JPH08288112A - Rare-earth permanent magnet and its manufacture - Google Patents

Rare-earth permanent magnet and its manufacture

Info

Publication number
JPH08288112A
JPH08288112A JP7093605A JP9360595A JPH08288112A JP H08288112 A JPH08288112 A JP H08288112A JP 7093605 A JP7093605 A JP 7093605A JP 9360595 A JP9360595 A JP 9360595A JP H08288112 A JPH08288112 A JP H08288112A
Authority
JP
Japan
Prior art keywords
magnet
rare earth
earth elements
alloy
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7093605A
Other languages
Japanese (ja)
Inventor
Makoto Ushijima
誠 牛嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP7093605A priority Critical patent/JPH08288112A/en
Publication of JPH08288112A publication Critical patent/JPH08288112A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE: To improve both the deterioration of the corrosion resistance and the deterioration of the magnetic characteristics by a method wherein the composit composition contents of Ga, C and O2 are specified. CONSTITUTION: The specified weights of metal Na, Fe, Ferro-B and metal Ga are weighed and melted in a vacuum to obtain an ingot. After the ingot is crushed, the crushed ingot is roughly pulverized in an inert gas atmosphere and then finely pulverized to obtain the fine powder. The contents of C and O2 are respectively adjusted during the pulverization so as to obtain high C and high O2 R-M-B (wherein R denotes at least one element among rare-earth elements including Y, and M denotes Fe or Fe and Co) magnet whose contents of C and O2 are 0.02wt.%<=C<=0.2wt.% and O2 >=4000ppm. Further, the content of Ga is 0.02wt.%-1.5wt.%. With this constitution, the R-M-B magnet whose magnetic characteristics deterioration caused by the quantities of C and O2 is suppressed can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はR(希土類)、M(Fe
またはFeとCo)、B(ホウ素)を主成分とする永久
磁石に関し、特に耐蝕性を有し、且つ高磁気特性のR−
M−B磁石とその製造方法に関するものである。
The present invention relates to R (rare earth), M (Fe
Alternatively, the present invention relates to a permanent magnet containing Fe and Co) and B (boron) as main components, and particularly R- which has corrosion resistance and high magnetic characteristics.
The present invention relates to an M-B magnet and its manufacturing method.

【0002】[0002]

【従来の技術】R−M−B磁石は組成及びその製造方法
の種々の改良等で、最大エネルギー積で40MGOe以
上のものが量産化されている。特に製造方法の中でも最
近は従来の一組成の合金を粉砕、成形、焼結、熱処理の
工程を経て製造するいわゆるシングル法から特性改善の
為、二種以上の各種合金粉末や組成の異なる合金粉末を
配合し、焼結、熱処理し高性能R−M−B磁石を製造す
る方法(ブレンド法)が提案されている。
2. Description of the Related Art R-M-B magnets having a maximum energy product of 40 MGOe or more have been mass-produced due to various improvements in composition and manufacturing method thereof. Among the manufacturing methods, recently, alloy powders of two or more types or alloy powders of different compositions have been used to improve the characteristics from the so-called single method in which alloys of one conventional composition are crushed, molded, sintered and heat-treated. A method (blending method) for producing a high-performance R-M-B magnet by blending, sintering, and heat treatment is proposed.

【0003】[0003]

