JPH06251920A - Rare earth element permanent magnet - Google Patents

Rare earth element permanent magnet

Info

Publication number
JPH06251920A
JPH06251920A JP5062714A JP6271493A JPH06251920A JP H06251920 A JPH06251920 A JP H06251920A JP 5062714 A JP5062714 A JP 5062714A JP 6271493 A JP6271493 A JP 6271493A JP H06251920 A JPH06251920 A JP H06251920A
Authority
JP
Japan
Prior art keywords
rare earth
permanent magnet
peak
earth element
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5062714A
Other languages
Japanese (ja)
Inventor
Masahiro Takahashi
昌広 高橋
Shigeo Tanigawa
茂穂 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP5062714A priority Critical patent/JPH06251920A/en
Publication of JPH06251920A publication Critical patent/JPH06251920A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a rare earth element permanent magnet having excellent magnetic characteristics by specifying the oxygen contained in said magnet and the status of the contained oxygen. CONSTITUTION:Within the rare earth element permanent magnet mainly comprising rare earth element (R), transition metal (T) and boron (B), R content is specified to be 28-31wt.% and among the R peak in the ray analysis by electron ray irradiation, the peak not to be overlapped with oxygen (O2) peak exceeds 1/4 of the whole peak as well as Fe and neodymium (Nd) are selected as the transition metal (T) an the rare earth element (R) respectively. Through these procedures, the title rare earth element having high magnetic characteristics can be manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は希土類元素(R)、遷移
金属(T)、ほう素(B)を主成分とする希土類永久磁
石に関するものであり、特に含有酸素量及び含有酸素の
存在状態が一定に規定されて、高磁気特性を備える希土
類永久磁石に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth permanent magnet containing a rare earth element (R), a transition metal (T), and a boron (B) as main components, and particularly to the amount of oxygen contained and the state of existence of oxygen contained therein. The present invention relates to a rare earth permanent magnet having a constant magnetic field and high magnetic properties.

【0002】[0002]

【従来の技術】知られるように希土類元素(R)、遷移
金属(T)、ほう素(B)を主成分とする希土類永久磁
石は極めて高い磁気特性を示すことから、各種用途に適
用されており、中でもNd−Fe−B系永久磁石は45
MGOeにも達する最大エネルギー積(BH)maxを
有して、抜群の磁気特性を示すことから、最も強力な永
久磁石として種々の分野への適用が試みられている。
2. Description of the Related Art As is known, rare earth permanent magnets containing rare earth elements (R), transition metals (T), and boron (B) as the main components exhibit extremely high magnetic properties, and are therefore applied to various applications. In particular, the Nd-Fe-B system permanent magnet is 45
Since it has a maximum energy product (BH) max reaching MGOe and exhibits outstanding magnetic properties, it has been attempted to be applied to various fields as the most powerful permanent magnet.

【0003】ところで、上述のNd系を代表とする希土
類永久磁石にあってはその酸素含有量が磁気特性に及ぼ
す影響が極めて大きく、酸素含有量を可能な限り低くし
て磁気特性を向上する試みが進められている。
By the way, in the rare earth permanent magnets represented by the above-mentioned Nd system, the oxygen content thereof has a great influence on the magnetic characteristics, and an attempt to improve the magnetic characteristics by making the oxygen content as low as possible. Is being promoted.

【0004】[0004]

【発明が解決しようとする課題】以上の従来の各種試み
における希土類磁石の製造方法及びその製造方法によっ
て得られる希土類永久磁石については次のような問題が
あった。すなわち、実際の希土類永久磁石では単に含有
酸素量だけで磁気特性が左右されるわけではなく、含有
酸素の存在状態の如何によっても、磁気特性が影響され
る。したがって、単に含有酸素量を低減するだけでは磁
気特性の向上に限界があるという問題があった。
The method for producing a rare earth magnet in the above various conventional trials and the rare earth permanent magnet obtained by the method have the following problems. That is, in an actual rare earth permanent magnet, the magnetic characteristics do not depend only on the oxygen content, but the magnetic characteristics are affected by the existing state of the oxygen content. Therefore, there is a problem that there is a limit to the improvement of the magnetic characteristics by simply reducing the oxygen content.

【0005】したがって本発明は以上の従来技術におけ
る問題に鑑みてなされたものであって、含有酸素の存在
状態を定量的に規定することにより磁気特性を向上する
ことを目的とする。
Therefore, the present invention has been made in view of the above problems in the prior art, and it is an object of the present invention to improve the magnetic characteristics by quantitatively defining the existing state of oxygen contained.

