JP2009055097A - Fsk demodulation circuit and method - Google Patents

Fsk demodulation circuit and method Download PDF

Info

Publication number
JP2009055097A
JP2009055097A JP2007217285A JP2007217285A JP2009055097A JP 2009055097 A JP2009055097 A JP 2009055097A JP 2007217285 A JP2007217285 A JP 2007217285A JP 2007217285 A JP2007217285 A JP 2007217285A JP 2009055097 A JP2009055097 A JP 2009055097A
Authority
JP
Japan
Prior art keywords
signal
fsk
controlled oscillator
circuit
oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007217285A
Other languages
Japanese (ja)
Inventor
Toshiro Kodera
敏郎 小寺
Makoto Taroumaru
眞 太郎丸
Nobuhiko Ando
暢彦 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ATR Advanced Telecommunications Research Institute International
Original Assignee
ATR Advanced Telecommunications Research Institute International
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ATR Advanced Telecommunications Research Institute International filed Critical ATR Advanced Telecommunications Research Institute International
Priority to JP2007217285A priority Critical patent/JP2009055097A/en
Publication of JP2009055097A publication Critical patent/JP2009055097A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily demodulate a multi-valued FSK (Frequency Shift Keying) signal and a broadband FSK signal with a configuration simpler as compared with the conventional technology. <P>SOLUTION: A digital controlled oscillator having a plurality of oscillation frequencies which respectively coincide with respective instantaneous frequencies of FSK signals is controlled so as to sequentially repeat and intermittently oscillate oscillation frequencies of the respective oscillation frequencies by using a plurality of control signals respectively corresponding to the respective oscillation frequencies. The FSK signals are inputted to the digital controlled oscillator to thereby operate the digital controlled oscillator as a super-regenerative AM wave detector 10. An AM demodulation signal outputted from the digital controlled oscillator is used as a data sampling control signal to perform sample hold of the plurality of control signals and perform binary digit conversion of the control signals, thereby obtaining an FSK demodulation signal. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、FSK(Frequency Shift Keying)信号を復調するFSK復調回路及び方法に関する。   The present invention relates to an FSK demodulating circuit and method for demodulating an FSK (Frequency Shift Keying) signal.

既に実用化されているFSK信号受信回路は、低雑音増幅器(LNA)と、F−V変換回路と、A/D変換回路とを備えて構成される。別のアプローチとしてAM信号の復調回路である超再生検波回路(例えば、非特許文献1−3参照。)の急峻な周波数選択性を用いたFSK信号のスロープ検波方式があるが、復調可能な信号は挟帯域FSK信号に限られている。   An FSK signal receiving circuit that has already been put into practical use is configured to include a low noise amplifier (LNA), an FV conversion circuit, and an A / D conversion circuit. As another approach, there is a slope detection method of an FSK signal using the steep frequency selectivity of a super regenerative detection circuit (for example, see Non-Patent Document 1-3) that is a demodulation circuit of an AM signal. Is limited to narrowband FSK signals.

特開平9−214386号公報(図19及び図20)。JP-A-9-214386 (FIGS. 19 and 20). N. Buchanan et al., "A 7.5-GHz superregenerative detector", IEEE Transactions on Microwave Theory and Technology, Vol. 50, No.9, pp. 2198-2202, September 2002.N. Buchanan et al., "A 7.5-GHz superregenerative detector", IEEE Transactions on Microwave Theory and Technology, Vol. 50, No. 9, pp. 2198-2202, September 2002. C. Dehollainm et al., "A global survey on short range low power wireless data transmission architecture for ISM application", Proceedings of International Semiconductor Conference, Vol. 1, pp. 117-126, October 2001.C. Dehollainm et al., "A global survey on short range low power wireless data transmission architecture for ISM application", Proceedings of International Semiconductor Conference, Vol. 1, pp. 117-126, October 2001. E. Armstrong, "Some recent developments of regenerative circuits", Proceedings of IRE, Vol. 10, pp. 244-260, August 1922.E. Armstrong, "Some recent developments of regenerative circuits", Proceedings of IRE, Vol. 10, pp. 244-260, August 1922. B. Giebel et al., "Digitally Controlled Oscillator", IEEE Journal of Solid-State Circuits, Vol.24, No.6, pp. 640-645, June 1989.B. Giebel et al., "Digitally Controlled Oscillator", IEEE Journal of Solid-State Circuits, Vol.24, No.6, pp. 640-645, June 1989. R. Staszewski et al., "Just-In-Time Gain Estimation of an RF Digitally Controlled Oscillator for Digital Direct Frequency Modulation", IEEE Transactions on Circuits and Systems, Vol.50, No.11, pp. 887-892, November 2003.R. Staszewski et al., "Just-In-Time Gain Estimation of an RF Digitally Controlled Oscillator for Digital Direct Frequency Modulation", IEEE Transactions on Circuits and Systems, Vol.50, No.11, pp. 887-892, November 2003. R. Staszewsky et al., "A Digitally Controlled Oscillator in a 90nm Digital CMOS Process for Mobile Phones", IEEE Journal of Solid-State Circuits, Vol.40, No.11, pp. 2203-2211, November 2005.R. Staszewsky et al., "A Digitally Controlled Oscillator in a 90nm Digital CMOS Process for Mobile Phones", IEEE Journal of Solid-State Circuits, Vol.40, No.11, pp. 2203-2211, November 2005.

上述のように、従来技術に係るFSK信号受信回路は、低雑音増幅器(LNA)と、F−V変換回路と、A/D変換回路とを備えて構成されるので、構成が複雑になり、製造コストが多大になる、また、多値FSK信号や広帯域FSK信号を容易に復調することができないという問題点があった。   As described above, the FSK signal receiving circuit according to the related art is configured to include the low noise amplifier (LNA), the F-V conversion circuit, and the A / D conversion circuit, so that the configuration becomes complicated. There are problems in that the manufacturing cost is increased and that a multilevel FSK signal and a wideband FSK signal cannot be easily demodulated.

また、特許文献1の図19及び図20においては、クエンチング信号を利用して超再生検波回路でASK信号を復調するASK信号復調回路(その動作を図8に示す。)が開示されているが、FSK信号を復調することはできないという問題点があった。   19 and 20 of Patent Document 1 disclose an ASK signal demodulating circuit (the operation of which is shown in FIG. 8) that demodulates the ASK signal by a super regenerative detection circuit using a quenching signal. However, there is a problem that the FSK signal cannot be demodulated.

