JPH05156397A - Rare earth-cobalt 1-5 series permanent magnet alloy - Google Patents
Rare earth-cobalt 1-5 series permanent magnet alloyInfo
- Publication number
- JPH05156397A JPH05156397A JP3348853A JP34885391A JPH05156397A JP H05156397 A JPH05156397 A JP H05156397A JP 3348853 A JP3348853 A JP 3348853A JP 34885391 A JP34885391 A JP 34885391A JP H05156397 A JPH05156397 A JP H05156397A
- Authority
- JP
- Japan
- Prior art keywords
- rare earth
- permanent magnet
- alloy
- cobalt
- magnet alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、磁気特性、特に角型
性に優れた希土類コバルト1−5系永久磁石合金に関す
るものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth cobalt 1-5 series permanent magnet alloy having excellent magnetic properties, particularly squareness.
【0002】[0002]
【従来の技術】希土類元素をRとすると、RCo5 で表
される希土類コバルト1−5系永久磁石合金は広く知ら
れており、例えば、特公昭63−34604号公報に
は、重量%(以下、%は重量%を示す)で、 Pr(プラセオジム):16.5〜29.0%、 Sm(サマリウム):7.0〜18.0%、 Co(コバルト):残部、 からなる成分組成の希土類コバルト1−5系永久磁石合
金およびその製造方法が記載されている。2. Description of the Related Art When a rare earth element is R, a rare earth cobalt 1-5 type permanent magnet alloy represented by RCo 5 is widely known. For example, in Japanese Examined Patent Publication No. 63-34604, the weight% (hereinafter ,% Represents weight%), Pr (praseodymium): 16.5 to 29.0%, Sm (samarium): 7.0 to 18.0%, Co (cobalt): balance, A rare earth cobalt 1-5 series permanent magnet alloy and a method for producing the same are described.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、上記希
土類コバルト1−5系永久磁石合金は、その最大エネル
ギー積はせいぜい30MGOeであり、これは、高い最
大エネルギー積がさらに期待できるSm:7.0%以下
の組織領域で角型性が著しく低下すること、またPr:
29.0%以上では保磁力や角型性が低下することによ
るものであった。However, the maximum energy product of the rare earth cobalt 1-5 series permanent magnet alloy is at most 30 MGOe, which means that a high maximum energy product can be further expected Sm: 7.0%. Squareness is significantly reduced in the following tissue areas, and Pr:
When the content was 29.0% or more, the coercive force and the squareness were lowered.
【0004】上記角型性は、一般に、4πI−H減磁曲
線における残留磁束密度Brの90%の保磁力をHk
(Knee Point)とすると、Hkと保磁力iH
cの比で表され、より良い永久磁石を表す目安とされて
いる。The squareness generally has a coercive force Hk of 90% of the residual magnetic flux density Br in the 4πI-H demagnetization curve.
(Knee Point), Hk and coercive force iH
It is represented by the ratio of c, and is used as a guide for a better permanent magnet.
【0005】したがって、現在では、すぐれた残留磁束
密度Br、保磁力iHc、最大エネルギー積(BH)m
axの他にすぐれた角型性を有する希土類コバルト1−
5系永久磁石合金が求められている。Therefore, at present, excellent residual magnetic flux density Br, coercive force iHc, maximum energy product (BH) m
In addition to ax, rare earth cobalt having excellent squareness 1-
A 5-system permanent magnet alloy is required.