【発明が解決しようとする課題】しかしながらこのブレ
ンド法にはR−M−B磁石の耐蝕性と磁気特性の両方を
満足させることが非常に困難である。すなわちR−M−
B磁石の組織としてはR2Fe14Bを主体とする母相に
Rリッチ相、Bリッチ相等の混在している状態であり、
シングル法ではこのRリッチ相は一部が母相粒内及び粒
界近傍に分散している。ブレンド法においては特に総希
土類重量比の異なる合金を配合させ磁気特性の高いR−
M−B磁石を得る為に、特にRリッチ相に、V,Ti,
Mo,W,Al,Nb等の元素を集約させる等を図り、
且つ母相内のRリッチ相を減らし粒界近傍にRリッチ相
を偏析させる析出相の組織及び組成制御を行うことが一
般的である。その場合Rリッチ相の粒界近傍での偏析程
度はシングル法より顕著である。一方一般的にこのRリ
ッチ相には特に希土類元素(特にNd)の濃度が高く、
Ndリッチの相は耐蝕性面で悪いことが知られている。
またこのRリッチ相にはCやO2が偏析する傾向があ
り、R−カーバイトやRオキサイド等が生成され、これ
等の多い場合には磁気特性の低下が生じる(特に保磁力
iHc)。本発明は従来の欠点であるRリッチ相の偏析
に伴う耐蝕性の低下やRリッチ相へのカーバイトやオキ
サイド等の生成に伴う磁気特性の低下の両面の改善を図
る新規の製造方法及びそれによって得られるR−M−B
磁石を提供するものである。本方法および本方法によっ
て得られる効果はシングル法においても適用される。
However, it is very difficult for this blending method to satisfy both the corrosion resistance and magnetic characteristics of the R-M-B magnet. That is, RM-
The structure of the B magnet is a state in which a R-rich phase, a B-rich phase and the like are mixed in a matrix phase mainly composed of R 2 Fe 14 B,
In the single method, a part of this R-rich phase is dispersed within the matrix grains and near the grain boundaries. In the blending method, alloys having different weight ratios of total rare earths are blended to obtain R-
In order to obtain an M-B magnet, especially in the R rich phase, V, Ti,
By consolidating elements such as Mo, W, Al and Nb,
In addition, it is common to control the structure and composition of the precipitation phase that reduces the R-rich phase in the matrix and segregates the R-rich phase near the grain boundaries. In that case, the degree of segregation of the R-rich phase in the vicinity of the grain boundaries is more remarkable than in the single method. On the other hand, in general, the R-rich phase has a particularly high concentration of rare earth elements (particularly Nd),
It is known that the Nd-rich phase is poor in corrosion resistance.
Further, C and O 2 tend to segregate in this R-rich phase, and R-carbite, R oxides, etc. are generated, and when there are a large amount of these, the magnetic characteristics deteriorate (especially coercive force iHc). The present invention is a novel manufacturing method for improving both of the conventional drawbacks such as deterioration of corrosion resistance due to segregation of R-rich phase and deterioration of magnetic properties due to generation of carbide or oxide in the R-rich phase, and a method thereof. R-M-B obtained by
It provides a magnet. This method and the effects obtained by this method also apply to the single method.

【0004】[0004]

【課題を解決するための手段】本発明者は、Rリッチ相
の偏析に伴う課題を解決する為に従来の耐蝕性劣化と磁
気特性低下の磁石組成及び組織を改善し優れた耐蝕性と
磁気特性の高い磁石を得ることを見い出した。本発明の
要旨はRリッチ相にGa,C,O2の複合組織にするこ
とがRリッチ相の耐蝕性改善とC,O2のRリッチ相へ
の偏析に伴う磁気特性の低下を防ぐことを見い出した。
特にGaの添加がCやO2の量の多い場合に有効であ
る。又、総希土類元素の異なる二種以上の合金粉末をブ
レンドし所定の組成のR−Fe−B磁石を製造する場合
に総希土類元素の重量%の多い合金粉末にC,O2が多
いこと及びGa,C,O2が多いことが有効な効果をも
たらす。
In order to solve the problems associated with the segregation of the R-rich phase, the present inventor has improved the conventional magnet composition and structure for corrosion resistance deterioration and magnetic property deterioration to improve the excellent corrosion resistance and magnetic properties. We have found a magnet with high characteristics. Gist of the present invention is to prevent deterioration of magnetic properties due to segregation of the R-rich phase Ga, C, to the complex structure of the O 2 is corrosion resistance improvement and C R-rich phase, to O 2 of the R-rich phase Found out.
In particular, the addition of Ga is effective when the amount of C or O 2 is large. Further, when two or more kinds of alloy powders having different total rare earth elements are blended to produce an R-Fe-B magnet having a predetermined composition, the alloy powder containing a large amount of the total rare earth element in a large amount by weight contains C and O 2. A large amount of Ga, C and O 2 brings an effective effect.