本発明の目的は以上の問題点を解決し、従来技術に比較して構成が簡単であって、多値FSK信号や広帯域FSK信号を容易に復調することができるFSK復調回路及び方法を提供することにある。   The object of the present invention is to provide an FSK demodulating circuit and method that solve the above-described problems, have a simpler configuration than the prior art, and can easily demodulate a multilevel FSK signal or a wideband FSK signal. There is.

発振回路の発振周波数の離散的切り替えをFET等の電子スイッチにて行うディジタル制御発振器(DCO(Digitally Controlled Oscillator);以下、DCOという。)の報告例が既にあり(例えば非特許文献4−6参照。)、2値信号により周波数切り替えが可能な発振回路が実現可能であることが既に知られている。本発明者らはこれに着目して、DCOと超再生検波回路とを組み合わせることにより、FSK復調回路を構成することを特徴としている。   There have already been reported examples of a digitally controlled oscillator (DCO (Digitally Controlled Oscillator); hereinafter referred to as DCO) that performs discrete switching of the oscillation frequency of the oscillation circuit using an electronic switch such as an FET (see, for example, Non-Patent Documents 4-6). It is already known that an oscillation circuit capable of switching the frequency by a binary signal can be realized. The inventors pay attention to this and are characterized in that an FSK demodulating circuit is configured by combining a DCO and a super regenerative detection circuit.

第1の発明に係るFSK復調回路は、FSK信号の各瞬時周波数にそれぞれ一致する複数の発振周波数を有するディジタル制御発振器を、上記各発振周波数にそれぞれ対応する複数の制御信号に用いて上記各発振周波数の発振周波数を順次繰り返しかつ間歇発振するように制御し、
上記ディジタル制御発振器にFSK信号を入力することにより、上記ディジタル制御発振器を超再生AM検波器として動作させ、
上記ディジタル制御発振器から出力されるAM復調信号をデータサンプリング制御信号として用いて上記複数の制御信号をサンプルホールドしかつ2進数変換することによりFSK復調信号を得ることを特徴とする。
According to a first aspect of the present invention, there is provided an FSK demodulating circuit using a digitally controlled oscillator having a plurality of oscillation frequencies respectively corresponding to the respective instantaneous frequencies of the FSK signal as a plurality of control signals respectively corresponding to the respective oscillation frequencies. Control the oscillation frequency of the frequency to repeat repeatedly and intermittently,
By inputting the FSK signal to the digitally controlled oscillator, the digitally controlled oscillator is operated as a super regenerative AM detector,
The FSK demodulated signal is obtained by sampling and holding the plurality of control signals using the AM demodulated signal output from the digitally controlled oscillator as a data sampling control signal and performing binary conversion.

第2の発明に係るFSK復調方法は、FSK信号の各瞬時周波数にそれぞれ一致する複数の発振周波数を有するディジタル制御発振器を、上記各発振周波数にそれぞれ対応する複数の制御信号に用いて上記各発振周波数の発振周波数を順次繰り返しかつ間歇発振するように制御し、
上記ディジタル制御発振器にFSK信号を入力することにより、上記ディジタル制御発振器を超再生AM検波器として動作させ、
上記ディジタル制御発振器から出力されるAM復調信号をデータサンプリング制御信号として用いて上記複数の制御信号をサンプルホールドしかつ2進数変換することによりFSK復調信号を得ることを特徴とする。
The FSK demodulating method according to the second invention uses a digitally controlled oscillator having a plurality of oscillation frequencies corresponding to the respective instantaneous frequencies of the FSK signal as a plurality of control signals respectively corresponding to the oscillation frequencies. Control the oscillation frequency of the frequency to repeat repeatedly and intermittently,
By inputting the FSK signal to the digitally controlled oscillator, the digitally controlled oscillator is operated as a super regenerative AM detector,
The FSK demodulated signal is obtained by sampling and holding the plurality of control signals using the AM demodulated signal output from the digitally controlled oscillator as a data sampling control signal and performing binary conversion.

従って、本発明に係るFSK復調回路及び方法によれば、従来のアプローチに比べ回路規模を縮小することが可能であり、低消費電力化できる。さらに、動作周波数が高くなり、能動素子の歩留まりが低い場合においても、目的の周波数(搬送波周波数)にて動作する必要能動素子数を低減できる。さらに、従来のFSK復調回路において不可欠なA/D変換器が不要であり、低消費電力のFSK復調回路を簡単な構成で形成できる。基本的な復調能力は超再生の感度特性によるものであり、低雑音増幅器(LNA)の付加が不要ともなり得る。   Therefore, according to the FSK demodulating circuit and method according to the present invention, the circuit scale can be reduced as compared with the conventional approach, and the power consumption can be reduced. Furthermore, even when the operating frequency is high and the yield of active elements is low, the number of necessary active elements that operate at the target frequency (carrier frequency) can be reduced. Further, an A / D converter that is indispensable in the conventional FSK demodulating circuit is unnecessary, and an FSK demodulating circuit with low power consumption can be formed with a simple configuration. The basic demodulation capability is based on the sensitivity characteristics of super reproduction, and the addition of a low noise amplifier (LNA) may not be necessary.

以下、本発明に係る実施形態について図面を参照して説明する。なお、以下の各実施形態において、同様の構成要素については同一の符号を付している。   Hereinafter, embodiments according to the present invention will be described with reference to the drawings. In addition, in each following embodiment, the same code | symbol is attached | subjected about the same component.

図1は本発明の第1の実施形態に係る2FSK信号受信回路の構成を示すブロック図である。図1の2FSK信号受信回路は、DCOを用いた2周波数走査型超再生AM検波回路10と、DCO制御信号発生器20と、コンパレータ12と、サンプルホールド回路30と、バイナリデコーダ40とを備えて構成される。   FIG. 1 is a block diagram showing a configuration of a 2FSK signal receiving circuit according to the first embodiment of the present invention. The 2FSK signal receiving circuit of FIG. 1 includes a dual frequency scanning super regenerative AM detection circuit 10 using a DCO, a DCO control signal generator 20, a comparator 12, a sample hold circuit 30, and a binary decoder 40. Composed.

