JPH06260364A - Chip component - Google Patents

Chip component

Info

Publication number
JPH06260364A
JPH06260364A JP5087734A JP8773493A JPH06260364A JP H06260364 A JPH06260364 A JP H06260364A JP 5087734 A JP5087734 A JP 5087734A JP 8773493 A JP8773493 A JP 8773493A JP H06260364 A JPH06260364 A JP H06260364A
Authority
JP
Japan
Prior art keywords
internal electrodes
electrodes
chip
chip component
interpenetrating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5087734A
Other languages
Japanese (ja)
Inventor
Masusaku Okumura
益作 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP5087734A priority Critical patent/JPH06260364A/en
Publication of JPH06260364A publication Critical patent/JPH06260364A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain chip components with low residual inductance by making folded construction so as to shorten the current path in a chip element, allowing pick-up terminals to be closer, divided, multipled, and arranged alternately, and adopting a cross penetration construction. CONSTITUTION:Insulation sheets 1 are bonded on both surfaces of a string of inductor sheets 2 and 3 with internal electrodes. Then, the upper both surfaces of T-shaped internal electrodes 4 and 5 are made to expose on its side faces, and they are piled to obtain a complete chip capacitor. Two pairs of external electrodes 7, 8 and 9, 10 communicating with internal electrodes 3 and 4 are close to each other, thereby shortening the current path in the inside thereof. Thus, since the current flows in the inside of element, swiftly, folding, in an AC state, and symmetrically while being divided and dispersed alternately, residual inductance can be reduced 1/2 to 1/5 than that of the conventional chip components and be also complexed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はチップ部品の低残留イン
ククタンス化及び複合化に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chip component having a low residual inkance and a composite structure.

【0002】[0002]

【従来の技術】コンデンサ、バリスタなどのチップ部品
の構造は、ひとつの側面に露出させた内部電極付誘電体
を露出内部電極を交互に対向側面に導出し、重ねて積層
しているものが基本となっている。図8(a)は従来の
チップコンデンサなどの内部構造を示したものである。
1は絶縁用シートで各内部電極付誘電体シート2、3を
積層したのち両面に配置するものであり、74、75は
それぞれの一端に露出させた内部電極である。76、7
7はそれぞれの内部電極を導出した外部電極をである。
図8(b)はその完成品(73)の斜視図であり、8
(c)は等価回路である。これらの主な用途は電子機器
で、その小形化が主目的であったため急速に普及した。
従来のリード付部品に比べ、リードレス化と小形で残留
インダクタンスも従来のリード付部品比で1/2〜1/
5と小さくなり、同時に可使周波数範囲も拡大され、か
つ実使用上充分な値であった。
2. Description of the Related Art The structure of chip parts such as capacitors and varistors is basically one in which dielectrics with internal electrodes exposed on one side face are alternately led out to the opposite side face and stacked on top of each other. Has become. FIG. 8A shows the internal structure of a conventional chip capacitor or the like.
Reference numeral 1 denotes an insulating sheet for stacking the dielectric sheets 2 and 3 with internal electrodes and arranging them on both sides, and 74 and 75 are internal electrodes exposed at one end of each. 76, 7
Reference numeral 7 is an external electrode derived from each internal electrode.
FIG. 8 (b) is a perspective view of the finished product (73).
(C) is an equivalent circuit. The main use of these was electronic equipment, and their main purpose was to make them smaller, so they rapidly spread.
Compared to conventional leaded parts, it is leadless, compact, and has a residual inductance of 1/2 to 1/1 compared to conventional leaded parts.
The value was as small as 5, the usable frequency range was expanded at the same time, and the value was sufficient for practical use.

【0003】しかし、用途拡大とチップ化の浸透により
比較的大形の部品も表面実装(SMD)化が要求される
に至った。しかし、大形部品では寸法に比例して残留イ
ンダクタンスは残留するため、可使周波数範囲の拡大に
も当然制限が発生し、リードレスが主体となる効果のみ
では不充分となり、素子自体の寸法に起因する残留イン
ダクタンスが大きすぎるという新たな問題が発生してい
る。
However, due to the expansion of applications and the spread of chips, relatively large-sized components are required to be surface mounted (SMD). However, in large parts, the residual inductance remains in proportion to the size, so naturally expansion of the usable frequency range is also limited, and leadless is the main effect, which is not sufficient. There is a new problem that the resulting residual inductance is too large.