【0005】以下、本発明を詳細に説明する。本発明
は、重量百分比で0.02%≦C≦0.2%,O2≧4
000ppmを有する高C、高O2量のR−M−B磁石(R
はYを含む希土類元素の少なくとも一種以上、MはFe
またはFeとCo)において、Gaを0.02%〜1.
5%を含有するR−M−B磁石である。Gaの限定理由
は、Ga<0.02%では磁気特性の改善効果がなく、
Ga>1.5%入れてもiHcの改善度は変わらず高価
である為に得策ではない為である。また上記磁石におい
てGa,C及びO2がRリッチ相及びその周辺に偏析し
ている磁石である。更にGa,C,O2と重希土類元素
及びV,Ti,Mo,W,Al,Nbから選ばれた一種
以上の元素がRリッチ相及びその周辺に偏析させても良
い。次に異なる組成をもつ粉末を混合して焼結する希土
類永久磁石の製造方法において総希土類割合(以下、T
RE%で示す)の低い合金とTRE%の高い合金とを混
合して、所定のTRE%のR−M−B磁石を製造する際
に、TRE%の高い合金(以下、高R合金と称す)のC
量及びO2量をTRE%の低い合金(以下、低R合金と
称す)のそれ等より高くする方法であり、本製造方法に
より作成したR−M−B磁石である。上記方法において
Gaを高R合金に添加するとその効果は飛躍的に向上
し、本発明により耐蝕性の優れた、高性能のR−M−B
磁石が発現する。
The present invention will be described in detail below. The present invention has a weight percentage of 0.02% ≦ C ≦ 0.2% and O 2 ≧ 4.
R-M-B magnet with high C and high O 2 content (R
Is at least one rare earth element including Y, M is Fe
In Fe and Co), Ga is 0.02% to 1.
R-M-B magnet containing 5%. The reason for limiting Ga is that when Ga <0.02%, there is no effect of improving the magnetic characteristics,
This is because even if Ga> 1.5% is added, the degree of improvement of iHc does not change and it is expensive, so it is not a good idea. Further, in the above magnet, Ga, C and O 2 are segregated in the R rich phase and its periphery. Further, Ga, C, O 2 and heavy rare earth elements and one or more elements selected from V, Ti, Mo, W, Al and Nb may be segregated in the R-rich phase and its periphery. Next, in the method for manufacturing a rare earth permanent magnet in which powders having different compositions are mixed and sintered, the total rare earth ratio (hereinafter, referred to as T
When an R-M-B magnet having a predetermined TRE% is manufactured by mixing an alloy having a low RE% with an alloy having a high TRE%, an alloy having a high TRE% (hereinafter referred to as a high R alloy). ) C
The amount of O 2 and the amount of O 2 are higher than those of alloys having a low TRE% (hereinafter referred to as low R alloys), which is an R-M-B magnet produced by this manufacturing method. When Ga is added to a high R alloy in the above method, the effect is remarkably improved, and according to the present invention, a high performance R-M-B excellent in corrosion resistance is obtained.
The magnet develops.

【0006】[0006]

【実施例】以下、本発明の実施態様を実施例を挙げて説
明するが、本発明はこれらに限定されるものではない。 (実施例1、比較例1、2、3)金属Nd,Dy,F
e,ferro−B,ferro−Nd,金属Gaを所
定の重量秤量し、これを真空溶解して重量10Kgのイ
ンゴットを作成した。このインゴットをハンマーで解砕
した後、更に粗粉砕機を用い不活性ガス雰囲気中での粗
粉砕を行い500μm以下の粒度の粗粉を得た。次いで
この粗粉をジェットミルを用い不活性雰囲気中で微粉砕
をして微粉を得た。C,O2量は粉砕時に各々調整し
た。この微粉の平均粒度は4.0μm(F.S.S.
S)である。次にこの微粉を配向磁場強度15KOe,
成形圧力1.5Ton/cm2の条件下の横磁場中でプレス成
形し、30mm×20mm×15mmの成形体を作成した。こ
の成形体を実質的に真空の条件で1100℃×3Hrの
焼結を行い、得られた焼結体に900℃×2Hrの第1
次熱処理、次いで580℃×2Hrの第2次熱処理を施
した。得られた焼結体の密度は7.58g/cm3であっ
た。実施例1、比較例1,2,3の組成、iHcの測定
結果を表1に示す。表中の%は重量%であり、Cの不純
物レベルは0.01%以下である。表1中実施例1、比
較例3には金属Gaが0.2重量%入っており、比較例
1,2には入っていない。表1より、比較例2のように
Gaを添加してないと従来からいわれているようにC
量、O2量が高いとiHc(保磁力)は低い。また、G
aを添加すると、比較例3のようにC量、O2量が低い
場合にはiHcは向上する。一方、実施例1はC量、O
2量が高いにもかかわらずGaを添加することによりi
Hcは高い。即ち、0.02%≦C≦0.2%,O2
4000ppmという高C、高O2量のR−M−B磁石にお
いてGaを添加することはiHcを向上させ、磁気特性
向上に有効である。
EXAMPLES The embodiments of the present invention will be described below with reference to examples, but the present invention is not limited thereto. (Example 1, Comparative Examples 1, 2, 3) Metal Nd, Dy, F
A predetermined weight of e, ferro-B, ferro-Nd, and metallic Ga was weighed and vacuum-melted to prepare an ingot having a weight of 10 kg. After crushing this ingot with a hammer, it was further crushed in an inert gas atmosphere using a crusher to obtain a coarse powder having a particle size of 500 μm or less. Next, this coarse powder was finely pulverized in an inert atmosphere using a jet mill to obtain fine powder. The amounts of C and O 2 were adjusted during grinding. The average particle size of this fine powder is 4.0 μm (FSS.
S). Next, this fine powder is applied with an orientation magnetic field strength of 15 KOe,
Press molding was carried out in a transverse magnetic field under a molding pressure of 1.5 Ton / cm 2 to prepare a molded body of 30 mm × 20 mm × 15 mm. This compact was sintered at 1100 ° C. × 3 Hr under a substantially vacuum condition, and the obtained sintered body was subjected to a first sintering at 900 ° C. × 2 Hr.
A second heat treatment was then performed, followed by a second heat treatment at 580 ° C. × 2 Hr. The density of the obtained sintered body was 7.58 g / cm 3 . Table 1 shows the compositions of Example 1 and Comparative Examples 1, 2, and 3, and the measurement results of iHc. % In the table is% by weight, and the impurity level of C is 0.01% or less. In Table 1, Example 1 and Comparative Example 3 contained 0.2% by weight of metallic Ga, and Comparative Examples 1 and 2 did not. From Table 1, it can be seen from the conventional example that if Ga is not added as in Comparative Example 2, C
IHc (coercive force) is low when the amount of oxygen and the amount of O 2 are high. Also, G
When a is added, iHc is improved when the amounts of C and O 2 are low as in Comparative Example 3. On the other hand, in Example 1, C content and O
By adding Ga even though the amount of 2 is high, i
Hc is high. That is, 0.02% ≦ C ≦ 0.2%, O 2
Addition of Ga to an R-M-B magnet having a high C and high O 2 amount of 4000 ppm improves iHc and is effective in improving magnetic characteristics.

