JP4692783B2 - Manufacturing method of rare earth sintered magnet - Google Patents

Manufacturing method of rare earth sintered magnet Download PDF

Info

Publication number
JP4692783B2
JP4692783B2 JP2008205638A JP2008205638A JP4692783B2 JP 4692783 B2 JP4692783 B2 JP 4692783B2 JP 2008205638 A JP2008205638 A JP 2008205638A JP 2008205638 A JP2008205638 A JP 2008205638A JP 4692783 B2 JP4692783 B2 JP 4692783B2
Authority
JP
Japan
Prior art keywords
oxygen
raw material
rich
sintered magnet
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008205638A
Other languages
Japanese (ja)
Other versions
JP2009016853A (en
Inventor
徹也 日高
宏成 岡田
一也 坂元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2008205638A priority Critical patent/JP4692783B2/en
Publication of JP2009016853A publication Critical patent/JP2009016853A/en
Application granted granted Critical
Publication of JP4692783B2 publication Critical patent/JP4692783B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

本発明は、NdFe14B系磁石などの希土類焼結磁石を製造する方法に関する。 The present invention relates to a method for producing a rare earth sintered magnet such as an Nd 2 Fe 14 B-based magnet.

高性能を有する希土類磁石としては、例えば特許第1431617号公報に記載されているNdFe14B系磁石が知られている。 As a rare earth magnet having high performance, for example, an Nd 2 Fe 14 B-based magnet described in Japanese Patent No. 1431617 is known.

NdFe14B系磁石の残留磁束密度を向上させるためには、磁石の酸素含有量を少なくすることが有効である。しかし、NdFe14B系焼結磁石において酸素含有量を極端に少なくすると、焼結時に異常粒成長が生じて保磁力および角形性が低くなってしまい、総合的な磁石特性が良好とはならないという問題がある。また、SmCo系組成をもつ希土類焼結磁石においても、やはり酸素量低減に伴い、焼結時に異常粒成長が生じるという問題がある。 In order to improve the residual magnetic flux density of the Nd 2 Fe 14 B-based magnet, it is effective to reduce the oxygen content of the magnet. However, if the oxygen content is extremely reduced in the Nd 2 Fe 14 B-based sintered magnet, abnormal grain growth occurs during sintering, and the coercive force and squareness become low, and the overall magnet characteristics are good. There is a problem of not becoming. In addition, the rare-earth sintered magnet having the SmCo 5 system composition also has a problem that abnormal grain growth occurs during sintering as the oxygen amount is reduced.

希土類焼結磁石の保磁力向上を図るために、特公平4−26525号公報では、希土類酸化物が焼結体の結晶粒径を抑制するとして、Nd、FeおよびBからなる合金に希土類酸化物を混合して粉砕し、磁場中配向、成形および焼結して永久磁石を製造することを提案している。しかし、希土類酸化物は高価であるため、磁石のコストアップを招く。また、希土類酸化物粉末は、合金粉末と密度、粒径等が異なり、かつ合金粉末に対する添加量が少ないため、混合時に均一に分散することが難しく、混合に長時間を要したり、複雑で高価な混合装置を使用する必要がある。   In order to improve the coercive force of a rare earth sintered magnet, Japanese Patent Publication No. 4-26525 discloses that a rare earth oxide is added to an alloy composed of Nd, Fe and B, assuming that the rare earth oxide suppresses the crystal grain size of the sintered body. It is proposed to produce a permanent magnet by mixing, pulverizing, orienting, molding and sintering in a magnetic field. However, since the rare earth oxide is expensive, the cost of the magnet is increased. In addition, rare earth oxide powder is different from alloy powder in density, particle size, etc., and the amount added to the alloy powder is small, so it is difficult to disperse uniformly during mixing, and it takes a long time for mixing or is complicated. It is necessary to use expensive mixing equipment.

また、特公平7−107882号公報では、磁石中の酸素含有量を質量比で3000ppm以上となるように制御することにより、保磁力を向上させている。   In Japanese Patent Publication No. 7-107882, the coercive force is improved by controlling the oxygen content in the magnet so that the mass ratio is 3000 ppm or more.

特許第1431617号公報Japanese Patent No. 1431617 特公平4−26525号公報Japanese Patent Publication No. 4-26525 特公平7−107882号公報Japanese Patent Publication No. 7-107882

本発明の発明者らは、高価な希土類酸化物を使用することなく、希土類焼結磁石中の酸素含有量を制御することによって、残留磁束密度が高くかつ保磁力が高い希土類焼結磁石を製造する実験を行った。希土類焼結磁石は、一般に、原料合金を粗粉砕した後、微粉砕し、次いで、成形および焼結を行って製造される。発明者らは、粉砕時の雰囲気中の酸素濃度を制御することにより、焼結磁石中の酸素含有量を制御して、残留磁束密度および保磁力のいずれもが良好な焼結磁石を得ようとする実験を行った。   The inventors of the present invention produce a rare earth sintered magnet having a high residual magnetic flux density and a high coercive force by controlling the oxygen content in the rare earth sintered magnet without using an expensive rare earth oxide. An experiment was conducted. Generally, a rare earth sintered magnet is manufactured by coarsely pulverizing a raw material alloy, then finely pulverizing, and then performing molding and sintering. The inventors control the oxygen content in the sintered magnet by controlling the oxygen concentration in the atmosphere during pulverization to obtain a sintered magnet with good residual magnetic flux density and coercive force. An experiment was conducted.

その結果、粉砕時に雰囲気中の酸素を極力排除することにより、焼結磁石の酸素含有量を500ppm未満とでき、その結果、残留磁束密度が高めで保磁力が低めの焼結磁石を得ることができた。ただし、この場合、製造条件の幅が著しく狭くなり、再現性に乏しかった。一方、粉砕時に雰囲気中の酸素をある程度残すことにより、焼結磁石の酸素含有量を4000ppm程度とでき、その結果、保磁力が高く、角形比の高い焼結磁石を得ることができた。   As a result, by eliminating oxygen in the atmosphere as much as possible during pulverization, the oxygen content of the sintered magnet can be less than 500 ppm, and as a result, a sintered magnet having a high residual magnetic flux density and a low coercive force can be obtained. did it. However, in this case, the range of manufacturing conditions became extremely narrow, and reproducibility was poor. On the other hand, by leaving a certain amount of oxygen in the atmosphere at the time of pulverization, the oxygen content of the sintered magnet could be about 4000 ppm. As a result, a sintered magnet having a high coercive force and a high squareness ratio could be obtained.

しかし、残留磁束密度および保磁力を共に向上させようとして、粉砕雰囲気中の酸素濃度を様々に変更して焼結磁石を作製したところ、残留磁束密度および保磁力が共に高くなるように磁石中の酸素含有量を制御することが、極めて困難であることがわかった。具体的には、粉砕雰囲気中の酸素濃度と粉砕粉の酸素含有量との関係が線形的とはならず、たとえば雰囲気中の酸素濃度を低くしていった場合には、特定の酸素濃度より低くなったときに粉砕粉の酸素含有量が急激に少なくなり、逆に、雰囲気中の酸素濃度を高くしていった場合には、特定の酸素濃度より高くなったときに粉砕粉の酸素含有量が急激に多くなる傾向が認められた。しかも、前記特定の酸素濃度は、粉砕粉の粒度や粉砕時の処理量などに依存して変動したため、再現性が低いこともわかった。   However, in order to improve both the residual magnetic flux density and the coercive force, a sintered magnet was produced by changing the oxygen concentration in the grinding atmosphere in various ways. It has proved extremely difficult to control the oxygen content. Specifically, the relationship between the oxygen concentration in the pulverizing atmosphere and the oxygen content of the pulverized powder is not linear. For example, when the oxygen concentration in the atmosphere is lowered, When the oxygen content of the pulverized powder suddenly decreases when it becomes low, and when the oxygen concentration in the atmosphere is increased, the oxygen content of the pulverized powder becomes higher when the oxygen concentration becomes higher than the specified oxygen concentration. A tendency for the amount to increase rapidly was observed. In addition, the specific oxygen concentration varied depending on the particle size of the pulverized powder, the processing amount at the time of pulverization, and so on.

本発明は、残留磁束密度および保磁力が共に高いNdFe14B系焼結磁石を、安定して容易に製造することを目的とする。 An object of the present invention is to stably and easily manufacture an Nd 2 Fe 14 B-based sintered magnet having a high residual magnetic flux density and a high coercive force.

