with an angular frequency of 2Δω. Therefore, the differential output thereof, that is, the input to the switching circuit 8 is Δω.
And a large impulse train having a large angular frequency 2Δω. Therefore, by the switching operation that avoids the impulse train by the switching circuit 8, the output D (t) equivalent to the above can be obtained.

〔発明の効果〕〔The invention's effect〕

以上、詳細に説明したように、本発明によれば、理論
的に無歪で不要高調波を含まない周波数検波動作を得る
ことができる。またこれを実現するにあたりアナログ演
算器等を必要とせず、演算増幅器、レベル比較器、アナ
ログスイッチ等を主とする既存のリニアIC、スイッチド
キャパシタ回路技術やCMOS等の論理回路技術で構成で
き、回路規模が小さいのでIC化に適する。さらに応用に
関してはスーパーヘテロダイン受信機に限らず、直接直
交検波形の受信機に適用できるなど、汎用性に優れると
いう利点がある。
As described in detail above, according to the present invention, it is possible to obtain a frequency detection operation that is theoretically distortion-free and does not include unnecessary harmonics. In addition, in order to realize this, there is no need for an analog arithmetic unit or the like, and it can be configured by an existing linear IC mainly including an operational amplifier, a level comparator, an analog switch, etc. Since the circuit scale is small, it is suitable for IC. Further, the application is not limited to the super-heterodyne receiver, and can be directly applied to a quadrature detection waveform receiver.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明回路の一実施例を示すブロック図、第2
図(a),(b)はそれぞれ本発明における第1,第2位
相差検出回路の位相差検出特性例及びレベル判定回路の
出力特性例を示す図、第3図(a),(b)はそれぞれ
入力信号の角周波偏差の絶対値が相対的に大きい場合の
各時間波形例を示すタイムチャート及び入力信号の角周
波数偏差の絶対値が相対的に小さい場合の各時間波形例
を示すタイムチャートである。 R……入力信号、LI,LQ……第1,第2局部発振出力、1
……局部発振回路、21,22……第1,第2位相差検出回
路、θI……位相差検出出力、31,32……微分器、D
I,DQ……微分出力、41,42……第1,第2レベル比較器、C
I,CQ……比較出力、5……論理反転器、▲▼……論
理反転出力、61,62……極性切替回路、D′I,D′……
極性切替出力、7……レベル判定回路、C……レベル判
定出力、71,72……第1,第2縦続接続部分、8……切替
回路、D……切替出力、9……低域濾波器、S……周波
数検波出力。
FIG. 1 is a block diagram showing an embodiment of the circuit of the present invention, and FIG.
FIGS. 3A and 3B are diagrams showing examples of phase difference detection characteristics of the first and second phase difference detection circuits and an example of output characteristics of the level determination circuit according to the present invention, and FIGS. 3A and 3B, respectively. Is a time chart showing each time waveform example when the absolute value of the angular frequency deviation of the input signal is relatively large, and a time chart showing each time waveform example when the absolute value of the angular frequency deviation of the input signal is relatively small. It is a chart. R: input signal, L I , L Q: 1st, 2nd local oscillation output, 1
...... Local oscillator circuit, 21,22 …… First and second phase difference detection circuit, θ I , θ Q …… Phase difference detection output, 31,32 …… Differentiator, D
I , D Q ...... differential output, 41,42 …… First and second level comparator, C
I , C Q …… Comparison output, 5 …… Logical inverter, ▲ ▼ …… Logical inverse output, 61,62 …… Polarity switching circuit, D ′ I , D ′ Q ……
Polarity switching output, 7 ... Level determination circuit, C ... Level determination output, 71,72 ... First and second cascade connection parts, 8 ... Switching circuit, D ... Switching output, 9 ... Low-pass filtering Instrument, S ... Frequency detection output.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】入力信号Rの中心周波数と同一周波数を有
し互いにπ/2ラジアンの位相差を持つ第1,第2局部発振
出力LI,LQを発生する局部発振回路1と、入力信号Rと
第1局部発振出力LIの位相差及び入力信号Rと第2局部
発振出力LQの位相差に対してそれぞれπラジアン毎に直
線的上昇,下降を周期2πラジアンで繰り返す位相差検
出出力特性を有する第1,第2位相差検出回路21,22と、
第1,第2位相差検出回路21,22の出力θIをそれぞ
れ2値論理値に整形する第1,第2レベル比較器41,42
と、第2レベル比較器42の出力CQを論理反転する論理反
転器5と、第1,第2位相差検出回路21,22のいずれか一
方の出力を入力し,その最大値と平均値の中間,並びに
最小値と平均値の中間に位置する2つのしきい値に入力
レベルが挟まれるか否かを2値判別するレベル判定回路
7と、第1,第2位相差検出回路21,22に接続され,それ
ぞれ微分器31,32と、極性切替入力によって入力のアナ
ログ極性を切替出力する極性切替回路61,62との組み合
わせからなる第1,第2縦続接続部分71,72と、レベル判
定回路7の出力Cに従って第1,第2縦続接続部分71,72
の出力D′I,D′のいずれか一方を切替出力する切替
回路8と、切替回路8の出力Dからベースバンド信号成
分を抽出する低域濾波器9とを備え、第1縦続接続部分
71の極性切替回路61の極性切替入力には論理反転器5の
出力▲▼を接続し、第2縦続接続部分72の極性切替
回路62の極性切替入力には第1レベル比較器41の出力CI
を接続し、切替回路8の切替動作としては第1位相差検
出回路21の出力レベルがレベル判定回路7内の2つのし
きい値に挟まれた時には、第1縦続接続部分71の出力
D′を,第2位相差検出回路22の出力レベルがレベル
判定回路7内の2つのしきい値に挟まれた時には第2縦
続接続部分72の出力D′を切り替えて出力する構成と
して第1,第2位相差検出回路21,22の位相差検出特性の
微分不連続点による影響を解消した周波数検波出力Sを
低域濾波器9より得る構成とした周波数検波回路。
1. A local oscillator circuit 1 for generating first and second local oscillation outputs L I , L Q having the same frequency as the center frequency of an input signal R and having a phase difference of π / 2 radians with each other, and an input. Phase difference detection that repeats linearly rising and falling every π radian with a period of 2π radians for the phase difference between the signal R and the first local oscillation output L I and the phase difference between the input signal R and the second local oscillation output L Q First and second phase difference detection circuits 21 and 22 having output characteristics,
First and second level comparators 41 and 42 for shaping the outputs θ I and θ Q of the first and second phase difference detection circuits 21 and 22 into binary logical values, respectively.
, The logic inverter 5 which logically inverts the output C Q of the second level comparator 42, and the output of either one of the first and second phase difference detection circuits 21 and 22, and the maximum and average values thereof are inputted. , And a first and second phase difference detection circuit 21, which makes a binary decision as to whether or not the input level is sandwiched between two threshold values located between the middle and the minimum value and the mean value. 22. The first and second cascade connection parts 71 and 72, each of which is connected to 22, and includes a differentiator 31, 32 and a polarity switching circuit 61, 62 for switching and outputting the analog polarity of the input by the polarity switching input, and a level According to the output C of the judgment circuit 7, the first and second cascade connection parts 71, 72
A switching circuit 8 for switching and outputting one of the outputs D' I and D' Q of the switching circuit 8 and a low-pass filter 9 for extracting a baseband signal component from the output D of the switching circuit 8;
The output ▲ ▼ of the logic inverter 5 is connected to the polarity switching input of the polarity switching circuit 61 of 71, and the output C of the first level comparator 41 is connected to the polarity switching input of the polarity switching circuit 62 of the second cascade connection portion 72. I
When the output level of the first phase difference detection circuit 21 is sandwiched between two threshold values in the level determination circuit 7, the output D'of the first cascade connection portion 71 is connected. I is a first configuration for switching and outputting the output D ′ Q of the second cascade connection portion 72 when the output level of the second phase difference detection circuit 22 is sandwiched between two threshold values in the level determination circuit 7. A frequency detection circuit configured to obtain the frequency detection output S from the low pass filter 9 in which the influence of the differential discontinuity point of the phase difference detection characteristics of the second phase difference detection circuits 21 and 22 is eliminated.
JP32103587A 1987-08-24 1987-12-18 Frequency detection circuit Expired - Lifetime JP2517028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32103587A JP2517028B2 (en) 1987-08-24 1987-12-18 Frequency detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32103587A JP2517028B2 (en) 1987-08-24 1987-12-18 Frequency detection circuit