【0006】[0006]

【課題を解決するための手段】以上の課題を達成するた
めに本発明者は永久磁石に対する電子線照射による線分
析に着目し、その線分析によって得られるデータに基づ
き希土類永久磁石が含有する酸素及び含有酸素の存在状
態を一定に規定するようにすれば、良好な磁気特性を備
える希土類永久磁石が得られることを見出し本発明を創
出するに至った。
In order to achieve the above object, the present inventor has focused on line analysis by electron beam irradiation on a permanent magnet, and based on data obtained by the line analysis, oxygen contained in the rare earth permanent magnet. Further, it has been found that a rare earth permanent magnet having good magnetic characteristics can be obtained by constantly defining the existing state of the contained oxygen and the present invention has been created.

【0007】すなわち本発明の希土類永久磁石は、希土
類元素(R)、遷移金属(T)、ほう素(B)を主成分
とする希土類永久磁石において、R量を28〜31wt%
とし、電子線照射による線分析におけるRピークの中
で、O2ピークと重複しないピークが全Rピークの1/
4以上であることを特徴とする。
That is, the rare earth permanent magnet of the present invention is a rare earth permanent magnet containing a rare earth element (R), a transition metal (T) and boron (B) as main components, and the R content is 28 to 31 wt%.
Among the R peaks in the line analysis by electron beam irradiation, peaks that do not overlap with the O 2 peak are
It is characterized by being 4 or more.

【0008】本発明においてR量を28〜31wt%とす
るのは、R量が31wt%を越えると高い磁気特性を得る
ことが困難であるからであり、また28wt%未満である
と焼結が困難となるからである。
In the present invention, the R amount is set to 28 to 31 wt% because it is difficult to obtain high magnetic characteristics when the R amount exceeds 31 wt%, and when the R amount is less than 28 wt%, the sintering is not performed. It will be difficult.

【0009】B量は、0.9〜1.3wt%の範囲とする
ことが望ましい。0.9wt%未満では保磁力が不足し、
1.3wt%を越えると残留磁束密度が低下するからであ
る。前記遷移金属(T)として鉄(Fe)を、また前記
希土類元素(R)としてネオジム(Nd)を選択すれば
最も高い磁気特性を得ることができる。
The amount of B is preferably in the range of 0.9 to 1.3 wt%. If it is less than 0.9 wt%, the coercive force will be insufficient,
This is because the residual magnetic flux density decreases if it exceeds 1.3 wt%. The highest magnetic characteristics can be obtained by selecting iron (Fe) as the transition metal (T) and neodymium (Nd) as the rare earth element (R).

【0010】電子線照射による線分析には、例えばEP
MA(電子線マイクロアナライザ)が適用される。かか
るEPMAによれば電子線で試料表面を走査することに
より、試料表面における元素の2次元分布が観測され
る。すなわち電子線を照射することによって試料表面か
らでてくる特性X線の波長から試料が含有する元素の種
類が特定され、一方その強度から元素の含有量が特定さ
れる。
For line analysis by electron beam irradiation, for example, EP
MA (electron beam microanalyzer) is applied. According to such EPMA, the two-dimensional distribution of elements on the sample surface is observed by scanning the sample surface with an electron beam. That is, the type of element contained in the sample is specified from the wavelength of the characteristic X-ray emitted from the sample surface by irradiating the electron beam, while the content of the element is specified from the intensity thereof.

【0011】したがって、試料表面を電子線により走査
して同一位置において異なる元素の存在を示す複数の波
長のX線が観測される場合には、その位置においてそれ
らの元素の存在が確認される。
Therefore, when X-rays having a plurality of wavelengths indicating the existence of different elements are observed at the same position by scanning the sample surface with an electron beam, the existence of those elements is confirmed at that position.

【0012】前記Rピークとは、Rを示す波長のX線が
観測されるピークであり、かかるピークによりその位置
におけるRの存在が示される。同様に前記Oピークは、
Oを示す波長のX線が観測されるピークであり、かかる
ピークによりその位置におけるOの存在が示される。R
ピークの中で、Oピークと重複しないピークとはOピー
クが観測されない位置で示されるRピークである。
The R peak is a peak at which an X-ray having a wavelength showing R is observed, and the peak indicates the presence of R at that position. Similarly, the O peak is
This is a peak at which an X-ray having a wavelength indicating O is observed, and such a peak indicates the presence of O at that position. R
Among the peaks, the peak that does not overlap with the O peak is the R peak shown at the position where the O peak is not observed.

【0013】本発明ではかかるOピークと重複しないR
ピークが全Rピークの1/4以上となるようにして、希
土類磁石が製造される。ここでOピークと重複しないR
ピークが全Rピークの1/4以上となるようにするの
は、かかるピークが全Rピークの1/4未満である場合
には、得られる希土類磁石中のRの酸化物が過剰とな
り、磁気特性が悪化するからである。
In the present invention, R that does not overlap with the O peak is used.
The rare earth magnet is manufactured so that the peak is 1/4 or more of all R peaks. Where R does not overlap with O peak
The peak is set to be 1/4 or more of the total R peak so that when the peak is less than 1/4 of the total R peak, the oxide of R in the obtained rare earth magnet becomes excessive and the This is because the characteristics deteriorate.