【0006】[0006]
【課題を解決するための手段】そこで、本発明者らは、
残留磁束密度Br、保磁力iHc、最大エネルギー積
(BH)maxの他にすぐれた角型性を有する希土類コ
バルト1−5系永久磁石合金を得るべく研究を行った結
果、PrおよびSmをPr:21〜36%、Sm:3〜
9%でかつPr+Sm:30〜39%となるように含有
し、残りがCoおよび不可避不純物からなる組成を有す
る合金原料粉末に、Zr、Ti、HfおよびNbのうち
少くとも1種(以下、Mと記す)の水素化物を0.05
〜1%添加して混合粉砕し、得られた混合粉末をプレス
成形して圧粉体としたのち、この圧粉体を不活性ガス雰
囲気中で焼結すると、PrおよびSmをPr:21〜3
6%、Sm:3〜9%でかつPr+Sm:30〜39%
となるように含有し、さらに、M:0.05〜1重量%
を含有し、残りがCoおよび不可避不純物からなる組成
および上記Mが結晶粒界に偏析している組織を有する希
土類コバルト1−5系永久磁石合金が得られ、このよう
にして得られた希土類コバルト1−5系永久磁石合金
は、従来の希土類コバルト1−5系永久磁石合金より
も、特に角型性や保磁力iHcが一層優れているという
知見を得たのである。Therefore, the present inventors have
As a result of research to obtain a rare earth cobalt 1-5 series permanent magnet alloy having excellent squareness in addition to the residual magnetic flux density Br, the coercive force iHc, the maximum energy product (BH) max, Pr and Sm were changed to Pr: 21-36%, Sm: 3-
9% and Pr + Sm: contained in an alloy raw material powder having a composition of 30 to 39% with the balance being Co and unavoidable impurities, and at least one of Zr, Ti, Hf, and Nb (hereinafter, M ) Of 0.05)
~ 1% was added and mixed and pulverized, and the obtained mixed powder was press-molded to obtain a green compact, and the green compact was sintered in an inert gas atmosphere. Three
6%, Sm: 3 to 9% and Pr + Sm: 30 to 39%
And M: 0.05 to 1% by weight
A rare earth cobalt 1-5 series permanent magnet alloy having a composition containing Co and the remainder being Co and unavoidable impurities and having a structure in which M is segregated at the grain boundaries is obtained, and the rare earth cobalt thus obtained is obtained. It has been found that the 1-5 series permanent magnet alloy is more excellent in squareness and coercive force iHc than the conventional rare earth cobalt 1-5 series permanent magnet alloy.
【0007】この発明は、かかる知見に基づいて成され
たものであって、Pr:21〜36%、Sm:3〜9%
でかつPr+Sm:30〜39%となるように含有し、
さらに、M:0.05〜1%を含有し、残りがCoおよ
び不可避不純物からなる組成を有し、かつ結晶粒界に上
記Mが偏析している組織を有する希土類コバルト1−5
系永久磁石合金、に特徴を有するものである。The present invention was made on the basis of such findings, and Pr: 21 to 36%, Sm: 3 to 9%
And Pr + Sm: contained in an amount of 30 to 39%,
Further, rare earth cobalt 1-5 having a composition containing M: 0.05 to 1%, the remainder being Co and unavoidable impurities, and having a structure in which M is segregated at the grain boundaries.
System permanent magnet alloy.
【0008】この発明の希土類コバルト1−5系永久磁
石合金の製造方法をさらに詳細に説明する。The method for producing the rare earth cobalt 1-5 type permanent magnet alloy of the present invention will be described in more detail.
【0009】まず、通常の方法で製造されたPr:21
〜36%、Sm:3〜9%でかつPr+Sm:30〜3
9%となるように含有し、残りがCoおよび不可避不純
物からなる組成を有し、平均粒径:2〜50μmを有し
する合金原料粉末(以下、単に合金原料粉末という)を
用意し、さらに通常の方法で水素化処理された平均粒
径:50〜200μmのMの水素化物粉末を用意し、上
記合金原料粉末に上記Mの水素化物粉末を0.05〜1
%添加してボールミルなどにより短時間混合粉砕する
と、上記水素化処理されたMの水素化物粉末は脆くて粉
砕されやすいために上記合金原料粉末よりも極めて早く
微粉末化し、ほとんど粉砕されていない上記合金原料粉
末と微粉末化したMの水素化物微粉末からなる原料混合
粉末が得られる。First, Pr: 21 produced by a usual method
~ 36%, Sm: 3-9% and Pr + Sm: 30-3
An alloy raw material powder (hereinafter, simply referred to as alloy raw material powder) containing 9% by weight, the balance of Co and unavoidable impurities, and having an average particle diameter of 2 to 50 μm is prepared. Prepare M hydride powder having an average particle size of 50 to 200 μm that has been hydrotreated by a usual method, and add 0.05 to 1 of the M hydride powder to the alloy raw material powder.
% And then mixed and pulverized for a short time by a ball mill or the like, the hydride powder of the hydrotreated M is brittle and easily pulverized. A raw material mixed powder composed of the alloy raw material powder and the finely divided M hydride fine powder is obtained.
【0010】この原料混合粉末をプレス成形すると、粒
径の大きな上記合金原料粉末の周囲に、微粉末化した粒
径の極めて小さなMの水素化物微粉末が偏在する組織の
圧粉体が得られる。When this raw material mixed powder is press-molded, a green compact having a structure in which fine pulverized M hydride fine powder having an extremely small grain size is unevenly distributed around the alloy raw material powder having a large grain size is obtained. ..