【0007】[0007]

【表1】 [Table 1]

【0008】次に、実施例1、比較例1〜3の試料の耐
蝕性評価結果を表2に示す。耐蝕性の評価はプレッシャ
ークッカーテスト法(120℃×2気圧×100%相対
湿度)にて行った。表中○印は各時間での耐久性有、×
印は耐久性無を示す。表2よりC量、O2量が高くGa
が添加された実施例1のみが500Hr以上の耐久性を
示した。比較例3のようにGaを添加してもC量、O2
量の低いものは耐蝕性は100時間と短い。従って磁気
特性面、耐蝕性の両面から考えるとC、O2量の高い場
合にGaの効果が著しいことを見い出した。
Next, Table 2 shows the corrosion resistance evaluation results of the samples of Example 1 and Comparative Examples 1 to 3. The corrosion resistance was evaluated by the pressure cooker test method (120 ° C. × 2 atm × 100% relative humidity). In the table, ○ indicates durability at each time, ×
The mark indicates no durability. From Table 2, the amounts of C and O 2 are high and Ga
Only Example 1 in which was added exhibited a durability of 500 Hr or more. Even if Ga is added as in Comparative Example 3, the amount of C, O 2
Corrosion resistance of a low amount is as short as 100 hours. Therefore, from the viewpoints of both magnetic properties and corrosion resistance, it was found that the effect of Ga is remarkable when the amounts of C and O 2 are high.

【0009】[0009]

【表2】 [Table 2]

【0010】(実施例2,比較例4)同一重量%のR合
金を表3に示すように、実施例2と比較例4の組成にな
るように秤量し、各々別々のインゴットを作成し、実施
例1と同様の方法で粉砕を行い、表3に示すような最終
組成になるように合金Aと合金Bとを混合し、実施例1
と同様の方法で成形、焼結、熱処理を施し、iHcを測
定した。実施例2のiHcは17.0KOe、比較例4
のiHcは14.8KOeであった。
(Example 2, Comparative Example 4) As shown in Table 3, R alloys having the same weight% were weighed so as to have the compositions of Example 2 and Comparative Example 4, respectively, and separate ingots were prepared. Grinding was carried out in the same manner as in Example 1, and alloy A and alloy B were mixed so that the final composition shown in Table 3 was obtained.
IHc was measured by performing molding, sintering, and heat treatment in the same manner as in. IHc of Example 2 was 17.0 KOe, and Comparative Example 4
Had an iHc of 14.8 KOe.