このような目的は、下記(1)〜(9)の本発明により達成される。
(1) R(Rは、希土類元素の少なくとも1種)、FeおよびBを含有する原料合金を鋳造法または急冷法により製造する原料合金製造工程と、原料合金を1段階または多段階で粉砕して原料粉末を得る粉砕工程と、原料粉末を成形して成形体を得る成形工程と、成形体を焼結してR:28〜32質量%、B:0.8〜1.2質量%、残部:Feからなる焼結磁石を得る焼結工程とを有し、
原料合金を粉砕して得られた粉砕粉を原料と呼んだとき、
酸素含有量が相対的に多くなるように製造され、酸素含有量が1200〜5000ppm(質量比)の原料である酸素リッチ原料の少なくとも1種と、
酸素含有量が相対的に少なくなるように製造され、酸素含有量が300〜1000ppm(質量比)であり、かつ酸素リッチ原料より酸素含有量が1000ppm(質量比)以上少なく、さらに酸素含有量を除いた組成が酸素リッチ原料と異なる原料である酸素プア原料の少なくとも1種とを、成形工程の前に混合する希土類焼結磁石の製造方法。
(2) 酸素リッチ原料と酸素プア原料との合計に対する酸素リッチ原料の比率が10質量%以上90質量%未満である上記(1)の希土類焼結磁石の製造方法。
(3) 酸素リッチ原料と酸素プア原料との合計に対する酸素リッチ原料の比率が10〜60質量%である上記(1)または(2)の希土類焼結磁石の製造方法。
(4) 酸素リッチ原料および酸素プア原料の少なくとも一方が、酸素含有量の相異なる2種以上の原料から構成され、その2種以上の原料間における酸素含有量の差の最大値が、酸素リッチ原料を構成する原料と酸素プア原料を構成する原料との間の酸素含有量の差の最小値よりも小さい上記(1)〜(3)のいずれかの希土類焼結磁石の製造方法。
(5) 酸素含有量(質量比)が500〜4500ppmである焼結磁石が製造される上記(1)〜(4)のいずれかの希土類焼結磁石の製造方法。
(6) 酸素リッチ原料と酸素プア原料との間の酸素含有量の相違が、これら両原料の製造工程の少なくとも一部において、雰囲気中の酸素濃度を相異なるものとすることにより実現されたものである上記(1)〜(5)のいずれかの希土類焼結磁石の製造方法。
(7) 酸素リッチ原料は、製造工程の少なくとも一部において、酸化性気体または水分を含む孔部を有する多孔性物質との接触または前記多孔性物質の近傍に配置されることにより、酸素含有量が制御されたものである上記(1)〜(6)のいずれかの希土類焼結磁石の製造方法。
(8) 粉砕工程において原料合金が多段階で粉砕され、
少なくとも1段階の粉砕を行った後に、酸素リッチ原料と酸素プア原料とを混合する上記(1)〜(7)のいずれかの希土類焼結磁石の製造方法。
(9) 粉砕工程において原料合金が多段階で粉砕され、
多段階の粉砕の最終段階終了後に、酸素リッチ原料と酸素プア原料とを混合する上記(1)〜(7)のいずれかの希土類焼結磁石の製造方法。
Such an object is achieved by the present inventions (1) to (9) below.
(1) A raw material alloy manufacturing process for manufacturing a raw material alloy containing R (R is at least one rare earth element), Fe and B by a casting method or a rapid cooling method, and pulverizing the raw material alloy in one or more stages Pulverizing step for obtaining raw material powder, molding step for forming raw material powder to obtain a molded body, sintering the molded body, R: 28 to 32% by mass, B: 0.8 to 1.2% by mass, Balance: having a sintering step of obtaining a sintered magnet made of Fe,
When the pulverized powder obtained by pulverizing the raw material alloy is called the raw material,
Manufactured with a relatively high oxygen content, and at least one oxygen-rich raw material that is a raw material having an oxygen content of 1200 to 5000 ppm (mass ratio);
Manufactured so that the oxygen content is relatively low, the oxygen content is 300 to 1000 ppm (mass ratio), the oxygen content is less than 1000 ppm (mass ratio) than the oxygen-rich raw material, and the oxygen content is further reduced A method for producing a rare earth sintered magnet, wherein at least one oxygen poor raw material that is different from an oxygen-rich raw material in composition removed is mixed before the forming step.
(2) The method for producing a rare earth sintered magnet according to (1), wherein the ratio of the oxygen-rich material to the total of the oxygen-rich material and the oxygen poor material is 10% by mass or more and less than 90% by mass.
(3) The method for producing a rare earth sintered magnet according to (1) or (2), wherein the ratio of the oxygen-rich material to the total of the oxygen-rich material and the oxygen poor material is 10 to 60% by mass.
(4) At least one of the oxygen-rich raw material and the oxygen poor raw material is composed of two or more kinds of raw materials having different oxygen contents, and the maximum value of the difference in oxygen content between the two or more kinds of raw materials is oxygen rich. The method for producing a rare earth sintered magnet according to any one of the above (1) to (3), which is smaller than the minimum value of the difference in oxygen content between the raw material constituting the raw material and the raw material constituting the oxygen poor raw material.
(5) The method for producing a rare earth sintered magnet according to any one of (1) to (4) above, wherein a sintered magnet having an oxygen content (mass ratio) of 500 to 4500 ppm is produced.
(6) The difference in oxygen content between the oxygen-rich raw material and the oxygen poor raw material is realized by making the oxygen concentration in the atmosphere different in at least a part of the manufacturing process of both raw materials. The method for producing a rare earth sintered magnet according to any one of (1) to (5) above.
(7) The oxygen-rich raw material is placed in contact with or in the vicinity of the porous material having pores containing an oxidizing gas or moisture in at least a part of the production process. The method for producing a rare earth sintered magnet according to any one of the above (1) to (6), wherein is controlled.
(8) The raw material alloy is pulverized in multiple stages in the pulverization process,
The method for producing a rare earth sintered magnet according to any one of (1) to (7), wherein the oxygen-rich raw material and the oxygen poor raw material are mixed after at least one stage of pulverization.
(9) The raw material alloy is pulverized in multiple stages in the pulverization process,
The method for producing a rare earth sintered magnet according to any one of the above (1) to (7), wherein the oxygen-rich raw material and the oxygen poor raw material are mixed after the final stage of the multistage grinding.

残留磁束密度および保磁力が共に高い希土類焼結磁石を得ようとする場合、前述したように磁石の酸素含有量が特定の範囲内となるように制御することが有効である。しかし、前述したように、残留磁束密度および保磁力の一方だけが高くなる酸素含有量とすることは容易であるが、両者が共に高くなる酸素含有量を安定して実現することは困難である。   When obtaining a rare earth sintered magnet having both a high residual magnetic flux density and a high coercive force, it is effective to control the oxygen content of the magnet within a specific range as described above. However, as described above, it is easy to achieve an oxygen content in which only one of the residual magnetic flux density and the coercive force is high, but it is difficult to stably realize an oxygen content in which both are high. .

そこで本発明では、希土類焼結磁石を製造するに際し、酸素含有量が多くなるように製造された酸素リッチ原料と、酸素含有量が少なくなるように製造された酸素プア原料とを混合して用いる。本明細書において原料とは、急冷法や鋳造法により製造された原料合金を粉砕して得られた粉砕粉である。   Therefore, in the present invention, when manufacturing a rare earth sintered magnet, an oxygen-rich raw material manufactured to increase the oxygen content and an oxygen poor raw material manufactured to reduce the oxygen content are mixed and used. . In this specification, the raw material is a pulverized powder obtained by pulverizing a raw material alloy produced by a rapid cooling method or a casting method.

前述したように、酸素プア原料は、酸素を極力排除した雰囲気を用いることにより容易に製造でき、酸素リッチ原料は、雰囲気中に酸素をある程度残留させることにより容易に製造できる。そして、焼結磁石の酸素含有量は、酸素プア原料と酸素リッチ原料との混合比を制御することにより、正確に制御できる。したがって本発明では、残留磁束密度および保磁力が共に高い希土類焼結磁石を、容易にかつ再現性よく製造することができる。しかも本発明では、均一な分散が困難で、かつ高価でもある希土類酸化物を使う必要がないため、安定して高性能が得られる希土類焼結磁石を低コストで製造できる。   As described above, the oxygen poor raw material can be easily manufactured by using an atmosphere in which oxygen is excluded as much as possible, and the oxygen rich raw material can be easily manufactured by leaving oxygen to some extent in the atmosphere. The oxygen content of the sintered magnet can be accurately controlled by controlling the mixing ratio of the oxygen poor raw material and the oxygen rich raw material. Therefore, in the present invention, a rare earth sintered magnet having a high residual magnetic flux density and a high coercive force can be manufactured easily and with good reproducibility. Moreover, in the present invention, it is not necessary to use a rare earth oxide that is difficult to disperse uniformly and is expensive, and thus a rare earth sintered magnet that can stably obtain high performance can be manufactured at a low cost.