【0004】一方、従来の高周波化では充分使用出来た
が、更なる高周波化に対応するためには小形チップ部品
においても可使周波数の拡大が要求されてきている。特
に図8で示した従来の形状の多くは矩形チップで対向す
る短辺に内部電極が導出されており、残留インダクタン
スは大きくなる形状である。内部電極の導出を対向する
長辺に移してもそれは〜1/2程度の減少であり、充分
であるとは言えないという問題点が顕在化してきてい
る。これらは1本の矩形断面の導体のインダクタンスと
等価であることは公知である。
On the other hand, although the conventional high frequency can be used satisfactorily, in order to cope with the higher frequency, it is required to expand the usable frequency also in the small chip parts. In particular, in most of the conventional shapes shown in FIG. 8, the internal electrodes are led out to the opposite short sides of the rectangular chip, and the residual inductance is large. Even if the lead-out of the internal electrode is moved to the opposite long side, it is reduced by about 1/2, and the problem that it cannot be said to be sufficient is becoming apparent. It is known that these are equivalent to the inductance of a single conductor of rectangular cross section.

【0005】高周波化とともにデジタル化が進み、ノイ
ズ対策、サージ対策も重要となってきている。従来のキ
ャパシタ、インダクタ、バリスタなどのチップ部品を組
み合わせ、工夫して、使用してきているが、サージ、ノ
イズレベルの広がりに充分対応していくには従来の構造
では充分対応できないという問題点も顕在化してきてい
る。
As digitalization progresses with higher frequencies, noise countermeasures and surge countermeasures are becoming important. Although conventional chip parts such as capacitors, inductors, varistors, etc. have been combined and devised and used, the problem that the conventional structure is not sufficient to cope with surges and the spread of noise levels has also emerged. It is becoming more common.

【0006】[0006]

【発明が解決しようとする課題】解決しようとする問題
点は、従来の構造、寸法では、残留インダクタンスの低
減が不充分であるという点である。
The problem to be solved is that the conventional structure and dimensions are insufficient to reduce the residual inductance.

【0007】[0007]

【課題を解決するための手段】本発明は、チップ素子内
を流れる電流通路を短くすることと、折り返し構造とす
る他、取出端子を近接化、分割化、複数化、交互配置に
することの他、クロス貫通構造を採用したことで低残留
インダクタンスチップ部品を実現することである。又も
うひとつの内部電極を付与する他、同時に内部電極を分
割した複合化チップ部品を実現する。更に、2種類の内
部電極を直交させ両側面で貫通して取り出したことで残
留インダクタンスを低減した相互貫通形チップ部品と複
合相互貫通形チップ部品を得るとともに、内部電極の1
つを分布インダクタンス形状、抵抗体などを採用した複
合機能チップ部品を実現することを主な特徴としてい
る。
SUMMARY OF THE INVENTION According to the present invention, in addition to shortening a current path flowing in a chip element and providing a folded structure, lead terminals are arranged close to each other, divided into a plurality, and arranged alternately. Another purpose is to realize a low residual inductance chip component by adopting a cross-through structure. In addition to providing another internal electrode, a composite chip component in which the internal electrode is divided at the same time is realized. Further, two kinds of internal electrodes are made orthogonal to each other and penetrated on both sides to be taken out to obtain an interpenetrating chip component and a composite interpenetrating chip component with reduced residual inductance.
Its main feature is the realization of multi-functional chip components that employ distributed inductance shapes, resistors, etc.

【0008】[0008]