図1において、DCO制御信号発生器20は、DCO制御信号V1,V2を(V1,V2)=(1,0)と(0,1)とを(ここで、1はハイレベルであり、0はローレベルである。)交互に変化するように所定の周期T1(T1は2FSK信号の切換周期よりも十分に短い。)で切り換えて発生してそれぞれ、スイッチング用電界効果トランジスタ(以下、電界効果トランジスタをFETという。)Q1,Q2の各ゲートに印加するとともに、サンプルホールド回路30に出力する。   In FIG. 1, the DCO control signal generator 20 converts the DCO control signals V1 and V2 into (V1, V2) = (1, 0) and (0, 1) (where 1 is high level, 0 Are switched at a predetermined period T1 (T1 is sufficiently shorter than the switching period of the 2FSK signal) so as to change alternately, and each field effect transistor for switching (hereinafter referred to as field effect) is generated. The transistor is referred to as FET.) It is applied to the gates of Q1 and Q2, and is output to the sample and hold circuit 30.

超再生AM検波回路10において、発振用FETQ11のゲートは伝送線路L10を介して周波数スイッチング用FETQ1,Q2の各ドレインに接続され、FETQ1のソースは伝送線路L1を介して接地され、FETQ2のソースは伝送線路L2(<L1)を介して接地される。また、発振用FETQ11のドレインは伝送線路L12を介して接地され、そのソースは出力負荷用伝送線路L11を介して接地される。発振用FETQ11のソースは端子T3を介して低域通過フィルタ(LPF)11に接続される。さらに、発振用FETQ11のドレインはクエンチング間歇発振スイッチング用FETQ5のソース及びドレインを介して電源電圧VDDに接続され、上記スイッチング用FETQ5は、端子T4を介して入力される、2FSK信号の周波数切換周波数よりも十分に高いクエンチング周波数を有する正弦波(又は矩形パルス)のクエンチング信号によりオン・オフ制御される。また、瞬時周波数又はチャンネル周波数f1,f2を有する2FSK信号は端子T1及びカップリングキャパシタC1を介して発振用FETQ11のドレインに印加される。 In the super regenerative AM detection circuit 10, the gate of the oscillation FET Q11 is connected to the drains of the frequency switching FETs Q1 and Q2 via the transmission line L10, the source of the FET Q1 is grounded via the transmission line L1, and the source of the FET Q2 is Grounded via the transmission line L2 (<L1). The drain of the oscillation FET Q11 is grounded via the transmission line L12, and the source thereof is grounded via the output load transmission line L11. The source of the oscillation FET Q11 is connected to the low-pass filter (LPF) 11 via the terminal T3. Further, the drain of the oscillation FET Q11 is connected to the power supply voltage V DD via the source and drain of the quenching intermittent oscillation switching FET Q5, and the switching FET Q5 is frequency-switched of the 2FSK signal input via the terminal T4. On / off control is performed by a sine wave (or rectangular pulse) quenching signal having a quenching frequency sufficiently higher than the frequency. A 2FSK signal having an instantaneous frequency or channel frequencies f1 and f2 is applied to the drain of the oscillation FET Q11 via the terminal T1 and the coupling capacitor C1.

以上のように構成された発振用FETQ11を含む回路において、DCO制御信号(V1,V2)=(1,0)が印加されているとき、スイッチング用FETQ1がオンとなる一方、スイッチング用FETQ2がオフとなる。このとき、発振用FETQ11のドレインからの信号が伝送線路L12と、伝送線路L1、スイッチング用FETQ1及び伝送線路L10を介して発振用FETQ11に帰還して正帰還回路を構成し、伝送線路L1に依存して決まる電気長の正帰還回路により決まる周波数で発振するが、ここで、当該周波数をf1に設定する。また、発振用FETQ11を含む回路において、DCO制御信号(V1,V2)=(0,1)が印加されているとき、スイッチング用FETQ1がオフとなる一方、スイッチング用FETQ2がオンとなる。このとき、発振用FETQ11のドレインからの信号が伝送線路L12と、伝送線路L2、スイッチング用FETQ2及び伝送線路L10を介して発振用FETQ11に帰還して正帰還回路を構成し、伝送線路L2に依存して決まる電気長の正帰還回路により決まる周波数で発振するが、ここで、当該周波数をf2に設定する。DCO制御信号発生器20は発振器が発振周波数f1,f2の順序で順次走査して発振するように制御信号V1,V2を出力する。さらに、クエンチング信号に従って、スイッチング用FETQ5がオン・オフを繰り返すことにより、電源電圧VDDの供給がオン・オフされるので、当該発振器は間歇発振して当該発振器が超再生検波回路として動作することになる。 In the circuit including the oscillation FET Q11 configured as described above, when the DCO control signal (V1, V2) = (1, 0) is applied, the switching FET Q1 is turned on while the switching FET Q2 is turned off. It becomes. At this time, a signal from the drain of the oscillation FET Q11 is fed back to the oscillation FET Q11 via the transmission line L12, the transmission line L1, the switching FET Q1, and the transmission line L10 to form a positive feedback circuit, and depends on the transmission line L1. Oscillation is performed at a frequency determined by a positive feedback circuit having an electrical length determined as described above. Here, the frequency is set to f1. In the circuit including the oscillation FET Q11, when the DCO control signal (V1, V2) = (0, 1) is applied, the switching FET Q1 is turned off while the switching FET Q2 is turned on. At this time, the signal from the drain of the oscillation FET Q11 is fed back to the oscillation FET Q11 via the transmission line L12, the transmission line L2, the switching FET Q2, and the transmission line L10 to form a positive feedback circuit, and depends on the transmission line L2. Oscillation is performed at a frequency determined by a positive feedback circuit having an electrical length determined in this manner. Here, the frequency is set to f2. The DCO control signal generator 20 outputs control signals V1 and V2 so that the oscillator sequentially oscillates in the order of the oscillation frequencies f1 and f2. Furthermore, since the switching FET Q5 is repeatedly turned on and off according to the quenching signal, the supply of the power supply voltage V DD is turned on and off, so that the oscillator oscillates intermittently and the oscillator operates as a super regenerative detection circuit It will be.