さらに、本発明の製造方法を用いることにより、角形比の高い磁石が得られることがわかった。すなわち、従来の方法により単一の原料を用いて製造した焼結磁石と本発明により製造した焼結磁石とを比較したとき、酸素含有量が同等であっても本発明により製造した焼結磁石のほうが角形比が高くなる。   Furthermore, it has been found that a magnet having a high squareness ratio can be obtained by using the manufacturing method of the present invention. That is, when a sintered magnet manufactured using a single raw material by a conventional method is compared with a sintered magnet manufactured according to the present invention, a sintered magnet manufactured according to the present invention even if the oxygen content is equivalent. The squareness ratio is higher.

なお、本明細書において、角形比とはHk/HcJを意味する。Hk/HcJにおけるHkは、磁気ヒステリシスループの第2象限において磁束密度が残留磁束密度の90%になるときの外部磁界強度である。Hkが低いと高い最大エネルギー積が得られない。Hk/HcJは、磁石性能の指標となるものであり、磁気ヒステリシスループの第2象限における角張りの度合いを表わす。HcJが同等であってもHk/HcJが大きいほど磁石中のミクロ的な保磁力の分布がシャープとなるため、着磁が容易となり、かつ着磁ばらつきも少なくなり、また、最大エネルギー積が高くなる。そして、磁石使用時の外部からの減磁界や自己減磁界の変化に対する磁化の安定性が良好となり、磁石を含む磁気回路の性能が安定したものとなる。   In this specification, the squareness ratio means Hk / HcJ. Hk in Hk / HcJ is the external magnetic field strength when the magnetic flux density is 90% of the residual magnetic flux density in the second quadrant of the magnetic hysteresis loop. If Hk is low, a high maximum energy product cannot be obtained. Hk / HcJ serves as an index of magnet performance and represents the degree of angularity in the second quadrant of the magnetic hysteresis loop. Even if HcJ is the same, the larger the Hk / HcJ, the sharper the distribution of the microscopic coercive force in the magnet, so that the magnetization becomes easier and the variation in magnetization is reduced, and the maximum energy product is higher. Become. And the stability of the magnetization with respect to the change of the demagnetizing field or the self-demagnetizing field from the outside when using the magnet becomes good, and the performance of the magnetic circuit including the magnet becomes stable.

本発明は、希土類元素Rとして少なくともNdおよび/またはPrを含有し、さらに、FeおよびBを含有する焼結磁石の製造に好適である。この組成系の磁石は、NdFe14BなどのRFe14B金属間化合物からなる硬質磁性相を有し、Feの一部がCoで置換されうるものである。このうち特に、R含有量の比較的少ない磁石の製造に本発明は適する。磁石中の酸素はR酸化物として存在するものが多いと考えられる。R含有量の比較的少ない磁石は、元素Rの酸化に対するマージンが小さい。すなわち、R含有量が比較的多い場合と同等の酸素含有量であっても、元素Rの酸化率は高くなり、その結果、磁石特性発現のために必要なRが不足し、磁石特性が低くなりやすい。製造が容易な原料粉末は、前述したように酸素含有量が比較的多いため、この原料粉末を単独で用いると、良好な磁石特性を得ることは難しい。 The present invention is suitable for producing a sintered magnet containing at least Nd and / or Pr as the rare earth element R, and further containing Fe and B. The magnet of this composition system has a hard magnetic phase made of an R 2 Fe 14 B intermetallic compound such as Nd 2 Fe 14 B, and a part of Fe can be substituted with Co. Among these, the present invention is particularly suitable for producing a magnet having a relatively small R content. It is considered that oxygen in the magnet is often present as R oxide. A magnet having a relatively small R content has a small margin for the oxidation of the element R. That is, even if the oxygen content is the same as when the R content is relatively high, the oxidation rate of the element R is high, and as a result, the R required for the manifestation of the magnet characteristics is insufficient and the magnet characteristics are low. Prone. Since the raw material powder that is easy to manufacture has a relatively high oxygen content as described above, it is difficult to obtain good magnet characteristics when this raw material powder is used alone.

これに対し本発明では、いずれも製造が容易な酸素リッチ原料および酸素プア原料を用いることで、酸素含有量の比較的少ない焼結磁石を容易に実現できる。R含有量の少ない磁石は残留磁束密度を高くできるため、本発明により、残留磁束密度、保磁力および角形比のいずれもが良好な焼結磁石を容易に実現できる。   In contrast, in the present invention, a sintered magnet having a relatively small oxygen content can be easily realized by using an oxygen-rich material and an oxygen poor material, both of which are easy to manufacture. Since a magnet having a small R content can increase the residual magnetic flux density, a sintered magnet having good residual magnetic flux density, coercive force and squareness ratio can be easily realized by the present invention.

ところで、特許第2571403号公報には、Fe−B−R系(RはNd、Pr、Dy、Ho、Tbの少なくとも1種)磁石用のCa還元粉末40〜95重量%と、上記Fe−B−R系磁石用の鋳塊粉砕粉末5〜60重量%とを混合配合して、R:27〜37重量%、B:0.5〜5重量%、Fe:58〜72.5重量%を有する混合原料粉末中のO含有量を3500ppm以下に調整後、微粉砕、プレス成形、焼結することにより、希土類磁石を製造する方法が記載されている。 Incidentally, in Japanese Patent No. 2571403, Ca-reduced powder for Fe-B-R system (R is at least one of Nd, Pr, Dy, Ho, Tb) magnets, 40 to 95% by weight, and Fe-B -Mixing and blending 5 to 60 wt% of ingot pulverized powder for R magnet, R: 27 to 37 wt%, B: 0.5 to 5 wt%, Fe: 58 to 72.5 wt% It describes a method for producing a rare earth magnet by adjusting the O 2 content in a mixed raw material powder to 3500 ppm or less, followed by pulverization, press molding, and sintering.

この方法で用いるCa還元粉末とは、希土類酸化物のうち少なくとも1種および鉄粉、ならびに、純ボロン粉、フェロボロン粉およびホウ素酸化物のうち少なくとも1種、または、上記構成元素の合金粉または混合酸化物を所要組成に配合した混合粉に、金属CaおよびCaClを混合して、不活性ガス雰囲気中にて還元拡散を行って得られた反応生成物をスラリー化し、水処理したものである。Ca還元粉末は、安価であるが、還元後、還元剤であるCa(還元後はCaO)を除去する工程において水を使用するため、鋳塊粉砕粉末と比較して含有O量が多く、かつ含有O量の変動が大きいことから、得られる焼結磁石の組成に変動を生じやすく、磁石特性にばらつきが生じる。そのため、同公報では、Ca還元粉末と鋳塊粉砕粉末との混合物を微粉砕し、成形して焼結することにより、焼結磁石中のO量を低減している。同公報には、Ca還元粉末のO含有量は2000〜5000ppmが好ましく、鋳塊粉砕中のO含有量は500〜2500ppmが好ましいことが記載されており、含有酸素量は、実施例1において、鋳塊粉砕粉が1100ppm、Ca還元粉が4000ppmであり、実施例2において、鋳塊粉砕粉が1500ppm、Ca還元粉が4300ppmである。 The Ca-reduced powder used in this method is at least one of rare earth oxides and iron powder, and at least one of pure boron powder, ferroboron powder and boron oxide, or alloy powder or mixed of the above constituent elements This is a mixture obtained by mixing metal Ca and CaCl 2 in a mixed powder in which an oxide is blended in a required composition, and performing a reduction diffusion in an inert gas atmosphere to make a slurry and water-treat it. . Although Ca reduced powder is inexpensive, since water is used in the process of removing Ca, which is a reducing agent after reduction (CaO after reduction), the amount of O 2 contained is large compared to the ingot pulverized powder, and since the variation of the content amount of O 2 is large, prone to variations in the composition of the sintered magnet obtained, variation in the magnetic properties. Therefore, in this publication, the amount of O 2 in the sintered magnet is reduced by pulverizing, molding and sintering a mixture of Ca reduced powder and ingot pulverized powder. The same publication describes that the O 2 content of the Ca reduced powder is preferably 2000 to 5000 ppm, and the O 2 content during ingot crushing is preferably 500 to 2500 ppm. The ingot pulverized powder is 1100 ppm and the Ca reduced powder is 4000 ppm. In Example 2, the ingot pulverized powder is 1500 ppm and the Ca reduced powder is 4300 ppm.