【実施例】図1(a)は本発明の1つの実施例の積層チ
ップコンデンサの展開斜視図であり、1は絶縁用シート
で2、3の内部電極付誘電体シート連の両面に貼り合わ
せる。4、5はそのT字形の内部電極で、T字形電極の
上部両端が側面に露出する構造になっている。図1
(b)はこれらを積層したチップコンデンサの完成品
(6)の斜視図である。7、8と9、10は内部電極で
導通した2組の外部電極である。これで従来の構造と比
較して、外部電極が2組で接近しており、かつその内部
を流れる電流通路を短縮するため残留インダクタンスは
低減される。図示はしていないが、T字形内部電極の上
部を露出させて、従来形と共用することも可能である。
図1(c)は等価回路図であり、Cはコンデンサであ
る。図2は図1に別のコンデンサ素子を追加して複合化
させたもうひとつの実施例であり、11、12は追加し
た内部電極である。図2(b)は完成品(13)の斜視
図である。20、21はそれぞれ追加コンデンサ素子の
外部電極である。図2(c)は等価回路図であり、Co
は複合化したコンデンサである。その他は図1と同様で
ある。
1 (a) is an exploded perspective view of a multilayer chip capacitor according to one embodiment of the present invention, in which an insulating sheet 1 is attached to both sides of a series of a plurality of dielectric sheet with internal electrodes. . Numerals 4 and 5 are the T-shaped internal electrodes having a structure in which both upper ends of the T-shaped electrode are exposed at the side surfaces. Figure 1
(B) is a perspective view of a completed chip capacitor (6) in which these are stacked. Reference numerals 7, 8 and 9, 10 denote two sets of external electrodes that are electrically connected by the internal electrodes. As a result, as compared with the conventional structure, the two pairs of external electrodes are close to each other, and the current path flowing through the internal electrodes is shortened, so that the residual inductance is reduced. Although not shown, it is also possible to expose the upper portion of the T-shaped internal electrode and share it with the conventional type.
FIG. 1C is an equivalent circuit diagram, and C is a capacitor. FIG. 2 shows another embodiment in which another capacitor element is added to FIG. 1 to form a composite, and 11 and 12 are added internal electrodes. FIG. 2B is a perspective view of the finished product (13). Reference numerals 20 and 21 are external electrodes of the additional capacitor element. FIG. 2C is an equivalent circuit diagram, in which Co
Is a composite capacitor. Others are the same as in FIG.

【0009】図3(a)は他の実施例のひとつで、図1
の内部電極の露出部分を対角位置に設けたものである。
2、3は誘電体シートで、24、25はその内部電極で
あり、図3(b)は完成品(23)の斜視図である。2
6、27及び28、29はそれぞれ内部電極で導通した
外部電極である。これは素子内を電流がクロスして流れ
るため残留インダクタンスは低減される。図3(c)は
その等価回路図である。その他は図1、2と同様であ
る。図4は図2と同様に図3の実施例に別のコンデンサ
素子を追加し複合させた展開例である。31、32は追
加した内部電極である。図4(b)はその完成品(2
3)である。40、41は追加したコンデンサ素子の外
部電極であり、図4(c)はその等価回路図である。そ
の他は図1、2、3と同様である。
FIG. 3A shows another embodiment, which is shown in FIG.
The exposed portion of the internal electrode of is provided in a diagonal position.
2 and 3 are dielectric sheets, 24 and 25 are internal electrodes thereof, and FIG. 3B is a perspective view of the finished product (23). Two
Reference numerals 6, 27 and 28, 29 denote external electrodes that are electrically connected to the internal electrodes. This is because the current flows across the element so that the residual inductance is reduced. FIG. 3C is an equivalent circuit diagram thereof. Others are the same as those in FIGS. FIG. 4 is a development example in which another capacitor element is added to the embodiment of FIG. Reference numerals 31 and 32 are additional internal electrodes. Figure 4 (b) shows the finished product (2
3). Reference numerals 40 and 41 are external electrodes of the added capacitor element, and FIG. 4C is an equivalent circuit diagram thereof. Others are the same as those in FIGS.