2FSK信号は端子T1及びカップリングキャパシタC1を介して発振用FETQ11に印加され、このとき、当該発振器は制御信号V1,V2に基づいて発振周波数f1とf2で交互に走査して発振しているが、2FSK信号の瞬時周波数f1又はf2が当該発振器の発振周波数f1又はf2と一致したのみ、発振用FETQ11のソースからAM復調信号が出力され、当該AM復調信号は低域通過フィルタ(LPF)11を介してコンパレータ12の非反転入力端子に入力される。コンパレータ12の反転入力端子にはしきい値電圧Vthが印加され、コンパレータ12は入力されるAM復調信号がしきい値電圧Vth以上であるときのみハイレベルのデータサンプリング制御信号を発生してサンプルホールド回路30に出力する。サンプルホールド回路30は、データサンプリング制御信号がハイレベルのとき、DCO制御信号発生器20から出力されるDCO制御信号V1,V2をサンプルホールドした後、バイナリデコーダ40に出力する。これに応答して、バイナリデコーダ40は入力される信号を2進数変換してバイナリ復号化することにより1ビットの2FSK復調信号を発生して端子T2を介して出力する。   The 2FSK signal is applied to the oscillation FET Q11 via the terminal T1 and the coupling capacitor C1, and at this time, the oscillator oscillates by alternately scanning at the oscillation frequencies f1 and f2 based on the control signals V1 and V2. Only when the instantaneous frequency f1 or f2 of the 2FSK signal matches the oscillation frequency f1 or f2 of the oscillator, the AM demodulated signal is output from the source of the oscillation FET Q11, and the AM demodulated signal passes through the low-pass filter (LPF) 11. Through the non-inverting input terminal of the comparator 12. A threshold voltage Vth is applied to the inverting input terminal of the comparator 12, and the comparator 12 generates a high level data sampling control signal only when the input AM demodulated signal is equal to or higher than the threshold voltage Vth, and performs sample hold. Output to the circuit 30. The sample hold circuit 30 samples and holds the DCO control signals V1 and V2 output from the DCO control signal generator 20 when the data sampling control signal is at a high level, and then outputs the DCO control signals V1 and V2 to the binary decoder 40. In response to this, the binary decoder 40 performs binary conversion on the input signal and performs binary decoding to generate a 1-bit 2FSK demodulated signal and output it via the terminal T2.

図2は図1の低域通過フィルタ(LPF)11、コンパレータ12、サンプルホールド回路30及びバイナリデコーダ40の詳細構成を示す回路図である。図2において、低域通過フィルタ(LPF)11は2個のオペアンプOP1,OP2で構成され、コンパレータ12は1個のコンパレータICCP1で構成され、サンプルホールド回路30は2個のサンプルホールドICSH1,SH2で構成される。また、バイナリデコーダ40はインバータI1とアンドゲートA1で構成される。   FIG. 2 is a circuit diagram showing detailed configurations of the low-pass filter (LPF) 11, the comparator 12, the sample hold circuit 30, and the binary decoder 40 of FIG. 1. In FIG. 2, the low-pass filter (LPF) 11 is composed of two operational amplifiers OP1 and OP2, the comparator 12 is composed of one comparator ICCP1, and the sample and hold circuit 30 is composed of two sample and hold ICSH1 and SH2. Composed. The binary decoder 40 includes an inverter I1 and an AND gate A1.

図3は図1の2FSK信号受信回路の動作を示すための各信号のタイミングチャートである。図3から明らかなように、発振器は発振周波数f1とf2で交互に走査して発振しているが、2FSK信号の瞬時周波数f1又はf2が発振器の発振周波数f1又はf2と一致したのみ、発振用FETQ11のソースからAM復調信号が出力され、当該AM復調信号に基づいてサンプルホールド回路30によりサンプルホールドされた制御信号V1,V2は入力されたFSK信号の復調信号となることがわかる。すなわち、入力されるFSK信号が存在するとき、発振器の発振の立ち上がりが早くなり、結果としてPWMがかかる。この発振波形の包絡線を取り出し、低域通過フィルタ11に通すことによりAM成分の復調が可能となる。本実施形態では、DCOの発振周波数をFSK信号のチャネル周波数に一致させるように回路設計を行い、発振周波数をシーケンシャルに走査して切り替える。さらに発振回路を間歇動作させることにより超再生検波回路として動作させ、FSK信号の瞬時周波数と超再生検波回路の受信周波数が一致した場合得られるAM復調信号に基づいて、DCO制御信号をサンプルホールドすることにより、このときの制御信号がFSKの復調信号となる。   FIG. 3 is a timing chart of each signal for illustrating the operation of the 2FSK signal receiving circuit of FIG. As is apparent from FIG. 3, the oscillator oscillates by alternately scanning at the oscillation frequencies f1 and f2, but only when the instantaneous frequency f1 or f2 of the 2FSK signal matches the oscillation frequency f1 or f2 of the oscillator. It can be seen that an AM demodulated signal is output from the source of the FET Q11, and the control signals V1 and V2 sampled and held by the sample and hold circuit 30 based on the AM demodulated signal are demodulated signals of the input FSK signal. That is, when the input FSK signal exists, the rise of the oscillation of the oscillator is accelerated, and as a result, PWM is applied. By taking out the envelope of this oscillation waveform and passing it through the low-pass filter 11, the AM component can be demodulated. In this embodiment, the circuit design is performed so that the oscillation frequency of the DCO matches the channel frequency of the FSK signal, and the oscillation frequency is switched by scanning sequentially. Further, the oscillation circuit is operated intermittently to operate as a super regenerative detection circuit, and the DCO control signal is sampled and held based on the AM demodulated signal obtained when the instantaneous frequency of the FSK signal matches the reception frequency of the super regenerative detection circuit. As a result, the control signal at this time becomes an FSK demodulated signal.

以上説明したように、本実施形態によれば、FSK信号の各瞬時周波数にそれぞれ一致する複数の発振周波数を有するディジタル制御発振器を、上記各発振周波数にそれぞれ対応する複数の制御信号に用いて上記各発振周波数の発振周波数を順次繰り返しかつ間歇発振するように制御し、上記ディジタル制御発振器にFSK信号を入力することにより、上記ディジタル制御発振器を超再生AM検波器として動作させ、上記ディジタル制御発振器から出力されるAM復調信号をデータサンプリング制御信号として用いて上記複数の制御信号をサンプルホールドしかつ2進数変換することによりFSK復調信号を得る。これにより、従来のアプローチに比べ回路規模を縮小することが可能であり、低消費電力化できる。さらに、動作周波数が高くなり、能動素子の歩留まりが低い場合においても、目的の周波数(搬送波周波数)にて動作する必要能動素子数をFSK信号のチャンネル数を低減できる。さらに、従来のFSK復調回路において不可欠なA/D変換器が不要であり、低消費電力のFSK復調回路を簡単な構成で形成できる。基本的な復調能力は超再生の感度特性によるものであり、低雑音増幅器(LNA)の付加が不要ともなり得る。   As described above, according to the present embodiment, the digitally controlled oscillator having a plurality of oscillation frequencies respectively corresponding to the respective instantaneous frequencies of the FSK signal is used for the plurality of control signals respectively corresponding to the respective oscillation frequencies. The oscillation frequency of each oscillation frequency is controlled so as to sequentially repeat and intermittently oscillate, and the FSK signal is input to the digitally controlled oscillator to operate the digitally controlled oscillator as a super regenerative AM detector. Using the output AM demodulated signal as a data sampling control signal, the plurality of control signals are sampled and held, and binary conversion is performed to obtain an FSK demodulated signal. Thereby, the circuit scale can be reduced as compared with the conventional approach, and the power consumption can be reduced. Furthermore, even when the operating frequency is high and the yield of active elements is low, the number of FSK signal channels can be reduced to the number of necessary active elements operating at the target frequency (carrier frequency). Further, an A / D converter that is indispensable in the conventional FSK demodulating circuit is unnecessary, and an FSK demodulating circuit with low power consumption can be formed with a simple configuration. The basic demodulation capability is based on the sensitivity characteristics of super reproduction, and the addition of a low noise amplifier (LNA) may not be necessary.