【0014】[0014]

【実施例】以下に本発明の実施例について図面を参照し
て説明する。 実施例1 純度95wt%以上のFe、Nd、Bを所定の重量秤量
し、これらを真空溶解して重量10kgのインゴットを
作成した。このインゴットの成分分析を行うと重量比で
Nd28.9%、B1.05%、残部不純物およびFeの
組成であった。このインゴットをハンマーで解砕した
後、さらに粗粉砕機を用い不活性ガス雰囲気中での粗粉
砕を行い500μm以下の粒度の粗粉砕を得た。この粗
粉を同じくジェットミルを用い不活性ガス雰囲気で微粉
砕をして微粉末を得た。この微粉末は平均粒径4.0μ
m(F.S.S.S)であった。この粉末を配向磁場強
度15KOe、成形圧力1.5ton/cm2の条件下
で磁場中プレス成形し、20×20×15(mm)の成
形体を作成した。この成形体を真空中で1080℃×3
Hrの焼結を行い、得られた焼結体に熱処理を施した。
Embodiments of the present invention will be described below with reference to the drawings. Example 1 Fe, Nd, and B having a purity of 95 wt% or more were weighed in a predetermined amount and vacuum-melted to prepare an ingot having a weight of 10 kg. When the composition of this ingot was analyzed, it was found that the weight ratio was Nd 28.9%, B 1.05%, the composition of the balance impurities and Fe. After crushing this ingot with a hammer, it was further crushed in an inert gas atmosphere using a crusher to obtain a crushed powder having a particle size of 500 μm or less. This coarse powder was finely pulverized in the same inert gas atmosphere using a jet mill to obtain fine powder. This fine powder has an average particle size of 4.0μ.
m (FSSS). This powder was press-molded in a magnetic field under the conditions of an orientation magnetic field strength of 15 KOe and a molding pressure of 1.5 ton / cm 2 to prepare a 20 × 20 × 15 (mm) molded body. This molded body is vacuumed at 1080 ° C x 3
Hr was sintered, and the obtained sintered body was heat-treated.

【0015】以上のようにして得られた4種の焼結体に
つき含有酸素量及び磁気特性を調査した。結果を表1に
示す。なお、表1中の独立R率とは、EPMAによる線
分析におけるNdピークの中で、O2ピークと重複しな
いピークが全Ndピークに占める率を示している。ま
た、表1中のNo.2および3のEPMAによる線分析
の結果をそれぞれ図1及び図2に示す。図1及び図2の
○印によって示されるピークがO2ピークと重複しない
Rピークである。表1より、独立R率が高いNo.1、
2の磁気特性が優れることがわかる。
The oxygen content and magnetic properties of the four types of sintered bodies obtained as described above were investigated. The results are shown in Table 1. The independent R ratio in Table 1 indicates the ratio of the peaks that do not overlap with the O 2 peak among all Nd peaks in the line analysis by EPMA. Further, the results of the line analysis by EPMA of Nos. 2 and 3 in Table 1 are shown in FIGS. 1 and 2, respectively. The peaks indicated by the circles in FIGS. 1 and 2 are R peaks that do not overlap with the O 2 peak. From Table 1, No. 1 with high independent R rate,
It can be seen that the magnetic property of 2 is excellent.

【0016】[0016]

【表1】 [Table 1]

【0017】実施例2 他は実施例1と同様にして、重量比でNd30.6wt%、
B1.03%、残部不純物およびFeの組成のインゴッ
ト、重量比でNd33.2wt%、B1.06%、残部不純
物およびFeの組成のインゴットを用いて得られた焼結
体につき含有酸素量、独立R率及び磁気特性を調査し
た。結果を表2に示す。表2から明らかなように、本発
明にかかる永久磁石は従来例に比べて高い磁気特性を有
している。
Example 2 Others were the same as Example 1, except that Nd was 30.6 wt% in weight ratio.
B1.03%, residual impurities and Fe composition ingot, weight ratio Nd33.2 wt%, B1.06%, oxygen content in the sintered body obtained using the remaining impurities and Fe composition ingot, independent The R ratio and magnetic properties were investigated. The results are shown in Table 2. As is clear from Table 2, the permanent magnet according to the present invention has higher magnetic characteristics than the conventional example.