酸素含有量の相異なる2種の粉末の混合物を成形して焼結し、希土類焼結磁石を得るという点で、本発明と特許第2571403号公報に記載された発明とは類似する。しかし、同公報では、Ca還元粉と鋳塊粉砕粉とを混合した後、微粉砕している。同公報に記載されたCa還元粉は、一般に球状粒子であり、粉砕後も球状となりやすく、一方、鋳造や急冷法により製造した合金を粉砕すると、一般に不定形の粉砕粉が得られる。そのため、Ca還元粉の粗粉と鋳塊粉砕粉の粗粉とを混合して同時に粉砕した場合、両者を同等の粒度とすることは困難である。そのため、混合粉末中においてCa還元粉の分散が不均一となりやすい。その結果、期待される磁石性能が得られなかったり、磁石性能にばらつきが生じたりしやすくなる。このような問題は、混合粉末中におけるCa還元粉の比率が低い場合に特に生じやすい。また、Ca還元粉は球状であるため、スプリングバックが大きく、成形体の保型性が低くなるという問題もある。また、Ca還元粉は、CaやClなどの不純物を多く含むため、高特性磁石の原料には不向きである。   The present invention is similar to the invention described in Japanese Patent No. 2571403 in that a mixture of two kinds of powders having different oxygen contents is molded and sintered to obtain a rare earth sintered magnet. However, in this publication, the Ca reduced powder and the ingot pulverized powder are mixed and then finely pulverized. The Ca reduced powder described in the publication is generally spherical particles and tends to be spherical after pulverization. On the other hand, when an alloy produced by casting or a rapid cooling method is pulverized, generally irregular pulverized powder is obtained. Therefore, when the coarse powder of Ca reduced powder and the coarse powder of the ingot pulverized powder are mixed and pulverized at the same time, it is difficult to make them both equal particle sizes. Therefore, dispersion of Ca reduced powder tends to be non-uniform in the mixed powder. As a result, the expected magnet performance cannot be obtained or the magnet performance tends to vary. Such a problem is particularly likely to occur when the ratio of Ca reduced powder in the mixed powder is low. Moreover, since Ca reduction | restoration powder is spherical, there exists a problem that a spring back is large and the shape retention of a molded object becomes low. Further, Ca-reduced powder is not suitable as a raw material for high-performance magnets because it contains many impurities such as Ca and Cl.

これに対し本発明では、Ca還元粉ではなく、鋳造や急冷法などにより製造した合金を粉砕した合金粉末を用いるため、上記問題は生じない。   On the other hand, in the present invention, since the alloy powder obtained by pulverizing an alloy produced by casting or a rapid cooling method is used instead of the Ca reduced powder, the above problem does not occur.

本発明の製造方法は、R(Rは、希土類元素の少なくとも1種であり、本明細書において希土類元素とは、Y、Scおよびランタノイドである)を含有する原料合金を製造する原料合金製造工程と、原料合金を1段階または多段階で粉砕して原料粉末を得る粉砕工程と、原料粉末を成形して成形体を得る成形工程と、成形体を焼結して焼結磁石を得る焼結工程とを有する。   The production method of the present invention is a raw material alloy production process for producing a raw material alloy containing R (R is at least one kind of rare earth element, and in this specification, the rare earth element is Y, Sc and a lanthanoid). A pulverization process for pulverizing the raw material alloy in one stage or in multiple stages to obtain a raw material powder, a molding process for molding the raw material powder to obtain a compact, and sintering to obtain a sintered magnet by sintering the compact Process.

本明細書では、原料合金を粉砕して得られた粉砕粉を原料と呼ぶ。本発明では、酸素含有量が相対的に多くなるように製造した酸素リッチ原料と、酸素含有量が相対的に少なくなるように製造した酸素プア原料とを用意する。酸素リッチ原料および酸素プア原料は、いずれも1種または2種以上の原料から構成される。ここで、2種以上の原料とは、組成が相異なる複数の原料を意味するほか、組成が同じで酸素含有量が相異なる複数の原料も意味する。なお、組成が相異なる原料は、製造条件が同じであっても酸素含有量は同じとはならないのが一般的である。   In this specification, the pulverized powder obtained by pulverizing the raw material alloy is referred to as a raw material. In this invention, the oxygen rich raw material manufactured so that oxygen content may become relatively large, and the oxygen poor raw material manufactured so that oxygen content may become relatively small are prepared. Both the oxygen-rich material and the oxygen poor material are composed of one or more materials. Here, two or more kinds of raw materials mean a plurality of raw materials having different compositions, and also means a plurality of raw materials having the same composition and different oxygen contents. In general, raw materials having different compositions do not have the same oxygen content even if the production conditions are the same.

本発明では、酸素リッチ原料と酸素プア原料とを、成形工程の前に混合することを特徴とする。   In the present invention, the oxygen-rich material and the oxygen poor material are mixed before the molding step.

酸素リッチ原料の酸素含有量(質量比)と酸素プア原料の酸素含有量(質量比)との差は、1000ppm以上である。なお、本発明において、酸素リッチ原料および酸素プア原料の酸素含有量とは、これら両者を混合する直前における酸素含有量を意味する。前述したように、酸素含有量が比較的少ない原料および比較的多い原料は製造が容易であるが、酸素含有量がその中間である原料は安定して製造することが困難である。そのため、酸素リッチ原料と酸素プア原料との酸素含有量の差を、上記範囲を下回る程度に小さくしようとすると、原料の製造が容易になるという本発明の効果が得られにくくなる。なお、酸素リッチ原料および酸素プア原料の少なくとも一方が、酸素含有量の相異なる2種以上の原料から構成される場合における上記差とは、酸素リッチ原料のうち酸素含有量が最も少ないものと、酸素プア原料のうち酸素含有量が最も多いものとの差を意味する。   The difference between the oxygen content (mass ratio) of the oxygen-rich material and the oxygen content (mass ratio) of the oxygen poor material is 1000 ppm or more. In the present invention, the oxygen content of the oxygen-rich material and the oxygen poor material means the oxygen content immediately before mixing them. As described above, a raw material having a relatively low oxygen content and a raw material having a relatively high oxygen content are easy to manufacture, but a raw material having an intermediate oxygen content is difficult to manufacture stably. Therefore, if the difference in oxygen content between the oxygen-rich raw material and the oxygen poor raw material is reduced to an extent below the above range, it is difficult to obtain the effect of the present invention that the raw material is easily manufactured. Note that the difference in the case where at least one of the oxygen-rich material and the oxygen-poor material is composed of two or more materials having different oxygen contents is the one having the smallest oxygen content among the oxygen-rich materials, It means the difference from the oxygen poor raw material with the highest oxygen content.

ただし、酸素リッチ原料と酸素プア原料との酸素含有量の差が著しく大きくなるように設定する場合、酸素プア原料の酸素含有量を著しく少なくする、および/または、酸素リッチ原料の酸素含有量を著しく多くする必要がある。酸素プア原料の酸素含有量を著しく少なくする場合、酸素プア原料の製造が困難となる。酸素リッチ原料の酸素含有量を著しく多くする場合、両原料中における酸素リッチ原料の比率をかなり低くする必要が生じ、その結果、両原料(粉末)の混合物中において酸素リッチ原料を均一に分散させることが困難となり、磁石特性の低下を招きやすい。このような理由から、酸素リッチ原料と酸素プア原料との酸素含有量の差は、4000ppm以下、特に3000ppm以下であることが好ましい。   However, when the oxygen content difference between the oxygen-rich raw material and the oxygen-poor raw material is set to be extremely large, the oxygen content of the oxygen-poor raw material is remarkably reduced and / or the oxygen content of the oxygen-rich raw material is reduced. There is a need to significantly increase. When the oxygen content of the oxygen poor raw material is significantly reduced, it becomes difficult to produce the oxygen poor raw material. When the oxygen content of the oxygen-rich raw material is remarkably increased, the ratio of the oxygen-rich raw material in both raw materials needs to be considerably reduced. As a result, the oxygen-rich raw material is uniformly dispersed in the mixture of both raw materials (powder). It becomes difficult to cause deterioration of magnet characteristics. For these reasons, the difference in oxygen content between the oxygen-rich material and the oxygen poor material is preferably 4000 ppm or less, particularly preferably 3000 ppm or less.