第2の実施形態.
図4は本発明の第2の実施形態に係る4FSK信号受信回路の構成を示すブロック図である。第2の実施形態は、図1の第1の実施形態に比較して、端子T1を介して入力される4FSK信号を復調するために、以下の点が異なる。
(1)DCOを用いた2周波数走査型超再生AM検波回路10に代えて、4つの発振周波数で間歇発振するDCOを用いた4周波数走査型超再生AM検波回路10Aを備えたこと。
(2)2個の制御信号V1,V2を発生するDCO制御信号発生器20に代えて、4個の制御信号V1−V4を発生するDCO制御信号発生器20Aを備えたこと。
(3)4個の制御信号V1−V4をサンプルホールドするサンプルホールド回路30Aを備えたこと。
(4)バイナリデコーダ40に代えて、サンプルホールドされた4個の制御信号V1−V4を2進数変換してバイナリ復号化することにより2ビットの4FSK復調信号を得るバイナリデコーダ40Aを備えたこと。
以下、上記相違点について詳細説明する。
Second embodiment.
FIG. 4 is a block diagram showing a configuration of a 4FSK signal receiving circuit according to the second embodiment of the present invention. The second embodiment is different from the first embodiment of FIG. 1 in that the 4FSK signal input via the terminal T1 is demodulated as follows.
(1) A 4-frequency scanning super regenerative AM detection circuit 10A using a DCO that oscillates intermittently at four oscillation frequencies is provided in place of the 2-frequency scanning super regenerative AM detection circuit 10 using a DCO.
(2) A DCO control signal generator 20A for generating four control signals V1-V4 is provided instead of the DCO control signal generator 20 for generating two control signals V1, V2.
(3) A sample and hold circuit 30A for sampling and holding the four control signals V1 to V4 is provided.
(4) In place of the binary decoder 40, the binary decoder 40A is provided which obtains a 2-bit 4FSK demodulated signal by binary-decoding the four sampled and held control signals V1-V4 by binary conversion.
Hereinafter, the difference will be described in detail.

図4において、図1の回路に比較して、スイッチング用FETQ3,Q4とその各ソース及び接地間に接続された伝送線路L3,L4とをさらに備える。DCO制御信号発生器20Aからの各制御信号V1−V4はそれぞれスイッチング用FETQ1−Q4の各ゲートに印加される。スイッチング用FETQ3及びQ4の各ドレインは伝送線路L10を介して発振用FETQ11のゲートに接続される。   4 further includes switching FETs Q3 and Q4 and transmission lines L3 and L4 connected between their respective sources and the ground as compared with the circuit of FIG. The control signals V1-V4 from the DCO control signal generator 20A are applied to the gates of the switching FETs Q1-Q4, respectively. The drains of the switching FETs Q3 and Q4 are connected to the gate of the oscillation FET Q11 via the transmission line L10.

DCO制御信号発生器20Aはハイレベルの制御信号V1と、それぞれローレベルの他の制御信号V2−V4とを出力するとき、スイッチング用FETQ1−Q4のうちスイッチング用FETQ1のみがオンとなり、発振用FETQ11を含む発振器は所定の発振周波数f1で発振するように構成される。また、DCO制御信号発生器20Aはハイレベルの制御信号V2と、それぞれローレベルの他の制御信号V1,V3−V4とを出力するとき、スイッチング用FETQ1−Q4のうちスイッチング用FETQ2のみがオンとなり、発振用FETQ11を含む発振器は所定の発振周波数f2で発振するように構成される。さらに、DCO制御信号発生器20Aはハイレベルの制御信号V3と、それぞれローレベルの他の制御信号V1,V2,V4とを出力するとき、スイッチング用FETQ1−Q4のうちスイッチング用FETQ3のみがオンとなり、発振用FETQ11を含む発振器は所定の発振周波数f3で発振するように構成される。またさらに、DCO制御信号発生器20Aはハイレベルの制御信号V4と、それぞれローレベルの他の制御信号V1−V3とを出力するとき、スイッチング用FETQ1−Q4のうちスイッチング用FETQ4のみがオンとなり、発振用FETQ11を含む発振器は所定の発振周波数f4で発振するように構成される。ここで、発振周波数f1−f4は互いに異なり、入力される4FSK信号の4つの瞬時周波数にそれぞれ一致する。ここで、DCO制御信号発生器20Aは発振器が発振周波数f1,f2,f3,f4の順序で順次走査して発振するように制御信号V1−V4を出力する。   When the DCO control signal generator 20A outputs the high level control signal V1 and the other low level control signals V2-V4, only the switching FET Q1 of the switching FETs Q1-Q4 is turned on, and the oscillation FET Q11 Is configured to oscillate at a predetermined oscillation frequency f1. Further, when the DCO control signal generator 20A outputs the high level control signal V2 and the other low level control signals V1, V3-V4, only the switching FET Q2 of the switching FETs Q1-Q4 is turned on. The oscillator including the oscillation FET Q11 is configured to oscillate at a predetermined oscillation frequency f2. Further, when the DCO control signal generator 20A outputs the high level control signal V3 and the other low level control signals V1, V2, and V4, only the switching FET Q3 of the switching FETs Q1-Q4 is turned on. The oscillator including the oscillation FET Q11 is configured to oscillate at a predetermined oscillation frequency f3. Furthermore, when the DCO control signal generator 20A outputs the high level control signal V4 and the other low level control signals V1-V3, only the switching FET Q4 among the switching FETs Q1-Q4 is turned on. The oscillator including the oscillation FET Q11 is configured to oscillate at a predetermined oscillation frequency f4. Here, the oscillation frequencies f1 to f4 are different from each other and correspond to the four instantaneous frequencies of the input 4FSK signal. Here, the DCO control signal generator 20A outputs the control signals V1-V4 so that the oscillator sequentially oscillates in the order of the oscillation frequencies f1, f2, f3, f4.