【0011】[0011]

【表3】 表3よりわかるようC量、O2量の高い同一重量%のR
合金を混合してブレンド後の組成のC量、O2量の高い
合金を作成する混合法において、GaはDy、Al、N
bなどのいわゆるiHc向上させる元素を有する合金に
入れることが磁気特性の向上につながることが分かる。
実施例1と実施例2を対比するとシングル法で製造した
実施例1より同一重量%のR合金をブレンドした実施例
2は磁気特性の改善が見られる。
[Table 3] As can be seen from Table 3, R of the same weight% with high C content and O 2 content
In a mixing method of mixing alloys to form an alloy having a high C content and a high O 2 content in the composition after blending, Ga is Dy, Al, N
It can be seen that inclusion in an alloy having a so-called iHc improving element such as b leads to improvement in magnetic characteristics.
When Example 1 and Example 2 are compared, Example 2 produced by the single method has the same improvement in magnetic characteristics as Example 2 in which the same weight% of the R alloy is blended.

【0012】実施例2のEPMAの線分析結果を図1に
示す。Ga,C,O2がRリッチ相に偏析しており、R
リッチ相でR−Ga−C−O2の複合組織を得ることが
特性改善につながるものと考えられる。
The EPMA line analysis results of Example 2 are shown in FIG. Ga, C, and O 2 are segregated in the R-rich phase,
It is considered that obtaining a composite structure of R—Ga—C—O 2 in the rich phase will lead to improved characteristics.

【0013】(実施例3,4,5、比較例5,6,7,
8)低R合金と高R合金を表4、表5に示すように実施
例3,4と比較例5,6の組成になる様に秤量し、各々
別々のインゴットを作成し、実施例1と同様の方法で粉
砕を行い、表4、表5に示す最終組成になるように低R
合金と高R合金を混合し、実施例1と同様の方法で成
形、焼結、熱処理し、磁気特性(iHc)を測定した。
混合後の最終組成のR量は同じであるが、実施例3,4
と比較例5,6の高R合金のR量は実施例2より高い。
実施例3と4は高R合金にGaが入っており、実施例3
は低R合金と高R合金のC量、O2量が高いのに対し、
実施例4は低R合金のC量、O2量が低く、高R合金の
C量、O2量が高い。一方、比較例5は低R合金にGa
が入っており、高R合金及び低R合金共C量、O2量が
高く、比較例6は低R合金、高R合金共にGaが入って
なく、C量、O2量は両者共高い。実施例3,4、比較
例5,6の各々のiHcの測定結果は、実施例3は1
7.1KOe、実施例4は18.2KOe、比較例5は
15.5KOe、比較例6は14.8KOeであった。
実施例3と比較例5,6を比較するとブレンド後のC
量、O2量が同等レベルで高い場合Ga添加はiHc向
上に有効であるが、特にGaの添加結果は高R合金に入
る場合に磁気特性の向上に対して著しく有効であること
がわかる。実施例4では、特に低R合金のC量、O2
が高R合金より低い場合、高R合金のCやO2量が高く
てもGaが高R合金中に入ることでiHcのレベルは実
施例3に比べ更に向上する。即ち、Gaの効果は低R合
金と高R合金とを組み合せたブレンド法の場合において
特に高R合金のCやO2量の高い場合その効果を発揮す
ることが認められた。
(Examples 3, 4, 5, Comparative Examples 5, 6, 7,
8) As shown in Tables 4 and 5, the low R alloy and the high R alloy were weighed so as to have the compositions of Examples 3 and 4 and Comparative Examples 5 and 6, respectively, and separate ingots were prepared. Pulverization is performed in the same manner as in (1), and low R is obtained so that the final composition shown in Tables 4 and 5 is obtained.
The alloy and the high R alloy were mixed, molded, sintered and heat-treated in the same manner as in Example 1, and the magnetic characteristics (iHc) were measured.
The R content of the final composition after mixing is the same, but in Examples 3, 4
The R content of the high R alloys of Comparative Examples 5 and 6 is higher than that of Example 2.
In Examples 3 and 4, Ga is contained in the high R alloy.
Is low R alloy and high R alloy has high C content and O 2 content,
C of Example 4 low R alloys, O 2 amount is low, C of the high R alloys, O 2 amount is high. On the other hand, Comparative Example 5 uses Ga as a low R alloy.
Is included in both the high R alloy and the low R alloy, and the amounts of C and O 2 are high. In Comparative Example 6, both the low R alloy and the high R alloy do not contain Ga, and the amounts of C and O 2 are both high. . The measurement result of iHc in each of Examples 3 and 4 and Comparative Examples 5 and 6 is 1 in Example 3.
7.1 KOe, Example 4 was 18.2 KOe, Comparative Example 5 was 15.5 KOe, and Comparative Example 6 was 14.8 KOe.
Comparing Example 3 with Comparative Examples 5 and 6, C after blending
It can be seen that Ga addition is effective for improving iHc when the amounts of O 2 and O 2 are high at the same level, but the result of Ga addition is particularly effective for improving magnetic properties when entering a high R alloy. In Example 4, in particular C of the low R alloys, if the amount of O 2 is less than the high R alloys, the high R alloys C and the amount of O 2 is high iHc by Ga enters in the high R alloys in the level of Is further improved as compared with the third embodiment. That is, it was confirmed that the effect of Ga is exerted particularly in the case of the blending method in which the low R alloy and the high R alloy are combined, especially when the amount of C or O 2 in the high R alloy is high.