【0010】図5(a)は本発明の他の実施例である。
誘電体2の内部電極44と同3の内部電極45は対向側
面に露出させてあり、それぞれの外部電極46、47と
48、49で導出されている。各内部電極44、45は
それぞれ対向する両端で導通しているため相互に貫通構
造になることが大きな特徴であり、それぞれの残留イン
ダクタンスの低減がはかれる。図5(b)はその積層相
互貫通形コンデンサチップの完成品(43)の斜視図で
ある。図5(c)はその等価回路図であり、Cは相互貫
通したコンデンサを示したものである。また、内部電極
44、45の一方を分布形インダクタンス形状にする
他、抵抗体にすることにより、同様の特徴をもつ貫通形
LC分布形フィルタチップ、CR複合デカップリングチ
ップ部品なども可能である。その他は図1〜4と同様で
ある。図6は図5の実施例の展開例であり、図5の内部
電極44を分割して複合化した実施例である。54a、
54bはそれぞれ2分割した内部電極であり、図6
(b)はこの積層チップ部品の完成品(53)の斜視図
である。図6(c)はその等価回路図であり、Cはそれ
ぞれ相互貫通した2つのコンデンサを示したものであ
る。その他は図1〜5と同様である。
FIG. 5A shows another embodiment of the present invention.
The internal electrode 44 of the dielectric 2 and the internal electrode 45 of the same 3 are exposed on the opposite side surfaces and led out by the external electrodes 46, 47 and 48, 49, respectively. Since the internal electrodes 44 and 45 are electrically connected at both ends facing each other, it is a major feature that they have a mutually penetrating structure, and the respective residual inductances can be reduced. FIG. 5B is a perspective view of a completed product (43) of the multilayer interpenetrating capacitor chip. FIG. 5C is an equivalent circuit diagram thereof, and C shows a capacitor penetrating each other. Further, a through-type LC distributed filter chip, a CR composite decoupling chip component or the like having the same characteristics can be obtained by using one of the internal electrodes 44 and 45 to have a distributed inductance shape or a resistor. Others are the same as those in FIGS. FIG. 6 is a development example of the embodiment of FIG. 5, which is an embodiment in which the internal electrode 44 of FIG. 54a,
54b are internal electrodes divided into two parts, respectively.
(B) is a perspective view of the finished product (53) of this laminated chip component. FIG. 6C is an equivalent circuit diagram thereof, and C shows two capacitors, which are mutually penetrating. Others are the same as those in FIGS.

【0011】図7(a)は本発明の他の実施例であり、
各誘電体シート2、3の内部電極の露出部を4個所にし
たものである。それぞれ対向内部極を1つの側面に交互
に露出配置したものである。64、65はそれぞれ4個
所を露出させて付与した内部電極である。図7(b)は
そのチップ部品の完成品(63)を示したものである。
66〜73は外部電極であり、対向する内部電極を交互
に導出したものであり偶数番号、奇数番号同志は内部電
極で導通しており、チップ部品の実装配線にまで言及し
て残留インダクタンスの低減を図ったものである。図7
(c)はその等価回路図である。その他は図1〜6と同
様である。
FIG. 7A shows another embodiment of the present invention.
Each of the dielectric sheets 2 and 3 has four exposed internal electrodes. The opposing inner electrodes are alternately exposed and arranged on one side surface. Reference numerals 64 and 65 denote internal electrodes which are provided by exposing four portions respectively. FIG. 7B shows a finished product (63) of the chip part.
Reference numerals 66 to 73 are external electrodes, which are derived by alternately arranging opposing internal electrodes, and even-numbered and odd-numbered comers are conducted by the internal electrodes. Reducing the residual inductance by referring to the mounting wiring of the chip component. Is intended. Figure 7
(C) is the equivalent circuit diagram. Others are the same as those in FIGS.

【0012】[0012]

【発明の効果】以上説明したように、本発明のチップ部
品は内部電極の露出個所、(外部電極)を1組以上を接
近させて側面に取り出すために、素子内部を電流は短く
かつ、折り返して流れること、交差して流れること、分
割して交互に分散して対象に流れることで残留インダク
タンスを従来のチップ部品に比べ1/2〜1/5に低減
させることと、ともに複合化させることに主要な特徴が
ある。又、対向する内部電極をそれぞれの両側面に貫通
導出することで、相互貫通形チップ部品を構成し、チッ
プ部品の従来比で残留インダクタンスを1/5〜1/1
0に低減させることにもうひとつの特徴がある。又内部
電極を分割する他、一方の内部電極を分布形インダクタ
ンス形状に、抵抗素子にすることにより複合チップ部品
なども同時に得られることも追加すべき特徴である。こ
のようにコンデンサ、バリスタなどのチップ部品の残留
インダクタンスを大幅に低減させるほか、複合化できる
ことは電子回路の高周波化、ノイズ対策に不可欠な用途
拡大につながるという利点は大きい。
As described above, in the chip component of the present invention, the exposed portion of the internal electrode, (external electrode) is brought out to the side surface by bringing one or more sets close to each other, so that the current inside the element is short and the element is folded back. To reduce the residual inductance to 1/2 to 1/5 of that of the conventional chip component by flowing through, crossing, dividing and alternately distributing to the target, and combining them. Has a major feature. Further, the internal electrodes facing each other are led out to both side surfaces to form an interpenetrating chip component, and the residual inductance is 1/5 to 1/1 as compared with the conventional chip component.
Another feature is to reduce it to zero. In addition to dividing the internal electrodes, it is an additional feature that a composite chip component or the like can be obtained at the same time by forming one of the internal electrodes into a distributed inductance shape and a resistance element. In this way, the residual inductance of chip components such as capacitors and varistors can be significantly reduced, and the fact that they can be combined has the great advantage of increasing the frequency of electronic circuits and expanding the applications essential for noise suppression.