サンプルホールド回路30Aは、データサンプリング制御信号がハイレベルのとき、DCO制御信号発生器20Aから出力されるDCO制御信号V1,V2をサンプルホールドした後、バイナリデコーダ40Aに出力する。これに応答して、バイナリデコーダ40Aは入力される信号を2進数変換してバイナリ復号化することにより2ビットの4FSK復調信号を発生して端子T11,T12を介して出力する。   When the data sampling control signal is at a high level, the sample hold circuit 30A samples and holds the DCO control signals V1 and V2 output from the DCO control signal generator 20A, and then outputs them to the binary decoder 40A. In response to this, the binary decoder 40A generates a 2-bit 4FSK demodulated signal by subjecting the input signal to binary conversion and binary decoding, and outputs it through terminals T11 and T12.

図5は図4の低域通過フィルタ(LPF)11、コンパレータ12、サンプルホールド回路30A及びバイナリデコーダ40Aの詳細構成を示す回路図である。図5において、低域通過フィルタ(LPF)11は2個のオペアンプOP1,OP2で構成され、コンパレータ12は1個のコンパレータICCP1で構成され、サンプルホールド回路30Aは4個のサンプルホールドICSH1−SH4で構成される。また、バイナリデコーダ40AはナンドゲートN1とアンドゲートA1で構成される。   FIG. 5 is a circuit diagram showing a detailed configuration of the low-pass filter (LPF) 11, the comparator 12, the sample hold circuit 30A, and the binary decoder 40A of FIG. In FIG. 5, the low-pass filter (LPF) 11 is composed of two operational amplifiers OP1 and OP2, the comparator 12 is composed of one comparator ICCP1, and the sample and hold circuit 30A is composed of four sample and hold ICSH1 to SH4. Composed. The binary decoder 40A includes a NAND gate N1 and an AND gate A1.

図6は図4のFSK信号受信回路の動作を示すための各信号のタイミングチャートである。図6から明らかなように、発振器は発振周波数f1−f4で順次走査して発振しているが、4FSK信号の瞬時周波数f1−f4が発振器の周波数f1−f4と一致したのみ、発振用FETQ11のソースからAM復調信号が出力され、当該AM復調信号に基づいてサンプルホールド回路30Aによりサンプルホールドされた制御信号V1−V4は入力されたFSK信号の復調信号となることがわかる。すなわち、入力されるFSK信号が存在するとき、発振器の発振の立ち上がりが早くなり、結果としてPWMがかかる。この発振波形の包絡線を取り出し、低域通過フィルタ11に通すことによりAM成分の復調が可能となる。本実施形態では、DCOの発振周波数をFSK信号のチャネル周波数に一致させるように回路設計を行い、発振周波数をシーケンシャルに走査して切り替える。さらに発振回路を間歇動作させることにより超再生検波回路として動作させ、FSK信号の瞬時周波数と超再生検波回路の受信周波数が一致した場合得られるAM復調信号に基づいて、DCO制御信号をサンプルホールドすることにより、このときの制御信号がFSKの復調信号となる。   FIG. 6 is a timing chart of each signal for illustrating the operation of the FSK signal receiving circuit of FIG. As is apparent from FIG. 6, the oscillator sequentially oscillates at the oscillation frequency f1-f4, but only the instantaneous frequency f1-f4 of the 4FSK signal coincides with the frequency f1-f4 of the oscillator. It can be seen that an AM demodulated signal is output from the source, and the control signals V1-V4 sampled and held by the sample hold circuit 30A based on the AM demodulated signal are demodulated signals of the input FSK signal. That is, when the input FSK signal exists, the rise of the oscillation of the oscillator is accelerated, and as a result, PWM is applied. By taking out the envelope of this oscillation waveform and passing it through the low-pass filter 11, the AM component can be demodulated. In this embodiment, the circuit design is performed so that the oscillation frequency of the DCO matches the channel frequency of the FSK signal, and the oscillation frequency is switched by scanning sequentially. Further, the oscillation circuit is operated intermittently to operate as a super regenerative detection circuit, and the DCO control signal is sampled and held based on the AM demodulated signal obtained when the instantaneous frequency of the FSK signal matches the reception frequency of the super regenerative detection circuit. As a result, the control signal at this time becomes an FSK demodulated signal.

従って、本実施形態によれば、第1の実施形態と同様の作用効果を有し、特に、4FSK信号を復調できる。   Therefore, according to the present embodiment, the same effects as those of the first embodiment can be obtained, and in particular, a 4FSK signal can be demodulated.

変形例.
以上の実施形態では、2FSK信号及び4FSK信号の復調回路について説明したが、本発明はこれに限らず、DCOの発振周波数の数及びそれに対応するDCO制御信号を増加させて3FSK信号又は5値以上のFSK信号の復調回路を構成してもよい。なお、FSK信号の瞬時周波数(又はチャンネル周波数)はDCOの発振周波数で決定されるので、DCOの発振周波数の設定により容易に所望のFSK信号の復調回路を構成できる。
Modified example.
In the above embodiment, the demodulation circuit for the 2FSK signal and the 4FSK signal has been described. However, the present invention is not limited to this, and the number of DCO oscillation frequencies and the corresponding DCO control signal are increased to increase the 3FSK signal or 5 values or more. The FSK signal demodulating circuit may be configured. Since the instantaneous frequency (or channel frequency) of the FSK signal is determined by the oscillation frequency of the DCO, a desired FSK signal demodulation circuit can be easily configured by setting the oscillation frequency of the DCO.

発明者らは、2FSK信号受信回路を試作した。この試作した回路の実験結果を以下に示す。図7は図1の2FSK信号受信回路の実施例であって、超再生動作中のDCOの発振スペクトラムを示す図である。本発明者らは、NE3210S01のデバイスパラメータを用いてADS(Advanced Design System)上で設計を行い試作した。図7から明らかなように、この回路に発振スペクトラムのピークに対応する2FSK信号を入力したところ、実際にFSK信号の復調を行えることが確認した。   The inventors prototyped a 2FSK signal receiving circuit. The experimental results of this prototype circuit are shown below. FIG. 7 is a diagram illustrating an example of the 2FSK signal receiving circuit of FIG. 1 and showing the oscillation spectrum of the DCO during the super reproduction operation. The inventors made a prototype by designing on ADS (Advanced Design System) using the device parameters of NE3210S01. As is apparent from FIG. 7, when a 2FSK signal corresponding to the peak of the oscillation spectrum was input to this circuit, it was confirmed that the FSK signal could actually be demodulated.