【0014】[0014]

【表4】 [Table 4]

【0015】[0015]

【表5】 [Table 5]

【0016】次に実施例3,4,5と比較例5,6の試
料を比較例7,8と共に耐蝕性評価を行った。耐蝕性は
プレッシャークッカーテスト法(120℃×2×100
%相対湿度)で評価した。実施例5と比較例7,8は実
施例3,4と同様の方法で作製した。組成を表4、表5
に示す。実施例5と比較例7,8は低R合金にも高R合
金にもGaは入っていない。実施例5は低R合金のC,
2量は低く、高R合金のC,O2量が高い。比較例7は
低R合金も高R合金もC,O2量は低く、また比較例8
は低R合金のC,O2量は高く、高R合金のC,O2量は
低い。結果を表6に示す。表6において○印は耐久性
有、×印は耐久性無を示す。
Next, the samples of Examples 3, 4, 5 and Comparative Examples 5, 6 were evaluated for corrosion resistance together with Comparative Examples 7, 8. Corrosion resistance is pressure cooker test method (120 ℃ × 2 × 100
% Relative humidity). Example 5 and Comparative Examples 7 and 8 were manufactured in the same manner as in Examples 3 and 4. The composition is shown in Tables 4 and 5
Shown in In Example 5 and Comparative Examples 7 and 8, Ga is not contained in the low R alloy or the high R alloy. Example 5 is a low R alloy C,
The amount of O 2 is low, and the amount of C and O 2 in the high R alloy is high. In Comparative Example 7, both the low R alloy and the high R alloy have low amounts of C and O 2 , and Comparative Example 8
The low R alloys C, O 2 amount is high, the high R alloys C, O 2 amount is low. The results are shown in Table 6. In Table 6, ◯ indicates durability and x indicates no durability.

【0017】[0017]

【表6】 [Table 6]

【0018】以上の結果より、ブレンド後のC量、O2
量によらずGaは高R合金のC,O2量の高い場合に高
R合金に添加することで飛躍的な耐蝕性改善が図れるこ
とを見出した。またこれ等一連の試験結果より、実施例
5と比較例7,8を対比するとGaの添加がない場合で
もブレンド後のC量、O2量によらず、高R合金のC,
2量が、低R合金のC,O2量より高い場合に良い耐蝕
性を示すことが合せて見出された。
From the above results, the C content after blending and O 2
It has been found that, regardless of the amount, Ga can be dramatically improved in corrosion resistance by adding Ga to a high R alloy when the amount of C and O 2 in the high R alloy is high. Further than this, such as a series of test results, C amount after the blend even in the absence of addition of Ga from a comparison Comparative Examples 7 and 8 Example 5, regardless of the amount of O 2, the high R alloys C,
O 2 amount, the low R alloys C, and to exhibit good corrosion resistance is higher than the amount of O 2 was found together.

【0019】[0019]

【発明の効果】本発明によればRリッチ相にGaが入る
ことでC,O2量による磁気特性の低下を抑えたR−M
−B磁石を得ることができ、特にC及びO2量の多い場
合に、従来にない効果をもたらすものである。また、G
a無添加の場合でも高R合金と低R合金とを組合わせた
場合に高R合金のC量、O2量が低R合金のC量、O2
より高くすることによりブレンド後のC量、O2量によ
らず耐蝕性を向上させることができる。また、Gaを必
須とした高R合金のC及びO2量を低R合金のそれらよ
り高くし、混合することによりブレンド後のC量、O2
量によらずiHcを向上させることができ産業上その利
用価値は極めて高い。
EFFECTS OF THE INVENTION According to the present invention, R-M which suppresses the deterioration of magnetic characteristics due to the amount of C and O 2 by introducing Ga into the R-rich phase.
It is possible to obtain a -B magnet, which brings about an effect that has not been obtained in the past, especially when the amounts of C and O 2 are large. Also, G
C amount when even high R alloys and the low R alloys and the high R alloy when combined in a non-additive, the amount of C O 2 amount low R alloy, after blending by higher than the amount of O 2 C The corrosion resistance can be improved regardless of the amount and the amount of O 2 . Further, by increasing the C and O 2 amounts of Ga-essential high R alloys than those of the low R alloys and mixing, the C content and O 2 after blending
IHc can be improved regardless of the amount, and its utility value is extremely high in industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例2のEPMA線分析結果。FIG. 1 is an EPMA line analysis result of Example 2.