【0011】この圧粉体を温度:1000〜1150℃
の不活性ガス雰囲気中で焼結すると、上記合金原料粉末
の周囲をMの水素化物粉末が包囲する状態で焼結温度以
下の温度で水素化物中の水素は飛散し、したがって焼結
が終了した後、結果としてPr、SmおよびCoを主成
分とする組成の合金の結晶粒界に、0.05〜1%のM
が偏析している組織を有する希土類コバルト1−5系永
久磁石合金が得られるのである。This green compact was heated at a temperature of 1000 to 1150 ° C.
When sintered in an inert gas atmosphere of, the hydrogen in the hydride was scattered at a temperature equal to or lower than the sintering temperature with the hydride powder of M surrounded by the alloy raw material powder, and thus the sintering was completed. As a result, 0.05 to 1% of M is added to the grain boundary of the alloy having a composition containing Pr, Sm and Co as the main components.
A rare earth cobalt 1-5 series permanent magnet alloy having a structure in which is segregated is obtained.
【0012】この発明の希土類コバルト1−5系永久磁
石合金の組織を電子顕微鏡で観察し、写生した組織図を
図1に示す。図1において、1はPr、SmおよびCo
を主成分とする組成の合金の結晶粒、2は結晶粒界、3
はMである。図1からこの発明の希土類コバルト1−5
系永久磁石合金は、結晶粒界2にM3が偏析しているこ
とが分かる。The structure of the rare earth cobalt 1-5 type permanent magnet alloy of the present invention is observed by an electron microscope and a structural diagram is shown in FIG. In FIG. 1, 1 is Pr, Sm and Co.
2 is a crystal grain boundary of an alloy having a composition mainly containing
Is M. From FIG. 1, the rare earth cobalt 1-5 of the present invention
It can be seen that in the system permanent magnet alloy, M3 is segregated at the grain boundaries 2.
【0013】つぎに、この発明の希土類コバルト1−5
系永久磁石合金の組成を上記のごとく限定した理由を説
明する。 (a) PrおよびSm Prは、Coとともに共存して高い飽和磁化と最大エネ
ルギー積を得るために必要な成分であるが、その含有量
が21%未満では十分な保磁力が得られず、一方、36
%を越えて含有すると高い最大エネルギー積が得られな
い。したがって、Prの含有量は21〜36%に定め
た。Next, the rare earth cobalt 1-5 of the present invention
The reason why the composition of the system permanent magnet alloy is limited as described above will be described. (A) Pr and Sm Pr are components necessary for coexisting with Co to obtain high saturation magnetization and maximum energy product, but if the content is less than 21%, sufficient coercive force cannot be obtained. , 36
If it is contained in excess of%, a high maximum energy product cannot be obtained. Therefore, the Pr content is set to 21 to 36%.
【0014】さらに、Smは保磁力を得るために必要な
成分であるが、その含有量が3%未満では十分な保磁力
が得られず、一方、9%を越えて含有すると高い最大エ
ネルギー積が低下する。したがって、Smの含有量は3
〜9%に定めた。Further, Sm is a component necessary for obtaining a coercive force, but if its content is less than 3%, a sufficient coercive force cannot be obtained, while if it exceeds 9%, it has a high maximum energy product. Is reduced. Therefore, the content of Sm is 3
-9%.
【0015】PrおよびSmは共に希土類元素であり、
PrおよびSmの合計量(以下、Pr+Smと記す)が
30%未満では、十分な保磁力が得られず、一方、Pr
+Smが39%を越えて含有しても高い最大エネルギー
積が低下する。したがって、Pr+Sm:30〜39%
に定めた。Both Pr and Sm are rare earth elements,
If the total amount of Pr and Sm (hereinafter referred to as Pr + Sm) is less than 30%, sufficient coercive force cannot be obtained, while Pr
Even if the content of + Sm exceeds 39%, the high maximum energy product decreases. Therefore, Pr + Sm: 30-39%
Stipulated in.