以上詳述したように、本発明に係るFSK復調回路及び方法によれば、従来のアプローチに比べ回路規模を縮小することが可能であり、低消費電力化できる。さらに、動作周波数が高くなり、能動素子の歩留まりが低い場合においても、目的の周波数(搬送波周波数)にて動作する必要能動素子数を低減できる。さらに、従来のFSK復調回路において不可欠なA/D変換器が不要であり、低消費電力のFSK復調回路を簡単な構成で形成できる。基本的な復調能力は超再生の感度特性によるものであり、低雑音増幅器(LNA)の付加が不要ともなり得る。   As described above in detail, according to the FSK demodulating circuit and method according to the present invention, the circuit scale can be reduced as compared with the conventional approach, and the power consumption can be reduced. Furthermore, even when the operating frequency is high and the yield of active elements is low, the number of necessary active elements that operate at the target frequency (carrier frequency) can be reduced. Further, an A / D converter that is indispensable in the conventional FSK demodulating circuit is unnecessary, and an FSK demodulating circuit with low power consumption can be formed with a simple configuration. The basic demodulation capability is based on the sensitivity characteristics of super reproduction, and the addition of a low noise amplifier (LNA) may not be necessary.

従って、低コストなFSK信号受信回路が構成できるため、RFタグ等の使い捨てが要求される用途に利用できる。さらに満足な歩留まりが得られないTHz領域のFSK信号受信回路の現実的な構成方法として使用できる。   Therefore, since a low-cost FSK signal receiving circuit can be configured, it can be used for applications requiring disposable such as RF tags. Furthermore, it can be used as a practical method for constructing an FSK signal receiving circuit in the THz region where a satisfactory yield cannot be obtained.

本発明の第1の実施形態に係る2FSK信号受信回路の構成を示すブロック図である。It is a block diagram which shows the structure of the 2FSK signal receiving circuit which concerns on the 1st Embodiment of this invention. 図1の低域通過フィルタ(LPF)11、コンパレータ12、サンプルホールド回路30及びバイナリデコーダ40の詳細構成を示す回路図である。2 is a circuit diagram showing a detailed configuration of a low-pass filter (LPF) 11, a comparator 12, a sample hold circuit 30 and a binary decoder 40 in FIG. 図1のFSK信号受信回路の動作を示すための各信号のタイミングチャートである。3 is a timing chart of each signal for illustrating the operation of the FSK signal receiving circuit of FIG. 1. 本発明の第2の実施形態に係る4FSK信号受信回路の構成を示すブロック図である。It is a block diagram which shows the structure of the 4FSK signal receiving circuit which concerns on the 2nd Embodiment of this invention. 図4の低域通過フィルタ(LPF)11、コンパレータ12、サンプルホールド回路30A及びバイナリデコーダ40Aの詳細構成を示す回路図である。FIG. 5 is a circuit diagram illustrating detailed configurations of a low-pass filter (LPF) 11, a comparator 12, a sample hold circuit 30A, and a binary decoder 40A in FIG. 図4のFSK信号受信回路の動作を示すための各信号のタイミングチャートである。5 is a timing chart of each signal for illustrating the operation of the FSK signal receiving circuit of FIG. 4. 図1のFSK信号受信回路の実施例であって、超再生動作中のDCOの発振スペクトラムを示す図である。FIG. 2 is a diagram illustrating an oscillation spectrum of a DCO during super reproduction operation, which is an example of the FSK signal receiving circuit of FIG. 1. クエンチング信号を利用して超再生検波回路でASK信号を復調する従来例のASK信号復調回路の動作を示すための各信号のタイミングチャートである。It is a timing chart of each signal for showing operation of an ASK signal demodulating circuit of a conventional example which demodulates an ASK signal by a super reproduction detection circuit using a quenching signal.

符号の説明Explanation of symbols

10…DCOを用いた2周波数走査型超再生AM検波回路、
10A…DCOを用いた4周波数走査型超再生AM検波回路、
11…低域通過フィルタ(LPF)、
12…コンパレータ、
13…電圧源、
20,20A…DCO制御信号発生器、
30,30A…サンプルホールド回路、
40,30A…バイナリデコーダ、
C1…カップリングキャパシタ、
L1乃至L12…伝送線路、
Q1乃至Q5…スイッチング用電界効果トランジスタ(FET)、
Q11…発振用電界効果トランジスタ(FET)。
10: Dual frequency scanning super regenerative AM detection circuit using DCO,
10A ... 4 frequency scanning super regenerative AM detection circuit using DCO,
11 ... Low-pass filter (LPF),
12 ... Comparator,
13 ... Voltage source,
20, 20A ... DCO control signal generator,
30, 30A ... Sample and hold circuit,
40, 30A Binary decoder,
C1 ... coupling capacitor,
L1 to L12 ... transmission line,
Q1 to Q5 ... switching field effect transistors (FETs),
Q11: Oscillating field effect transistor (FET).

Claims (2)