【符号の説明】[Explanation of symbols]

なし None

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 重量百分比で0.02%≦C≦0.2
%,O2≧4000ppmを有するR−M−B磁石(RはY
を含む希土類元素の少なくとも一種以上、MはFeまた
はFeとCo)において、Gaを0.02%〜1.5%
を含有することを特徴とするR−M−B磁石。
1. A weight percentage of 0.02% ≦ C ≦ 0.2.
%, O 2 ≧ 4000 ppm R-M-B magnet (R is Y
0.02% to 1.5% of Ga in at least one or more rare earth elements including M, Fe or Fe and Co)
An R-M-B magnet containing:
【請求項2】 重量百分比で0.02%≦C≦0.2
%,O2≧4000ppmを有するR−M−B磁石(RはY
を含む希土類元素の少なくとも一種以上、MはFeまた
はFeとCo)において、Ga、C及びO2がRリッチ
相及びその周辺に偏析していることを特徴とするR−M
−B磁石。
2. A weight percentage of 0.02% ≦ C ≦ 0.2.
%, O 2 ≧ 4000 ppm R-M-B magnet (R is Y
In at least one or more rare earth elements including M, Fe is Fe or Fe and Co), and Ga, C, and O 2 are segregated in the R-rich phase and its periphery.
-B magnet.
【請求項3】 重量百分比で0.02%≦C≦0.2
%,O2≧4000ppmを有するR−M−B磁石(RはY
を含む希土類元素の少なくとも一種以上、MはFeまた
はFeとCo)において、Ga、C及びO2と重希土類
元素及びV,Ti,Mo,W,Al,Nbから選ばれた
一種以上の元素がRリッチ相及びその周辺に偏析してい
ることを特徴とするR−M−B磁石。
3. A weight percentage of 0.02% ≦ C ≦ 0.2.
%, O 2 ≧ 4000 ppm R-M-B magnet (R is Y
At least one or more rare earth elements including M, Fe is Fe or Fe and Co), and Ga, C and O 2 and one or more elements selected from heavy rare earth elements and V, Ti, Mo, W, Al and Nb. An R-M-B magnet characterized by being segregated in the R-rich phase and its surroundings.
【請求項4】 総希土類元素の重量比が大略同一(±1
%)の合金粉末を混合して所定重量比の総希土類元素を
有するR−M−B磁石(RはYを含む希土類元素の少な
くとも一種以上、MはFeまたはFeとCo)の製造方
法において、一方の合金粉末にGaを必須とし、Al、
Ti、Nb、Moの内の1種以上を含有することを特徴
とするR−M−B磁石の製造方法。
4. The weight ratio of the total rare earth elements is approximately the same (± 1
%) Alloy powder to have a predetermined weight ratio of total rare earth elements (R is at least one or more rare earth elements including Y, M is Fe or Fe and Co). Ga is essential for one alloy powder, Al,
A method for manufacturing an R-M-B magnet, which comprises one or more of Ti, Nb, and Mo.
【請求項5】 請求項4の方法で製造されるR−M−B
磁石。
5. The R-M-B produced by the method of claim 4.
magnet.
【請求項6】 総希土類元素の重量比が大略同一(±1
%)の合金粉末を混合して所定重量比の総希土類元素を
有するR−M−B磁石(RはYを含む希土類元素の少な
くとも一種以上、MはFeまたはFeとCo)の製造方
法において、一方の合金粉末にGa、Al、Ti、N
b、Moの内の1種以上を含有することを特徴とするR
−M−B磁石の製造方法。
6. The weight ratio of the total rare earth elements is approximately the same (± 1
%) Alloy powder to have a predetermined weight ratio of total rare earth elements (R is at least one or more rare earth elements including Y, M is Fe or Fe and Co). Ga, Al, Ti, N in one alloy powder
b, R containing at least one of Mo
-M-B magnet manufacturing method.
【請求項7】 請求項6の方法で製造されるR−M−B
磁石。
7. An R-M-B produced by the method of claim 6.
magnet.
【請求項8】 総希土類元素の重量比の低い合金粉末と
総希土類元素の重量比の高い合金粉末とを混合して所定
の重量比の総希土類元素を有するR−M−B磁石(Rは
Yを含む希土類元素の少なくとも一種以上、MはFeま
たはFeとCo)の製造方法において、総希土類元素の
重量比の高い合金粉末のC量及びO2量が総希土類元素
の重量比の低い合金粉末のそれ等より高いことを特徴と
するR−M−B磁石の製造方法。
8. An R—M—B magnet having a predetermined weight ratio of total rare earth elements (R is a mixture of alloy powder having a low weight ratio of total rare earth elements and alloy powder having a high weight ratio of total rare earth elements). In the method for producing at least one or more rare earth elements including Y, M is Fe or Fe and Co), the alloy powder having a low weight ratio of the total rare earth elements in the C content and the O 2 content of the alloy powder having a high weight ratio of the total rare earth elements. A method for producing an R-M-B magnet, which is higher than those of powder.
【請求項9】 請求項8の方法で製造されるR−M−B
磁石。
9. An R-M-B produced by the method of claim 8.
magnet.
【請求項10】 請求項8の製造方法において総希土類
元素の重量比の高い合金粉末にGaを必須とするR−M
−B磁石。
10. The RM in which Ga is essential in an alloy powder having a high weight ratio of total rare earth elements in the manufacturing method according to claim 8.
-B magnet.
【請求項11】 請求項10の方法で製造されるR−M
−B磁石。
11. An RM produced by the method of claim 10.
-B magnet.
JP7093605A 1995-04-19 1995-04-19 Rare-earth permanent magnet and its manufacture Pending JPH08288112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7093605A JPH08288112A (en) 1995-04-19 1995-04-19 Rare-earth permanent magnet and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7093605A JPH08288112A (en) 1995-04-19 1995-04-19 Rare-earth permanent magnet and its manufacture