【0016】(b) M(Zr、Ti、HfおよびNb
のうち少くとも1種)、 これらの成分は、PrおよびSmを含む希土類コバルト
1−5系永久磁石合金のPr、SmおよびCoを主成分
とする合金の角型性を高めるために必要な成分である
が、Mの含有量が0.05%未満では十分な効果が得ら
れず、一方、1%を越えて偏析しても飽和磁化が低下
し、したがって、最大エネルギー積が低下する。したが
って、Mの含有量は、0.05〜1%に定めた。(B) M (Zr, Ti, Hf and Nb
At least one of these), these components are components necessary for increasing the squareness of the rare earth cobalt 1-5 series permanent magnet alloy containing Pr and Sm, the alloy containing Pr, Sm and Co as the main components. However, if the M content is less than 0.05%, a sufficient effect cannot be obtained, while if segregation exceeds 1%, the saturation magnetization is reduced, and thus the maximum energy product is reduced. Therefore, the content of M is set to 0.05 to 1%.
【0017】この発明を実施例に基づいて具体的に説明
する。The present invention will be specifically described based on examples.
【実施例】Arガス雰囲気中、高周波溶解炉を用いて溶
製し鋳造したインゴットをArガスを流しながらスタン
プミル粉砕し、さらに、トルエン中で振動ミル粉砕し、
所定の成分組成を有する(Pr、Sm)Co合金粉末を
製造した。[Example] In an Ar gas atmosphere, an ingot melted and cast using a high-frequency melting furnace was crushed by a stamp mill while flowing Ar gas, and further crushed by a vibration mill in toluene.
A (Pr, Sm) Co alloy powder having a predetermined composition was manufactured.
【0018】一方、Zr、Ti、HfおよびNbの水素
化物粉末として、市販のZrH2 粉末、TiH2 粉末、
HfH2 粉末およびNbH粉末を用意し、これら水素化
物粉末を上記(Pr、Sm)Co合金粉末に所定量配合
し、ボールミルで30分間混合したところ、上記(P
r、Sm)Co系合金粉末はほとんど粉砕されず、一
方、水素化物粉末は微粉砕されて、(Pr、Sm)Co
合金粗粉末および水素化物微粉末からなる混合粉末が得
られた。On the other hand, as hydride powders of Zr, Ti, Hf and Nb, commercially available ZrH 2 powder, TiH 2 powder,
HfH 2 powder and NbH powder were prepared, and a predetermined amount of these hydride powders was mixed with the (Pr, Sm) Co alloy powder and mixed for 30 minutes with a ball mill.
The r, Sm) Co alloy powder is hardly pulverized, while the hydride powder is finely pulverized to form (Pr, Sm) Co.
A mixed powder consisting of coarse alloy powder and fine hydride powder was obtained.
【0019】これら混合粉末を23KOeの磁場中で3
ton/cm2 の圧力でプレス成形し、たて:10m
m、よこ:9mm、高さ:8mmの寸法を有する圧粉体
を製造し、これら圧粉体を真空または不活性ガス雰囲気
中、温度:1100℃、4時間保持の条件で焼結し、本
発明焼結磁石合金1〜22および比較焼結磁石合金1〜
14を製造した。These mixed powders were mixed in a magnetic field of 23 KOe for 3 times.
Press-formed at a pressure of ton / cm 2 , vertical: 10 m
m, width: 9 mm, height: 8 mm, a green compact is produced, and the green compact is sintered in a vacuum or an inert gas atmosphere at a temperature of 1100 ° C. for 4 hours, and Invention Sintered Magnet Alloys 1 to 22 and Comparative Sintered Magnet Alloys 1 to
14 was produced.
【0020】さらに比較のために、Mを含まない従来焼
結磁石合金も製造した。このようにして得られた本発明
焼結磁石合金1〜22、比較焼結磁石合金1〜14およ
び従来焼結磁石合金の成分組成を表1〜表4に示す。For comparison, a conventional sintered magnet alloy containing no M was also manufactured. Tables 1 to 4 show the component compositions of the thus obtained sintered magnet alloys 1 to 22 of the present invention, comparative sintered magnet alloys 1 to 14 and conventional sintered magnet alloys.