FSK信号の各瞬時周波数にそれぞれ一致する複数の発振周波数を有するディジタル制御発振器を、上記各発振周波数にそれぞれ対応する複数の制御信号に用いて上記各発振周波数の発振周波数を順次繰り返しかつ間歇発振するように制御し、
上記ディジタル制御発振器にFSK信号を入力することにより、上記ディジタル制御発振器を超再生AM検波器として動作させ、
上記ディジタル制御発振器から出力されるAM復調信号をデータサンプリング制御信号として用いて上記複数の制御信号をサンプルホールドしかつ2進数変換することによりFSK復調信号を得ることを特徴とするFSK復調回路。
A digitally controlled oscillator having a plurality of oscillation frequencies respectively corresponding to the respective instantaneous frequencies of the FSK signal is used as a plurality of control signals respectively corresponding to the respective oscillation frequencies, and the oscillation frequencies of the respective oscillation frequencies are sequentially repeated and intermittently oscillated. Control and
By inputting the FSK signal to the digitally controlled oscillator, the digitally controlled oscillator is operated as a super regenerative AM detector,
An FSK demodulating circuit characterized in that an AM demodulated signal output from the digitally controlled oscillator is used as a data sampling control signal to sample and hold the plurality of control signals and to perform binary conversion to obtain an FSK demodulated signal.
FSK信号の各瞬時周波数にそれぞれ一致する複数の発振周波数を有するディジタル制御発振器を、上記各発振周波数にそれぞれ対応する複数の制御信号に用いて上記各発振周波数の発振周波数を順次繰り返しかつ間歇発振するように制御し、
上記ディジタル制御発振器にFSK信号を入力することにより、上記ディジタル制御発振器を超再生AM検波器として動作させ、
上記ディジタル制御発振器から出力されるAM復調信号をデータサンプリング制御信号として用いて上記複数の制御信号をサンプルホールドしかつ2進数変換することによりFSK復調信号を得ることを特徴とするFSK復調方法。
A digitally controlled oscillator having a plurality of oscillation frequencies respectively corresponding to the respective instantaneous frequencies of the FSK signal is used as a plurality of control signals respectively corresponding to the respective oscillation frequencies, and the oscillation frequencies of the respective oscillation frequencies are sequentially repeated and intermittently oscillated. To control and
By inputting the FSK signal to the digitally controlled oscillator, the digitally controlled oscillator is operated as a super regenerative AM detector,
An FSK demodulating method characterized in that an AM demodulated signal output from the digitally controlled oscillator is used as a data sampling control signal to sample and hold the plurality of control signals and perform binary conversion to obtain an FSK demodulated signal.
JP2007217285A 2007-08-23 2007-08-23 Fsk demodulation circuit and method Pending JP2009055097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007217285A JP2009055097A (en) 2007-08-23 2007-08-23 Fsk demodulation circuit and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007217285A JP2009055097A (en) 2007-08-23 2007-08-23 Fsk demodulation circuit and method

Publications (1)

Publication Number Publication Date
JP2009055097A true JP2009055097A (en) 2009-03-12

Family

ID=40505802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007217285A Pending JP2009055097A (en) 2007-08-23 2007-08-23 Fsk demodulation circuit and method

Country Status (1)

Country Link
JP (1) JP2009055097A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016533688A (en) * 2013-09-12 2016-10-27 ドックオン エージー A logarithmic sense amplifier system for use as a sensitive selective receiver without frequency conversion.
WO2018010082A1 (en) * 2016-07-12 2018-01-18 深圳市汇顶科技股份有限公司 Signal demodulating device and method applying to closed communication system
US11082014B2 (en) 2013-09-12 2021-08-03 Dockon Ag Advanced amplifier system for ultra-wide band RF communication
US11183974B2 (en) 2013-09-12 2021-11-23 Dockon Ag Logarithmic detector amplifier system in open-loop configuration for use as high sensitivity selective receiver without frequency conversion

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0385948A (en) * 1989-08-30 1991-04-11 Keitaro Sekine Fsk signal demodulator
JP2000278184A (en) * 1999-03-29 2000-10-06 Seiko Epson Corp Frequency hopping receiver

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0385948A (en) * 1989-08-30 1991-04-11 Keitaro Sekine Fsk signal demodulator
JP2000278184A (en) * 1999-03-29 2000-10-06 Seiko Epson Corp Frequency hopping receiver

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016533688A (en) * 2013-09-12 2016-10-27 ドックオン エージー A logarithmic sense amplifier system for use as a sensitive selective receiver without frequency conversion.
KR20180088921A (en) * 2013-09-12 2018-08-07 도콘 아게 Logarithmic detector amplifier system for use as high sensitivity selective receiver without frequency conversion
US10333475B2 (en) 2013-09-12 2019-06-25 QuantalRF AG Logarithmic detector amplifier system for use as high sensitivity selective receiver without frequency conversion
KR102226416B1 (en) * 2013-09-12 2021-03-11 도콘 아게 Logarithmic detector amplifier system for use as high sensitivity selective receiver without frequency conversion
US11050393B2 (en) 2013-09-12 2021-06-29 Dockon Ag Amplifier system for use as high sensitivity selective receiver without frequency conversion
US11082014B2 (en) 2013-09-12 2021-08-03 Dockon Ag Advanced amplifier system for ultra-wide band RF communication
US11095255B2 (en) 2013-09-12 2021-08-17 Dockon Ag Amplifier system for use as high sensitivity selective receiver without frequency conversion
US11183974B2 (en) 2013-09-12 2021-11-23 Dockon Ag Logarithmic detector amplifier system in open-loop configuration for use as high sensitivity selective receiver without frequency conversion
WO2018010082A1 (en) * 2016-07-12 2018-01-18 深圳市汇顶科技股份有限公司 Signal demodulating device and method applying to closed communication system
US10291388B2 (en) 2016-07-12 2019-05-14 Shenzhen GOODIX Technology Co., Ltd. Signal demodulation apparatus and method in closed communication system

Similar Documents

Publication Publication Date Title
US6711397B1 (en) Structures and methods for direct conversion from radio frequency modulated signals to baseband signals
KR102332682B1 (en) Frequency selective logarithmic amplifier with intrinsic frequency demodulation capability
US7474885B2 (en) Passive subharmonic mixer
US7548742B2 (en) Tuner for radio frequency receivers and associated method
CN105359408A (en) Logarithmic amplifier with universal demodulation capabilities
US20150110224A1 (en) Interface device for performing on-off keying modulation and transmitter using same
TW330354B (en) A high conversion gain CMOS mixer
US7945045B2 (en) Device and method for generating chaotic signal
JP2004507139A (en) Apparatus and method for an improved chopping mixer
JP2009055097A (en) Fsk demodulation circuit and method
US8340623B2 (en) Self-mixing receiver and forming method thereof
US8000671B2 (en) Dual threshold demodulation in an amplitude modulation radio receiver
US8125258B2 (en) Phase synchronization device and phase synchronization method
US7804911B2 (en) Dual demodulation mode AM radio
KR100596005B1 (en) Demodulation circuit
US20100156502A1 (en) Signal processor comprising a frequency converter
US10298428B2 (en) Wireless transmission device and wireless transmission method
US20120157010A1 (en) Electrical Power Amplifier Circuit, and Transmission Device and Communication Device Using the Same
KR101765800B1 (en) Ultra-low power type uncertain-IF receiver based on new noise suppression technique and RF signal receiving method using the same
Chen et al. Reference‐less wake‐up receiver with noise suppression and injection‐locked clock recovery
CN106130487B (en) Mixer and mixer control method
US20040086037A1 (en) Noise reduction apparatus
JP6950043B2 (en) Wireless transmitter and wireless transmission method
EP1565985B1 (en) Method and arrangement for generating cyclic pulses
JP3338431B2 (en) System and method for frequency upconversion

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100729

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A02 Decision of refusal

Effective date: 20120313

Free format text: JAPANESE INTERMEDIATE CODE: A02