【図面の簡単な説明】[Brief description of drawings]

【図1、図2】本発明のひとつの実施例とその複合化展
開を示した説明図である。
1 and 2 are explanatory views showing one embodiment of the present invention and its combined development.

【図3、図4】本発明の他の実施例とその複合化展開を
示した説明図である。
3 and 4 are explanatory views showing another embodiment of the present invention and its combined development.

【図5、図6】本発明の他の実施例とその複合化展開を
示した説明図である。
5 and 6 are explanatory views showing another embodiment of the present invention and its combined development.

【図7】本発明の他の実施例を示した説明図である。FIG. 7 is an explanatory view showing another embodiment of the present invention.

【図8】従来のチップコンデンサの構造を示した説明図
である。
FIG. 8 is an explanatory diagram showing a structure of a conventional chip capacitor.

【符号の説明】[Explanation of symbols]

1 絶縁シート 2、3 ─────誘電体シート 4、5、14、15、24、25、34、35、44、
45、54(a)、54(b)、55、64、65、7
4、75 ─────内部電極 6、13、23、33、43、53、63、73───
──チップ部品完成品 7、8、9、10、16、17、18、19、20、2
1、26、27、28、29、36、37、38 3
9、40、41、46、47、48、49、56、5
7、58、59、60、61、66、67、68、6
9、71 72、73、76、77 ─────外部電
1 Insulation sheet 2, 3 --- Dielectric sheet 4, 5, 14, 15, 24, 25, 34, 35, 44,
45, 54 (a), 54 (b), 55, 64, 65, 7
4, 75 ──── Internal electrodes 6, 13, 23, 33, 43, 53, 63, 73 ──
--- Chip parts finished products 7, 8, 9, 10, 16, 17, 18, 19, 20, 2
1, 26, 27, 28, 29, 36, 37, 38 3
9, 40, 41, 46, 47, 48, 49, 56, 5
7, 58, 59, 60, 61, 66, 67, 68, 6
9, 71 72, 73, 76, 77 ───── External electrodes

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電極付誘電体を積層したコンデンサ、バ
リスタなどのチップ部品において、内部電極を少なくと
も1つの側面に1組以上を接近露出させて、外部電極を
付与して導出し、内部での電流通路を短くかつ、折り返
し構造としたチップ部品と、これらの主たる内部電極と
分離したもう1つの内部電極を付与し、前出の外部電極
面とは異なる側面に外部電極を付与して1個以上のコン
デンサを構成した複合形チップ部品
1. In a chip component such as a capacitor or a varistor in which dielectrics with electrodes are laminated, one or more sets of internal electrodes are exposed close to at least one side surface, and external electrodes are provided to lead them out. A chip component with a short current path and a folded structure and another internal electrode separate from these main internal electrodes are provided, and one external electrode is provided on a side surface different from the external electrode surface described above. Composite type chip component that consists of the above capacitors
【請求項2】 電極付誘電体を重ねたコンデンサ、バリ
スタなどにおいて、内部電極をそれぞれ対向する両側面
に露出させた相互貫通形チップ部品と、内部電極の一方
を分布インダクタンス形状したコイル素子、又抵抗皮膜
とした抵抗素子などを一体化した相互貫通形複合チップ
部品。そして、それぞれの相互貫通形内部電極、外部電
極をともに2つ以上に分割させた複合相互貫通形チップ
部品。
2. A capacitor, a varistor, etc., in which dielectrics with electrodes are stacked, an interpenetrating chip part in which internal electrodes are exposed on opposite side surfaces, a coil element in which one of the internal electrodes has a distributed inductance shape, or An interpenetrating composite chip part that integrates resistive elements such as resistive coatings. A composite interpenetrating chip component in which each of the interpenetrating internal electrodes and the external electrodes is divided into two or more.
JP5087734A 1993-03-08 1993-03-08 Chip component Pending JPH06260364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5087734A JPH06260364A (en) 1993-03-08 1993-03-08 Chip component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5087734A JPH06260364A (en) 1993-03-08 1993-03-08 Chip component

Publications (1)

Publication Number Publication Date
JPH06260364A true JPH06260364A (en) 1994-09-16