【0021】[0021]
【表1】 [Table 1]
【0022】[0022]
【表2】 [Table 2]
【0023】[0023]
【表3】 [Table 3]
【0024】[0024]
【表4】 [Table 4]
【0025】さらに、このようにして得られた本発明焼
結磁石合金1〜22および比較焼結磁石合金1〜14の
組織を電子顕微鏡で観察したところ、(Pr、Sm)C
o合金粒界にMが偏析している組織が見られた。つい
で、これら焼結磁石合金の残留磁束密度Br、保磁力i
Hc、および最大エネルギー積(BH)maxを測定
し、さらに4πI減磁曲線におけるBrの90%の保磁
力をHkとし、このHkと保磁力iHcの比を角型性と
して求め、これらの結果を表5〜表8に示した。Further, when the structures of the sintered magnet alloys 1 to 22 of the present invention and the comparative sintered magnet alloys 1 to 14 thus obtained were observed with an electron microscope, (Pr, Sm) C
A structure in which M was segregated at the alloy grain boundaries was observed. Next, the residual magnetic flux density Br and coercive force i of these sintered magnet alloys are
Hc and the maximum energy product (BH) max were measured, the coercive force of 90% of Br in the 4πI demagnetization curve was defined as Hk, and the ratio of this Hk and the coercive force iHc was obtained as squareness. The results are shown in Table 5 to Table 8.
【0026】[0026]
【表5】 [Table 5]
【0027】[0027]
【表6】 [Table 6]
【0028】[0028]
【表7】 [Table 7]
【0029】[0029]
【表8】 [Table 8]
【0030】表1〜表8に示される結果から、Pr:2
1〜36重量%、Sm:3〜9重量%でかつPr+S
m:30〜39重量%となるように含有し、さらに、
M:0.05〜1重量%を含有し、残りがCoおよび不
可避不純物からなる組成を有する本発明焼結磁石合金1
〜22は、いずれもMを含まない従来焼結磁石合金より
も磁気特性、特に角型性が優れていることが分かる。し
かし、この発明の成分組成から外れた組成(表1〜表4
において、この発明の組成範囲から外れた組成に※印を
付して示した。)を有する比較焼結磁石合金1〜14
は、残留磁束密度Br、保磁力iHc、最大エネルギー
積(BH)maxおよび角型性のうちいずれかが劣るこ
とが分かる。From the results shown in Tables 1 to 8, Pr: 2
1-36 wt%, Sm: 3-9 wt% and Pr + S
m: 30 to 39% by weight, and further,
Sintered magnet alloy 1 of the present invention 1 having a composition containing M: 0.05 to 1% by weight and the balance being Co and inevitable impurities.
It can be seen that all of Nos. 22 to 22 are superior in magnetic characteristics, particularly squareness, to the conventional sintered magnet alloy containing no M. However, compositions deviating from the component composition of the present invention (Table 1 to Table 4
In Table 1, compositions outside the composition range of the present invention are marked with *. ) Comparative sintered magnet alloys 1 to 14
Indicates that any of the residual magnetic flux density Br, the coercive force iHc, the maximum energy product (BH) max and the squareness is inferior.
【0031】[0031]
【発明の効果】上記表1〜表8に示される結果から、P
r:21〜36重量%、Sm:3〜9重量%でかつPr
+Sm:30〜39重量%となるように含有し、さらに
M:0.05〜1重量%を含有し、残りがCoおよび不
可避不純物からなる組成を有するとともに、結晶粒界に
上記Mが偏析している組織を有することにより、優れた
磁気特性を有する希土類コバルト1−5系永久磁石合金
が得られることが分かり、かかる条件を満たすこの発明
の希土類コバルト1−5系磁石合金は、電気、電子産業
に優れた効果をもたらすものである。From the results shown in Tables 1 to 8 above, P
r: 21 to 36% by weight, Sm: 3 to 9% by weight, and Pr
+ Sm: 30 to 39% by weight, M: 0.05 to 1% by weight, and the balance of Co and unavoidable impurities, and M segregates at the grain boundaries. It has been found that a rare earth cobalt 1-5 series permanent magnet alloy having excellent magnetic properties can be obtained by having such a structure, and the rare earth cobalt 1-5 series magnet alloy of the present invention satisfying such a condition is It has a great effect on the industry.
【図1】この発明の希土類コバルト1−5系磁石合金の
組織図である。FIG. 1 is a structural diagram of a rare earth cobalt 1-5 series magnet alloy of the present invention.