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【発明の効果】以上のように本発明によれば、高い磁気
特性を有する希土類永久磁石を製造することができる。
As described above, according to the present invention, it is possible to manufacture a rare earth permanent magnet having high magnetic characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例により得られた焼結体のEP
MAによる線分析結果を示す図である。
FIG. 1 EP of a sintered body obtained according to an example of the present invention
It is a figure which shows the line analysis result by MA.

【図2】 従来例の焼結体のEPMAによる線分析結果
を示す図である。
FIG. 2 is a diagram showing a EPMA line analysis result of a sintered body of a conventional example.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 希土類元素(R)、遷移金属(T)、ほ
う素(B)を主成分とする希土類永久磁石において、R
量を28〜31wt%とし、電子線照射による線分析にお
けるRピークの中で、酸素(O2)ピークと重複しない
ピークが全Rピークの1/4以上であることを特徴とす
る希土類永久磁石。
1. A rare earth permanent magnet containing a rare earth element (R), a transition metal (T) and boron (B) as main components, wherein R
The rare earth permanent magnet is characterized in that the amount is 28 to 31 wt% and the peaks that do not overlap with the oxygen (O 2 ) peak among the R peaks in the line analysis by electron beam irradiation are 1/4 or more of the total R peaks. .
【請求項2】 前記遷移金属(T)が鉄(Fe)である
請求項1記載の希土類永久磁石。
2. The rare earth permanent magnet according to claim 1, wherein the transition metal (T) is iron (Fe).
【請求項3】 前記希土類元素(R)がネオジム(N
d)である請求項1または請求項2記載の希土類永久磁
石。
3. The rare earth element (R) is neodymium (N).
The rare earth permanent magnet according to claim 1 or 2, which is d).
JP5062714A 1993-02-26 1993-02-26 Rare earth element permanent magnet Pending JPH06251920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5062714A JPH06251920A (en) 1993-02-26 1993-02-26 Rare earth element permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5062714A JPH06251920A (en) 1993-02-26 1993-02-26 Rare earth element permanent magnet

Publications (1)

Publication Number Publication Date
JPH06251920A true JPH06251920A (en) 1994-09-09

Family

ID=13208283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5062714A Pending JPH06251920A (en) 1993-02-26 1993-02-26 Rare earth element permanent magnet

Country Status (1)

Country Link
JP (1) JPH06251920A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106205919A (en) * 2016-09-05 2016-12-07 北京大学 Use the method that nanometer two-phase composite permanent-magnetic material is quickly prepared in electron beam heating
CN111554504A (en) * 2020-05-26 2020-08-18 北京大学 Nano-scale textured rare earth permanent magnet material and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106205919A (en) * 2016-09-05 2016-12-07 北京大学 Use the method that nanometer two-phase composite permanent-magnetic material is quickly prepared in electron beam heating
CN111554504A (en) * 2020-05-26 2020-08-18 北京大学 Nano-scale textured rare earth permanent magnet material and preparation method thereof

Similar Documents

Publication Publication Date Title
US8123832B2 (en) R-T-B system sintered magnet
JP4648192B2 (en) R-T-B rare earth permanent magnet
US5034146A (en) Rare earth-based permanent magnet
EP0177371B1 (en) Process for manufacturing a permanent magnet
JPH09186010A (en) Large electric resistance rare earth magnet and its manufacture
JPH06275414A (en) Nd-fe-b based permanent magnet
EP0237416A1 (en) A rare earth-based permanent magnet
US4891078A (en) Rare earth-containing magnets
JP4274480B2 (en) R-T-B sintered magnet
JPH06251920A (en) Rare earth element permanent magnet
JP3298220B2 (en) Rare earth-Fe-Nb-Ga-Al-B sintered magnet
US3919001A (en) Sintered rare-earth cobalt magnets comprising mischmetal plus cerium-free mischmetal
JP2874392B2 (en) Production method of rare earth cobalt 1-5 permanent magnet alloy
JP2577373B2 (en) Sintered permanent magnet
JP3247460B2 (en) Production method of raw material powder for rare earth magnet
JP2005281795A (en) R-T-B BASED SINTERED MAGNET ALLOY CONTAINING Dy AND Tb AND ITS PRODUCTION METHOD
JP2868062B2 (en) Manufacturing method of permanent magnet
JP3053344B2 (en) Rare earth magnet manufacturing method
JPH08288112A (en) Rare-earth permanent magnet and its manufacture
JP3298221B2 (en) Rare earth-Fe-V-Ga-Al-B sintered magnet
JP2825449B2 (en) Manufacturing method of permanent magnet
JPH0815123B2 (en) permanent magnet
JPH05156397A (en) Rare earth-cobalt 1-5 series permanent magnet alloy
JPH06140219A (en) Manufacture of rare-earth permanent magnet
JPH06100993A (en) Permanent magnet material