酸素プア原料の酸素含有量(質量比)は、300〜1000ppm、より好ましくは400〜1000ppm、さらに好ましくは400〜900ppmである。この範囲を下回る酸素含有量とすることは困難であり、また、酸素含有量が著しく少ない合金粉末は、活性度が高いため取り扱いが困難である。一方、本発明において酸素プア原料を用いるのは、前述したように、希土類焼結磁石に適した酸素含有量をもつ原料を安定して製造することが困難だからである。したがって、酸素含有量が上記範囲を上回る酸素プア原料が安定して製造できるのであれば、本発明を採用する意義が小さい。   The oxygen content (mass ratio) of the oxygen poor raw material is 300 to 1000 ppm, more preferably 400 to 1000 ppm, and still more preferably 400 to 900 ppm. It is difficult to make the oxygen content below this range, and the alloy powder having a remarkably low oxygen content is difficult to handle because of its high activity. On the other hand, the reason why the oxygen poor raw material is used in the present invention is that, as described above, it is difficult to stably produce a raw material having an oxygen content suitable for a rare earth sintered magnet. Therefore, if the oxygen poor raw material whose oxygen content exceeds the above range can be stably produced, the significance of adopting the present invention is small.

酸素リッチ原料の酸素含有量(質量比)は、1200〜5000ppm、より好ましくは1200〜4000ppmである。酸素含有量がこの範囲を下回る酸素リッチ原料が安定して製造できるのであれば、本発明を採用する意義が小さい。一方、酸素含有量がこの範囲を上回る合金粉末を製造しようとすると、合金粉末が急激に酸化する、すなわち燃えてしまうことがあるので、安定して製造することが困難である。本発明は、NdFe14B系磁石の製造に好適であるが、NdFe14B系合金はSmCo系合金に比べ酸化により特性が低下しやすいため、NdFe14B系の酸素リッチ原料の酸素含有量は、1200〜3700ppmであることがさらに好ましい。 The oxygen content (mass ratio) of the oxygen-rich raw material is 1200 to 5000 ppm, more preferably 1200 to 4000 ppm. If an oxygen-rich raw material having an oxygen content below this range can be produced stably, the significance of adopting the present invention is small. On the other hand, if an alloy powder having an oxygen content exceeding this range is to be produced, the alloy powder may be rapidly oxidized, that is, burned, and thus it is difficult to produce it stably. The present invention is suitable for the production of Nd 2 Fe 14 B-based magnets, but Nd 2 Fe 14 B-based alloys are more susceptible to degradation by oxidation than SmCo 5- based alloys, and therefore Nd 2 Fe 14 B-based oxygen. The oxygen content of the rich raw material is more preferably 1200 to 3700 ppm.

ところで、たとえば酸素プア原料を2種以上用いる場合において、これら2種以上の原料を製造する際に、製造工程における雰囲気中の酸素濃度が同じとなるように制御しても、酸素濃度の微小な差や原料組成の相違に起因して、それぞれの酸素含有量は相異なることが普通である。しかし、酸素プア原料として製造されたものは、酸素含有量のばらつきはあっても、酸素リッチ原料として製造されたものよりは酸素含有量が少なくなる。具体的には、酸素プア原料同士の間の酸素含有量の差(酸素プア原料が3種以上ある場合、この差は3以上存在するが、その場合はそのなかの最大値)は、酸素リッチ原料と酸素プア原料との間の酸素含有量の差(酸素プア原料が3種以上ある場合、この差は3以上存在するが、その場合はそのなかの最小値)よりも小さくなる。また、酸素プア原料として2種以上の原料を使用する場合も同様である。さらに、酸素プア原料および酸素リッチ原料をいずれも2種以上使用する場合も、同様である。   By the way, for example, when two or more oxygen poor raw materials are used, even when these two or more raw materials are manufactured, even if the oxygen concentration in the atmosphere in the manufacturing process is controlled to be the same, the oxygen concentration is very small. Due to differences and differences in raw material composition, the oxygen content is usually different. However, those produced as an oxygen poor raw material have a lower oxygen content than those produced as an oxygen rich raw material, even though the oxygen content varies. Specifically, the difference in oxygen content between oxygen poor raw materials (when there are three or more oxygen poor raw materials, this difference is three or more, in which case the maximum value among them) is oxygen rich. It is smaller than the difference in oxygen content between the raw material and the oxygen poor raw material (if there are three or more oxygen poor raw materials, this difference is three or more, but in that case, the minimum value in that case). The same applies when two or more raw materials are used as the oxygen poor raw material. Furthermore, the same applies when two or more oxygen poor raw materials and oxygen rich raw materials are used.

すなわち、酸素リッチ原料および酸素プア原料の少なくとも一方が、酸素含有量の相異なる2種以上の原料から構成される場合、その2種以上の原料間における酸素含有量の差(最大値)は、酸素リッチ原料と酸素プア原料との間の酸素含有量の差(最小値)よりも小さい。たとえば、2種以上の酸素リッチ原料からなるグループと、2種以上の酸素プア原料からなるグループとにおいて、同じグループに所属する原料同士の酸素含有量の差より、相異なるグループに所属する原料同士の酸素含有量の差のほうが大きい。   That is, when at least one of the oxygen-rich raw material and the oxygen poor raw material is composed of two or more raw materials having different oxygen contents, the difference (maximum value) in oxygen content between the two or more raw materials is It is smaller than the difference (minimum value) of the oxygen content between the oxygen-rich material and the oxygen poor material. For example, in a group consisting of two or more oxygen-rich raw materials and a group consisting of two or more oxygen-poor raw materials, due to the difference in oxygen content between the raw materials belonging to the same group, the raw materials belonging to different groups The difference in oxygen content is greater.

なお、通常、酸素リッチ原料および酸素プア原料はいずれも1種だけ用いれば本発明の効果は十分に実現する。ただし、後述する2合金法に本発明を適用する場合には、酸素リッチ原料および酸素プア原料の一方または両方、通常は一方だけを、酸素含有量の相異なる2種の原料から構成する。すなわち、本発明では、4種を超える原料を用いる必要はなく、通常は3種以下の原料を用いる。   In general, the effects of the present invention can be realized sufficiently if only one oxygen-rich material and one oxygen-poor material are used. However, when the present invention is applied to the two-alloy method described later, one or both of the oxygen-rich raw material and the oxygen poor raw material, usually only one, is constituted by two raw materials having different oxygen contents. That is, in the present invention, it is not necessary to use more than four kinds of raw materials, and usually three or less kinds of raw materials are used.

酸素リッチ原料と酸素プア原料との合計に対する酸素リッチ原料の比率は、10質量%以上90質量%未満であることが好ましい。この比率が低すぎても高すぎても、酸素リッチ原料と酸素プア原料とを混合して用いることによる効果が十分に実現しなくなる。また、本発明により製造される焼結磁石の好ましいR含有量およびそれに対応する好ましい酸素含有量から考えて、両原料中において酸素リッチ原料の比率は、より好ましくは60質量%以下、さらに好ましくは50質量%未満、特に好ましくは20〜40質量%である。本発明では、磁石中のR含有量を比較的少なくすることが好ましいが、前述したように、R含有量の少ない磁石は酸素含有量が多くなると性能が著しく低下する。また、酸素リッチ原料は、酸素含有量を比較的多くするほうが製造が容易である。したがって、製造の容易な原料を用いて、R含有量の比較的少ない高性能な焼結磁石を得るためには、上記のように両原料中における酸素リッチ原料の比率をあまり多くしないことが好ましく、相対的に少なくすることがより好ましい。   The ratio of the oxygen-rich material to the total of the oxygen-rich material and the oxygen poor material is preferably 10% by mass or more and less than 90% by mass. If this ratio is too low or too high, the effect of using a mixture of the oxygen-rich material and the oxygen poor material will not be sufficiently realized. Further, considering the preferable R content of the sintered magnet produced according to the present invention and the corresponding preferable oxygen content, the ratio of the oxygen-rich raw material in both raw materials is more preferably 60% by mass or less, and still more preferably It is less than 50% by mass, particularly preferably 20 to 40% by mass. In the present invention, it is preferable to relatively reduce the R content in the magnet. However, as described above, the performance of a magnet having a small R content is significantly reduced when the oxygen content is increased. Further, the oxygen-rich raw material is easier to manufacture when the oxygen content is relatively increased. Therefore, in order to obtain a high-performance sintered magnet having a relatively small R content using raw materials that are easy to manufacture, it is preferable not to increase the ratio of oxygen-rich raw materials in both raw materials as described above. More preferably, it is relatively less.