Publications (1)

Publication Number Publication Date
JPH08288112A true JPH08288112A (en) 1996-11-01

Family

ID=14086968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7093605A Pending JPH08288112A (en) 1995-04-19 1995-04-19 Rare-earth permanent magnet and its manufacture

Country Status (1)

Country Link
JP (1) JPH08288112A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016853A (en) * 2008-08-08 2009-01-22 Tdk Corp Manufacturing method of rare earth sintered magnet
JP2016143828A (en) * 2015-02-04 2016-08-08 Tdk株式会社 R-t-b-based sintered magnet
JP2018152526A (en) * 2017-03-15 2018-09-27 インターメタリックス株式会社 Method for manufacturing rare earth-iron-boron based sintered magnet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016853A (en) * 2008-08-08 2009-01-22 Tdk Corp Manufacturing method of rare earth sintered magnet
JP4692783B2 (en) * 2008-08-08 2011-06-01 Tdk株式会社 Manufacturing method of rare earth sintered magnet
JP2016143828A (en) * 2015-02-04 2016-08-08 Tdk株式会社 R-t-b-based sintered magnet
US10522276B2 (en) 2015-02-04 2019-12-31 Tdk Corporation R-T-B based sintered magnet
JP2018152526A (en) * 2017-03-15 2018-09-27 インターメタリックス株式会社 Method for manufacturing rare earth-iron-boron based sintered magnet

Similar Documents

Publication Publication Date Title
EP1860668B1 (en) R-t-b based sintered magnet
US7090730B2 (en) R-Fe-B sintered magnet
EP0175214B2 (en) Permanent magnetic alloy and method of manufacturing the same
US7618497B2 (en) R-T-B based rare earth permanent magnet and method for production thereof
EP1365422B1 (en) Method for preparation of permanent magnet
JPS61222102A (en) Rare earth iron group permanent magnet
JP2003031409A5 (en)
JP2003031409A (en) Sintered rare-earth magnet having superior corrosion resistance
EP0237416B1 (en) A rare earth-based permanent magnet
EP0216254B1 (en) Permanent magnet
JPH0696928A (en) Rare-earth sintered magnet and its manufacture
EP1271568A2 (en) Rare earth permanent magnet
JPH08288112A (en) Rare-earth permanent magnet and its manufacture
JPH09232121A (en) R-m-b magnet
JPH04155902A (en) Permanent magnet and manufacture thereof
JP3298220B2 (en) Rare earth-Fe-Nb-Ga-Al-B sintered magnet
JP3247460B2 (en) Production method of raw material powder for rare earth magnet
JPS6318603A (en) Permanent magnet
JPH0815123B2 (en) permanent magnet
JPS6260207A (en) Permanent magnet
JP2577373B2 (en) Sintered permanent magnet
JP2886384B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JPH05205927A (en) Rare earth element transition metal base permanent magnet and manufacturing method thereof
JP2825449B2 (en) Manufacturing method of permanent magnet
JP3298221B2 (en) Rare earth-Fe-V-Ga-Al-B sintered magnet