Family

ID=13923158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5087734A Pending JPH06260364A (en) 1993-03-08 1993-03-08 Chip component

Country Status (1)

Country Link
JP (1) JPH06260364A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0915488A2 (en) * 1997-11-10 1999-05-12 Murata Manufacturing Co., Ltd. Multilayer capacitor
US6038121A (en) * 1998-10-06 2000-03-14 Murata Manufacturing Co., Ltd. Monolithic capacitor
US6243253B1 (en) 1997-06-27 2001-06-05 Avx Corporation Surface mount multilayer capacitor
US6266229B1 (en) 1997-11-10 2001-07-24 Murata Manufacturing Co., Ltd Multilayer capacitor
US6266228B1 (en) 1997-11-10 2001-07-24 Murata Manufacturing Co., Ltd Multilayer capacitor
US6292350B1 (en) 1997-11-10 2001-09-18 Murata Manufacturing, Co., Ltd Multilayer capacitor
US6327134B1 (en) 1999-10-18 2001-12-04 Murata Manufacturing Co., Ltd. Multi-layer capacitor, wiring board, and high-frequency circuit
US6331930B1 (en) 1999-05-10 2001-12-18 Murata Manufacturing Co., Ltd. Multilayer capacitor, electronic device and high frequency circuit using the same
US6344961B1 (en) 1999-11-19 2002-02-05 Murata Manufacturing Co., Ltd Multi-layer capacitator, wiring substrate, decoupling circuit, and high-frequency circuit
US6407904B1 (en) 1999-05-10 2002-06-18 Murata Manufacturing Co., Ltd. Multi-layer capacitor
US6549395B1 (en) 1997-11-14 2003-04-15 Murata Manufacturing Co., Ltd Multilayer capacitor
EP1120800A3 (en) * 2000-01-28 2006-06-07 TDK Corporation Multilayer electronic device and method for producing same
JP2007096272A (en) * 2005-09-02 2007-04-12 Sanyo Electric Co Ltd Electric device and electric circuit
JP2007202103A (en) * 2005-12-27 2007-08-09 Sanyo Electric Co Ltd Electric circuit device
JP2007201419A (en) * 2005-12-26 2007-08-09 Sanyo Electric Co Ltd Electric circuit device and substrate used for same
JP2008091520A (en) * 2006-09-29 2008-04-17 Tdk Corp Stacked capacitor
JP2009164513A (en) * 2008-01-10 2009-07-23 Murata Mfg Co Ltd Electronic component
US7974071B2 (en) 2006-09-25 2011-07-05 Tdk Corporation Multilayer capacitor
US8027146B2 (en) 2005-12-26 2011-09-27 Sanyo Electric Co., Ltd. Electric circuit device enabling impedance reduction
KR20130101319A (en) * 2012-03-05 2013-09-13 삼성전기주식회사 Multi-layered ceramic electronic component and manufacturing method of the same
KR20190044034A (en) * 2019-04-17 2019-04-29 삼성전기주식회사 Multi-Layered Ceramic Electronic Component and Manufacturing Method of the Same