なお、酸素含有量は、原料合金よりもその粉砕粉のほうが多くなり、また、粉砕を多段階で行う場合、粉砕が進むにつれて多くなる。また、酸素リッチ原料と酸素プア原料とを混合した後にさらに粉砕を行う場合において、両原料の組成およびサイズが著しく異ならなければ、混合時における両原料の酸素含有量の差は、その後の粉砕においてもほぼ維持され、大きくは変わらない。   Note that the oxygen content is higher in the pulverized powder than in the raw material alloy, and when the pulverization is performed in multiple stages, the oxygen content increases as the pulverization proceeds. In addition, in the case of further pulverizing after mixing the oxygen-rich raw material and the oxygen poor raw material, if the composition and size of both raw materials are not significantly different, the difference in oxygen content of both raw materials at the time of mixing Is almost maintained and does not change greatly.

酸素リッチ原料および酸素プア原料において、それぞれの酸素含有量および比率の具体的値は、得ようとする焼結磁石の酸素含有量に応じて決定すればよい。本発明により製造される焼結磁石の酸素含有量(質量比)は、好ましくは500〜4500ppmである。焼結磁石の酸素含有量が少なすぎると、高保磁力および高角形比が得られにくく、多すぎると、高残留磁束密度が得られにくい。NdFe14B系合金はSmCo系合金に比べ酸化により磁石特性が低下しやすいため、NdFe14B系焼結磁石では、酸素含有量を好ましくは500〜3000ppm、より好ましくは600〜2500ppm、さらに好ましくは800〜2400ppmとすることが望ましい。 In the oxygen-rich raw material and the oxygen poor raw material, the specific values of the oxygen content and the ratio may be determined according to the oxygen content of the sintered magnet to be obtained. The oxygen content (mass ratio) of the sintered magnet produced according to the present invention is preferably 500 to 4500 ppm. When the oxygen content of the sintered magnet is too small, it is difficult to obtain a high coercive force and a high squareness ratio, and when it is too large, it is difficult to obtain a high residual magnetic flux density. Since Nd 2 Fe 14 B-based alloys are more susceptible to deterioration in magnet properties due to oxidation than SmCo 5 -based alloys, the Nd 2 Fe 14 B-based sintered magnet preferably has an oxygen content of 500 to 3000 ppm, more preferably 600 to It is desirable to set it to 2500 ppm, more preferably 800 to 2400 ppm.

原料合金は、鋳造法または急冷法により製造される。急冷法では、合金溶湯を一方向または対向する二方向から冷却することにより固化し、たとえばストリップ状の急冷合金を得る。一方向から冷却する方法としては、単ロール法や回転ディスク法が好ましく、二方向から冷却する方法としては双ロール法が好ましい。   The raw material alloy is manufactured by a casting method or a rapid cooling method. In the rapid cooling method, the molten alloy is solidified by cooling from one direction or two opposite directions to obtain, for example, a strip-like quenched alloy. As a method of cooling from one direction, a single roll method or a rotating disk method is preferable, and as a method of cooling from two directions, a twin roll method is preferable.

粉砕は、2段階以上で行うことが好ましい。通常、まず、急冷合金に水素ガスを吸蔵させて粗粉砕する水素吸蔵粉砕工程(第1の粗粉砕工程)を設ける。次いで、ディスクミル等により10〜100μm程度の粒径まで粉砕する第2の粗粉砕工程を設ける。次いで、ジェットミル等により0.5〜5μm程度の粒径まで粉砕する微粉砕工程を設ける。ただし、第2の粗粉砕工程は、省略してもよい。   The pulverization is preferably performed in two or more stages. Usually, first, a hydrogen storage and pulverization step (first coarse pulverization step) is performed in which a rapidly cooled alloy is occluded with hydrogen gas and coarsely pulverized. Next, a second coarse pulverization step is performed in which the particles are pulverized to a particle size of about 10 to 100 μm by a disk mill or the like. Next, a fine pulverization step is performed in which the particles are pulverized to a particle size of about 0.5 to 5 μm by a jet mill or the like. However, the second coarse pulverization step may be omitted.

酸素リッチ原料および酸素プア原料の酸素含有量を制御する手段としては、原料を製造する工程において雰囲気中の酸素濃度を制御する方法を用いることが好ましい。具体的には、原料合金製造の際、および/または、原料合金粉砕の際に、雰囲気中の酸素濃度を制御すればよい。   As a means for controlling the oxygen content of the oxygen-rich raw material and the oxygen poor raw material, it is preferable to use a method of controlling the oxygen concentration in the atmosphere in the step of producing the raw material. Specifically, the oxygen concentration in the atmosphere may be controlled during the production of the raw material alloy and / or during the pulverization of the raw material alloy.

また、多孔性物質の孔部内に酸化性気体または水分を含ませておき、この多孔性物質を原料合金またはその粉砕粉に接触させるかその近傍に配置することによっても、原料の酸素含有量を制御することが可能である。前記多孔性物質としては、たとえばスポンジや紙、織布、不織布を用いることができる。合金を多段階で粉砕する際には、前段の粉砕工程により得られた粉末を、次段の粉砕工程に気流によって輸送することが一般的であるが、この輸送に利用する配管の内壁に、多孔性物質を貼り付ければよい。なお、配管の内壁は一般に平滑であるが、粉末に対する多孔性物質の接触面積を大きくするために、配管の内壁の一部に凹凸を設け、そこに多孔性物質を貼り付けてもよい。また、粉末の混合装置内に多孔性物質を配置してもよい。その場合、混合装置の内壁に多孔性物質を貼り付けてもよく、スクリュー状、リボン状、パドル状などの混合羽根に、多孔性物質を貼り付けてもよい。なお、多孔性物質に酸化性気体を補充する方法は特に限定されず、たとえば、装置内部に取り付けた多孔性物質を取り外し、空気や酸素ガスにさらせばよい。ただし、配管内部に多孔性物質を貼り付けた状態で、装置の点検や清掃の際に配管内に空気を導入するだけでもよい。このとき導入する空気が、水蒸気を含む通常の空気であれば、同時に水分の補充も可能なので、多孔性物質を取り外して水に漬ける必要はない。   The oxygen content of the raw material can also be reduced by placing an oxidizing gas or moisture in the pores of the porous material and placing the porous material in contact with or close to the raw material alloy or pulverized powder thereof. It is possible to control. As the porous material, for example, sponge, paper, woven fabric, and non-woven fabric can be used. When the alloy is pulverized in multiple stages, the powder obtained in the previous pulverization process is generally transported by airflow to the subsequent pulverization process, but on the inner wall of the piping used for this transportation, What is necessary is just to stick a porous substance. In addition, although the inner wall of piping is generally smooth, in order to enlarge the contact area of the porous substance with respect to powder, an unevenness | corrugation may be provided in a part of inner wall of piping, and a porous substance may be affixed there. Further, a porous substance may be disposed in the powder mixing apparatus. In that case, a porous material may be affixed to the inner wall of the mixing device, or a porous material may be affixed to mixing blades such as a screw shape, a ribbon shape, and a paddle shape. The method for replenishing the porous material with the oxidizing gas is not particularly limited. For example, the porous material attached to the inside of the apparatus may be removed and exposed to air or oxygen gas. However, it is also possible to simply introduce air into the pipe at the time of inspection and cleaning of the apparatus with the porous material stuck inside the pipe. If the air introduced at this time is normal air containing water vapor, it is possible to replenish moisture at the same time, so there is no need to remove the porous material and soak it in water.

酸素含有量制御の具体的手順を、以下に例示する。   Specific procedures for controlling the oxygen content are exemplified below.

本発明では、たとえば、酸素リッチ原料の原料合金と、酸素プア原料の原料合金とを、それぞれ酸素含有量を制御して製造した後、両原料合金を混合して同時に粉砕してもよい。   In the present invention, for example, a raw material alloy of an oxygen-rich raw material and a raw material alloy of an oxygen poor raw material may be produced by controlling the oxygen content, respectively, and then both raw material alloys may be mixed and pulverized simultaneously.