Publications (2)

Publication Number Publication Date
JPH01162402A JPH01162402A (en) 1989-06-26
JP2517028B2 true JP2517028B2 (en) 1996-07-24

Family

ID=18128073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32103587A Expired - Lifetime JP2517028B2 (en) 1987-08-24 1987-12-18 Frequency detection circuit

Country Status (1)

Country Link
JP (1) JP2517028B2 (en)

Also Published As

Publication number Publication date
JPH01162402A (en) 1989-06-26

Similar Documents

Publication Publication Date Title
US5159281A (en) Digital demodulator using numerical processor to evaluate period measurements
JP2982567B2 (en) Receiver
EP0076095B1 (en) Direct conversion radio receiver for f.m. signals
JP2792888B2 (en) Direct conversion receiver
JPH0129469B2 (en)
JPH0677737A (en) Phase detector and phase detection system used for the same
US5197085A (en) Radio receiver
JPS6128258A (en) Fsk demodulation circuit
JP2517028B2 (en) Frequency detection circuit
JPS6189702A (en) Frequency multiplier
US5450032A (en) FSK data demodulator using mixing of quadrature baseband signals
JP2517035B2 (en) Frequency discrimination circuit
JP3658768B2 (en) FM receiver
JP3658769B2 (en) Receiver
JP4267786B2 (en) Direct conversion receiver for frequency shift keyed signals
KR940000929B1 (en) Digital frequency shift keying modulating circuit
SU1381684A1 (en) Synchronous demodulator
SU1392630A1 (en) Duplex phase telegraphy signal demodulator
SU1758899A1 (en) Quadrature frequency-shift signal demodulator
JPS6029003A (en) Fm demodulator
JPH06105917B2 (en) FSK detection circuit
JPH05103027A (en) Delay detection circuit
RU2522854C1 (en) Method of demodulating minimum frequency-shift keying signals and apparatus for realsing said method
JPS59225604A (en) Pulse count detector
WO1993010596A1 (en) Digital demodulator