1 Pr、SmおよびCoを主成分とする合金の結晶粒 2 結晶粒界 3 M 1 Crystal grain of alloy having Pr, Sm and Co as main components 2 Grain boundary 3 M
Claims (1)
重量%でかつPr+Sm:30〜39重量%となるよう
に含有し、さらに、Zr、Ti、HfおよびNbのうち
少くとも1種(以下、Mと記す):0.05〜1重量%
を含有し、残りがCoおよび不可避不純物からなる組成
を有し、かつ結晶粒界に上記Mが偏析している組織を有
することを特徴とする希土類コバルト1−5系永久磁石
合金。1. Pr: 21 to 36% by weight, Sm: 3 to 9
% By weight and Pr + Sm: 30 to 39% by weight, and at least one of Zr, Ti, Hf and Nb (hereinafter referred to as M): 0.05 to 1% by weight
A rare earth cobalt 1-5 series permanent magnet alloy, characterized in that it has a composition containing Co and the unavoidable impurities, and has a structure in which M is segregated at the grain boundaries.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3348853A JPH05156397A (en) | 1991-12-05 | 1991-12-05 | Rare earth-cobalt 1-5 series permanent magnet alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3348853A JPH05156397A (en) | 1991-12-05 | 1991-12-05 | Rare earth-cobalt 1-5 series permanent magnet alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05156397A true JPH05156397A (en) | 1993-06-22 |
Family
ID=18399828
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3348853A Pending JPH05156397A (en) | 1991-12-05 | 1991-12-05 | Rare earth-cobalt 1-5 series permanent magnet alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05156397A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0660338A1 (en) * | 1993-12-27 | 1995-06-28 | The Foundation: The Research Institute Of Electric And Magnetic Alloys | Permanent magnet material of high coercive force Pr-Co alloy and permanent magnet material of thin film and method of manufacturing the same |
CN106531383A (en) * | 2016-11-08 | 2017-03-22 | 中国科学院宁波材料技术与工程研究所 | Samarium cobalt alloy material, samarium cobalt alloy powder, samarium cobalt magnet base and method of producing samarium cobalt alloy powder |
-
1991
- 1991-12-05 JP JP3348853A patent/JPH05156397A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0660338A1 (en) * | 1993-12-27 | 1995-06-28 | The Foundation: The Research Institute Of Electric And Magnetic Alloys | Permanent magnet material of high coercive force Pr-Co alloy and permanent magnet material of thin film and method of manufacturing the same |
CN106531383A (en) * | 2016-11-08 | 2017-03-22 | 中国科学院宁波材料技术与工程研究所 | Samarium cobalt alloy material, samarium cobalt alloy powder, samarium cobalt magnet base and method of producing samarium cobalt alloy powder |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5729051B2 (en) | R-T-B rare earth sintered magnet | |
EP0175214A2 (en) | Permanent magnetic alloy and method of manufacturing the same | |
WO2005001856A1 (en) | R-t-b based rare earth permanent magnet and method for production thereof | |
US6527874B2 (en) | Rare earth magnet and method for making same | |
EP0216254A1 (en) | Permanent magnet | |
JPH07105289B2 (en) | Rare earth permanent magnet manufacturing method | |
USRE31317E (en) | Rare earth-cobalt system permanent magnetic alloys and method of preparing same | |
US20070240790A1 (en) | Rare-earth sintered magnet and method for producing the same | |
JP2853838B2 (en) | Manufacturing method of rare earth permanent magnet | |
JPH01219143A (en) | Sintered permanent magnet material and its production | |
JP3145416B2 (en) | Method for producing SE-Fe-B permanent magnet | |
JPH05156397A (en) | Rare earth-cobalt 1-5 series permanent magnet alloy | |
JP2874392B2 (en) | Production method of rare earth cobalt 1-5 permanent magnet alloy | |
JP3145415B2 (en) | SE-Fe-B permanent magnet and method of manufacturing the same | |
JP3145417B2 (en) | Method for producing SE-Fe-B permanent magnet | |
JPH0418441B2 (en) | ||
JP2825449B2 (en) | Manufacturing method of permanent magnet | |
JP2792251B2 (en) | Rare earth cobalt 1-5 permanent magnet alloy | |
JPH01289102A (en) | Manufacture of rare earth permanent magnet | |
JP4585691B2 (en) | Fe-BR type permanent magnet material containing Ce and Nd and / or Pr and method for producing the same | |
JP2577373B2 (en) | Sintered permanent magnet | |
JP2023007042A (en) | Permanent magnet and manufacturing method thereof | |
JPH06275415A (en) | Nd-fe-b based permanent magnet | |
JPS62257704A (en) | Permanent magnet | |
JPH0822909A (en) | Permanent magnet having sufficient mechanical strength |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20001003 |