また、たとえば、酸素含有量が同一である2つの原料合金(組成は同一であっても異なっていてもよい)を、相異なる酸素含有量となるように制御しながら独立して粗粉砕することにより、酸素リッチ原料の粗粉と酸素プア原料の粗粉とを作製し、次いで、両粗粉を混合した後、微粉砕してもよい。また、前記2つの原料合金を、独立して粗粉砕した後、独立して微粉砕することにより、酸素リッチ原料の微粉と酸素プア原料の微粉とを独立して作製し、次いで、両微粉を混合してもよい。この場合、相異なる酸素含有量とするための操作は、粗粉砕工程および微粉砕工程のいずれか一方だけで実施してもよく、両工程で実施してもよい。独立して粉砕した後に混合することにより、酸素リッチ原料と酸素プア原料との酸素含有量の差を大きくすることが容易となるので、磁石全体の酸素含有量の制御が容易になるとともに、酸素含有量の調整範囲が広がる。このような効果は、微粉砕後に混合する場合により高くなり、また、粗粉砕および微粉砕の両工程において、相異なる酸素含有量とするための操作を行う場合により高くなる。すなわち、このような効果を十分に得るためには、多段階の粉砕の最終段階終了後に、酸素リッチ原料と酸素プア原料とを混合することが好ましい。また、粗粉砕粉は粒径が大きいため、酸化されにくい。そのため、酸素含有量の特に多い粗粉砕粉(酸素リッチ原料)を得ようとする場合、粉砕時や粉末搬送時の雰囲気中の酸素濃度を高くする以外に、加熱が必要になったりするなど制御すべき項目が増え、生産上好ましくない。したがって、この点からも、多段階の粉砕の最終段階終了後に、酸素リッチ原料と酸素プア原料とを混合することが好ましい。   In addition, for example, two raw material alloys having the same oxygen content (compositions may be the same or different) are independently coarsely pulverized while being controlled to have different oxygen contents. Thus, the coarse powder of the oxygen-rich raw material and the coarse powder of the oxygen poor raw material may be produced, and then both coarse powders may be mixed and then finely pulverized. In addition, the two raw material alloys are independently coarsely pulverized and then independently finely pulverized to independently produce the fine powder of the oxygen-rich raw material and the fine powder of the oxygen poor raw material. You may mix. In this case, the operation for obtaining different oxygen contents may be performed in either one of the coarse pulverization step and the fine pulverization step, or may be performed in both steps. By independently mixing after pulverization, it becomes easy to increase the difference in oxygen content between the oxygen-rich raw material and the oxygen poor raw material. The range of content adjustment is expanded. Such an effect becomes higher when mixing after fine pulverization, and becomes higher when operations for different oxygen contents are performed in both the coarse pulverization and fine pulverization steps. That is, in order to sufficiently obtain such an effect, it is preferable to mix the oxygen-rich raw material and the oxygen poor raw material after completion of the final stage of the multistage pulverization. Moreover, since the coarsely pulverized powder has a large particle size, it is difficult to be oxidized. Therefore, when trying to obtain a coarsely pulverized powder (oxygen-rich raw material) with a particularly high oxygen content, control such as heating is required in addition to increasing the oxygen concentration in the atmosphere during pulverization and powder conveyance. The number of items to be increased is undesirable in production. Therefore, also from this point, it is preferable to mix the oxygen-rich raw material and the oxygen poor raw material after completion of the final stage of the multistage grinding.

なお、前述したように、原料の酸素含有量を比較的多くすることおよび比較的少なくすることは容易であっても、その中間の酸素含有量をもつ原料を安定して製造することは困難である。これが、本発明がなされた背景である。したがって、酸素プア原料を製造する際に、合金鋳造工程、合金溶湯急冷工程、粉砕工程などにおける酸素濃度や酸素分圧の具体的値は特に限定されず、利用する製造装置に応じ、比較的少ない酸素含有量をもつ原料がその装置で安定して製造できるように製造条件を設定すればよい。酸素リッチ原料においても同様であり、利用する製造装置に応じ、比較的多い酸素含有量をもつ原料がその装置で安定して製造できるように製造条件を設定すればよい。   As described above, even if it is easy to relatively increase and decrease the oxygen content of the raw material, it is difficult to stably manufacture a raw material having an intermediate oxygen content. is there. This is the background behind the present invention. Therefore, when manufacturing the oxygen poor raw material, the specific values of the oxygen concentration and the oxygen partial pressure in the alloy casting process, the molten alloy quenching process, the pulverization process, etc. are not particularly limited, and are relatively small depending on the manufacturing apparatus to be used. Manufacturing conditions may be set so that a raw material having an oxygen content can be stably manufactured by the apparatus. The same applies to the oxygen-rich raw material, and the production conditions may be set so that a raw material having a relatively high oxygen content can be stably produced by the device depending on the production device to be used.

酸素リッチ原料と酸素プア原料とは、酸素含有量を除く組成が異なる。また、酸素リッチ原料および/または酸素プア原料は、組成の相異なる2種以上の原料を含むものであってもよい。   The oxygen-rich raw material and the oxygen poor raw material have different compositions excluding the oxygen content. Further, the oxygen-rich material and / or the oxygen poor material may contain two or more materials having different compositions.

組成の相異なる原料を用いる場合としては、いわゆる2合金法を用いる場合が挙げられる。2合金法は、組成の異なる2種の合金粉末を混合して焼結することにより、磁気特性や耐食性を向上させる方法である。2合金法に関して様々な提案がなされているが、いずれも主相とほぼ同じ組成(RFe14B)の合金粉末に第二の合金の粉末を添加するものである。第二の合金としては、主相よりもR比率が高く融点の低いRリッチ合金(特開平4−338607号公報、特開平5−105915号公報等)、Rの種類が主相とは異なるRFe14B合金(特開昭61−81603号公報等)、Rの金属間化合物を含むもの(特開平5−21219号公報等)などがある。また、特開平7−176414号公報には、主相用母合金の粉末と粒界相用母合金の粉末との混合物からなる成形体を焼結して磁石とする方法が開示されている。同公報において主相用母合金とは、実質的にR(Fe,Co)14Bから構成される柱状結晶粒と、R(Fe,Co)14BよりもRの含有率が高いRリッチ相を主体とする結晶粒界とを有するものであり、粒界相用母合金とは、Rを32〜60質量%含み、残部が実質的にCo、またはCoおよびFeである結晶質合金である。同公報では前記混合物中における主相用母合金の比率を60〜95質量%としている。 As a case where raw materials having different compositions are used, there is a case where a so-called two-alloy method is used. The two alloy method is a method of improving magnetic properties and corrosion resistance by mixing and sintering two kinds of alloy powders having different compositions. Various proposals have been made regarding the two-alloy method, but all of them add the powder of the second alloy to the alloy powder having the same composition (R 2 Fe 14 B) as the main phase. As the second alloy, an R-rich alloy having a higher R ratio and a lower melting point than the main phase (JP-A-4-338607, JP-A-5-105915, etc.), the type of R is different from the main phase R 2 Fe 14 B alloys (Japanese Patent Laid-Open No. 61-81603, etc.) and those containing an R intermetallic compound (Japanese Patent Laid-Open No. 5-21219, etc.). Japanese Laid-Open Patent Publication No. 7-176414 discloses a method of sintering a compact made of a mixture of a main phase mother alloy powder and a grain boundary phase mother alloy powder to obtain a magnet. The main-phase master alloy in the publication, is substantially more R 2 (Fe, Co) 14 and the columnar crystal grains composed of B, R 2 (Fe, Co ) 14 content of R than B R A grain boundary mainly composed of a rich phase, and a master alloy for grain boundary phase contains 32 to 60% by mass of R, and the balance is substantially Co or Co and Fe. It is. In the publication, the ratio of the main phase master alloy in the mixture is set to 60 to 95% by mass.

本発明において2合金法を用いる場合、組成の相異なる2種の原料のうちの一方を酸素リッチ原料とし、他方を酸素プア原料としてもよい。ただし、両原料の混合比は、磁石の最終組成に応じて決定される(たとえば、主相とほぼ同じ組成の合金粉末は混合比が高くなる)ので、磁石中の酸素含有量を所望の値とするのが困難となることがある。このような問題を回避するために、組成の相異なる2種の原料の一方を、酸素リッチ原料と酸素プア原料とに分割してもよい。また、組成の相異なる2種の原料の両方を、いずれも酸素リッチ原料と酸素プア原料とに分割してもよい。   In the case of using the two-alloy method in the present invention, one of two raw materials having different compositions may be an oxygen-rich raw material and the other may be an oxygen poor raw material. However, the mixing ratio of both raw materials is determined according to the final composition of the magnet (for example, the mixing ratio of the alloy powder having almost the same composition as the main phase is high), so the oxygen content in the magnet is set to a desired value. It may be difficult. In order to avoid such a problem, one of two kinds of raw materials having different compositions may be divided into an oxygen-rich raw material and an oxygen poor raw material. Further, both of two kinds of raw materials having different compositions may be divided into an oxygen-rich raw material and an oxygen poor raw material.