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6243253B1 (en) 1997-06-27 2001-06-05 Avx Corporation Surface mount multilayer capacitor
EP1085539A3 (en) * 1997-11-10 2005-02-09 Murata Manufacturing Co., Ltd. Multilayer capacitor
US6430025B2 (en) 1997-11-10 2002-08-06 Murata Manufacturing Co., Ltd. Multilayer capacitor
EP1087411A3 (en) * 1997-11-10 2005-02-09 Murata Manufacturing Co., Ltd. Multilayer capacitor
US6215647B1 (en) 1997-11-10 2001-04-10 Murata Manufacturing Co., Ltd. Multilayer capacitor
US6226169B1 (en) 1997-11-10 2001-05-01 Murata Manufacturing Co., Ltd. Multilayer capacitor
EP0915488B1 (en) * 1997-11-10 2005-07-20 Murata Manufacturing Co., Ltd. Multilayer capacitor
US6266229B1 (en) 1997-11-10 2001-07-24 Murata Manufacturing Co., Ltd Multilayer capacitor
US6266228B1 (en) 1997-11-10 2001-07-24 Murata Manufacturing Co., Ltd Multilayer capacitor
US6292350B1 (en) 1997-11-10 2001-09-18 Murata Manufacturing, Co., Ltd Multilayer capacitor
US6188565B1 (en) 1997-11-10 2001-02-13 Murata Manufacturing Co., Ltd. Multilayer capacitor
EP0915488A2 (en) * 1997-11-10 1999-05-12 Murata Manufacturing Co., Ltd. Multilayer capacitor
EP1087411A2 (en) * 1997-11-10 2001-03-28 Murata Manufacturing Co., Ltd. Multilayer capacitor
US6549395B1 (en) 1997-11-14 2003-04-15 Murata Manufacturing Co., Ltd Multilayer capacitor
US6038121A (en) * 1998-10-06 2000-03-14 Murata Manufacturing Co., Ltd. Monolithic capacitor
US6407904B1 (en) 1999-05-10 2002-06-18 Murata Manufacturing Co., Ltd. Multi-layer capacitor
US6331930B1 (en) 1999-05-10 2001-12-18 Murata Manufacturing Co., Ltd. Multilayer capacitor, electronic device and high frequency circuit using the same
US6327134B1 (en) 1999-10-18 2001-12-04 Murata Manufacturing Co., Ltd. Multi-layer capacitor, wiring board, and high-frequency circuit
US6344961B1 (en) 1999-11-19 2002-02-05 Murata Manufacturing Co., Ltd Multi-layer capacitator, wiring substrate, decoupling circuit, and high-frequency circuit
EP1120800A3 (en) * 2000-01-28 2006-06-07 TDK Corporation Multilayer electronic device and method for producing same
JP2007096272A (en) * 2005-09-02 2007-04-12 Sanyo Electric Co Ltd Electric device and electric circuit
US7898363B2 (en) 2005-09-02 2011-03-01 Sanyo Electric Co., Ltd. Electric element and electric circuit
JP2007201419A (en) * 2005-12-26 2007-08-09 Sanyo Electric Co Ltd Electric circuit device and substrate used for same
US8027146B2 (en) 2005-12-26 2011-09-27 Sanyo Electric Co., Ltd. Electric circuit device enabling impedance reduction
JP4912324B2 (en) * 2005-12-26 2012-04-11 三洋電機株式会社 Electrical circuit device
JP2007202103A (en) * 2005-12-27 2007-08-09 Sanyo Electric Co Ltd Electric circuit device
US7974071B2 (en) 2006-09-25 2011-07-05 Tdk Corporation Multilayer capacitor
JP2008091520A (en) * 2006-09-29 2008-04-17 Tdk Corp Stacked capacitor
KR101401636B1 (en) * 2006-09-29 2014-06-02 티디케이가부시기가이샤 Multilayer condenser
JP2009164513A (en) * 2008-01-10 2009-07-23 Murata Mfg Co Ltd Electronic component
KR20130101319A (en) * 2012-03-05 2013-09-13 삼성전기주식회사 Multi-layered ceramic electronic component and manufacturing method of the same
KR20190044034A (en) * 2019-04-17 2019-04-29 삼성전기주식회사 Multi-Layered Ceramic Electronic Component and Manufacturing Method of the Same

Similar Documents

Publication Publication Date Title
JPH06260364A (en) Chip component
JP2598940B2 (en) LC composite parts
US4342143A (en) Method of making multiple electrical components in integrated microminiature form
JP3127792B2 (en) LC resonator and LC filter
JPS6379307A (en) Moltilayered transformer
KR20010021003A (en) Surface mount rc devices
JPH07249541A (en) Composite ceramic capacitor
JP2626143B2 (en) Composite laminated electronic components
JPH04257112A (en) Laminated chip t-type filter
JP4784017B2 (en) Multilayer low-pass filter
KR920017230A (en) Laminate Type LC Element.
JPH03153011A (en) Laminated transformer
JPH11283833A (en) Laminated electronic component
JPH03140006A (en) Electronic component for noise elimination
JPH03151605A (en) Anti-noise network electronic parts
JPS598054B2 (en) Method of manufacturing an integrated matrix containing a large number of electrical components
JP4525223B2 (en) LC composite filter parts
JPH0115160Y2 (en)
JPH0878991A (en) Chip type lc filter element
JP2835122B2 (en) LAMINATED COMPOSITE PARTS AND ITS MANUFACTURING METHOD
JP2909122B2 (en) Laminated composite parts
JP2958804B2 (en) Multilayer chip common mode choke coil
WO2005060093A1 (en) Multilayer ceramic electronic component
JPH0729737A (en) Chip inductor
JPS6341205B2 (en)