成形は、好ましくは磁場中で行う。この場合、磁場強度は800kA/m以上、成形圧力は10〜500MPa程度であることが好ましい。成形には、一軸加圧またはCIPなどの等方加圧のいずれを用いてもよい。   Molding is preferably performed in a magnetic field. In this case, the magnetic field strength is preferably 800 kA / m or more, and the molding pressure is preferably about 10 to 500 MPa. For molding, either uniaxial pressing or isotropic pressing such as CIP may be used.

得られた成形体を、焼結する。焼結条件は、磁石組成に応じて適宜決定すればよく、たとえばNdFe14B系組成では、1000〜1200℃で0.1〜100時間焼結すればよい。焼結は、複数回行ってもよい。焼結は、非酸化性雰囲気、たとえば真空中またはArガス等の不活性ガス雰囲気中で行うことが好ましい。また、加圧焼結(ホットプレス)を行ってもよい。 The obtained molded body is sintered. The sintering conditions may be appropriately determined according to the magnet composition. For example, in the case of an Nd 2 Fe 14 B-based composition, the sintering may be performed at 1000 to 1200 ° C. for 0.1 to 100 hours. Sintering may be performed a plurality of times. Sintering is preferably performed in a non-oxidizing atmosphere, for example, in a vacuum or an inert gas atmosphere such as Ar gas. Further, pressure sintering (hot pressing) may be performed.

焼結後、保磁力を向上させるために時効処理を行うことが好ましい。たとえばNdFe14B系磁石では、好ましくは不活性ガス雰囲気中において、好ましくは500℃以上焼結温度以下の温度、より好ましくは500〜950℃の温度で、0.1〜100時間時効処理を行うことが好ましい。なお、時効処理は、多段階の熱処理から構成してもよい。例えば2段の熱処理からなる時効処理では、1段目の熱処理を700℃以上焼結温度未満の温度で0.1〜50時間行い、2段目の熱処理を500〜700℃で0.1〜100時間行うことが好ましい。 After sintering, it is preferable to perform an aging treatment in order to improve the coercive force. For example, in an Nd 2 Fe 14 B-based magnet, an aging treatment is preferably performed in an inert gas atmosphere at a temperature of preferably 500 ° C. or higher and a sintering temperature or lower, more preferably 500 to 950 ° C. for 0.1 to 100 hours. It is preferable to carry out. In addition, you may comprise an aging treatment from multistep heat processing. For example, in the aging treatment including two-stage heat treatment, the first-stage heat treatment is performed at a temperature of 700 ° C. or higher and lower than the sintering temperature for 0.1 to 50 hours, and the second-stage heat treatment is performed at 500 to 700 ° C. for 0.1 to 50 hours. It is preferable to carry out for 100 hours.

本発明はNdFe14B系焼結磁石の製造に特に好適である。 The present invention is particularly suitable for the production of Nd 2 Fe 14 B-based sintered magnets.

本発明が適用されるNdFe14B系焼結磁石は、Rとして少なくともNdおよび/またはPrを含有し、さらに、FeおよびBを含有するものが好ましく、Feの一部をCoで置換したものがより好ましい。各元素の含有量は、
R:28〜32質量%、
B:0.8〜1.2質量%、
残部:Fe
である。各元素の含有量をこのような範囲内とすることにより、良好な磁石特性が得られる。特に、
R:28〜31.5質量%、
B:0.9〜1.1質量%、
残部:Fe
とすれば、より高い残留磁束密度が得られる。
The Nd 2 Fe 14 B-based sintered magnet to which the present invention is applied contains at least Nd and / or Pr as R, and further preferably contains Fe and B, and a part of Fe is substituted with Co. Those are more preferred. The content of each element is
R: 28-32% by mass,
B: 0.8-1.2% by mass,
The rest: Fe
It is. By setting the content of each element within such a range, good magnet characteristics can be obtained. In particular,
R: 28-31.5 mass%,
B: 0.9 to 1.1% by mass,
The rest: Fe
If so, a higher residual magnetic flux density can be obtained.

R含有量が少なくなるにつれて残留磁束密度は向上するが、R含有量が少なくなりすぎると、α−Fe相等の鉄に富む相が析出して粉砕に悪影響を与え、磁気特性も低下する。また、焼結が困難となって焼結密度が低くなってしまうので、残留磁束密度向上は頭打ちになってしまう。R含有量が多すぎると、高残留磁束密度が得られなくなる。元素Rには、Ndおよび/またはPrが必ず含まれる。NdとPrとの比率は特に限定されない。元素RとしてNdおよび/またはPrだけを用いてもよいが、これら以外の希土類元素、すなわちY、Sc、La、Ce、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuの少なくとも1種を用いてもよい。これらのうちでは、Dyおよび/またはTbが好ましい。磁石特性を低下させないためには、NdおよびPrの両者以外の元素の合計量は、元素R全体の30質量%以下とすることが好ましい。なお、元素Rとして2種以上の元素を用いる場合、原料としてミッシュメタル等の混合物を用いることもできる。   As the R content decreases, the residual magnetic flux density improves. However, if the R content decreases too much, an iron-rich phase such as the α-Fe phase precipitates, adversely affects the pulverization, and the magnetic properties also deteriorate. Moreover, since sintering becomes difficult and the sintering density becomes low, the improvement of the residual magnetic flux density has reached its peak. If the R content is too large, a high residual magnetic flux density cannot be obtained. The element R necessarily contains Nd and / or Pr. The ratio between Nd and Pr is not particularly limited. Only Nd and / or Pr may be used as the element R, but other rare earth elements, that is, Y, Sc, La, Ce, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb And at least one of Lu may be used. Of these, Dy and / or Tb are preferred. In order not to deteriorate the magnet characteristics, the total amount of elements other than both Nd and Pr is preferably 30% by mass or less of the entire element R. In addition, when using 2 or more types of elements as the element R, mixtures, such as a misch metal, can also be used as a raw material.

B含有量が少なすぎると、菱面体組織となるため保磁力が低くなる。一方、B含有量が多すぎると、Bリッチな非磁性相が多くなるため残留磁束密度が低くなる。   If the B content is too small, the rhombohedral structure is formed, and the coercive force is lowered. On the other hand, if the B content is too large, the B-rich non-magnetic phase increases and the residual magnetic flux density decreases.

残部は実質的にFeであるが、Feの一部をCoで置換してもよい。Coを添加することにより、保磁力の温度依存性および耐食性を改善することができ、残留磁束密度も向上できる。ただし、Co含有量が多すぎると保磁力が低下するため、磁石中におけるCoの含有量は0.1〜10質量%とすることが好ましい。   The balance is substantially Fe, but a part of Fe may be substituted with Co. By adding Co, the temperature dependency of the coercive force and the corrosion resistance can be improved, and the residual magnetic flux density can also be improved. However, since the coercive force decreases when the Co content is too large, the Co content in the magnet is preferably 0.1 to 10% by mass.

焼結磁石中には、上記各元素のほか、微量添加物ないし不可避的不純物として例えばCu、C、P、S、Al、Ti、V、Cr、Mn、Bi、Nb、Ta、Mo、W、Sb、Ge、Sn、Zr、Ni、Si、Hf、Ga、Znなどの少なくとも1種が含有されていてもよい。ただし、磁石特性低下を抑えるためには、これらの合計含有量を5質量%以下とすることが好ましい。   In the sintered magnet, in addition to the above-mentioned elements, trace additives or unavoidable impurities such as Cu, C, P, S, Al, Ti, V, Cr, Mn, Bi, Nb, Ta, Mo, W, At least one of Sb, Ge, Sn, Zr, Ni, Si, Hf, Ga, Zn and the like may be contained. However, in order to suppress deterioration in magnet characteristics, the total content of these is preferably 5% by mass or less.

本発明により製造される焼結磁石の用途は特に限定されず、例えばモータやスピーカなど各種機器に適用可能である。   The use of the sintered magnet manufactured by this invention is not specifically limited, For example, it can apply to various apparatuses, such as a motor and a speaker.

実施例1
以下に示す組成の原料合金を、急冷法(ストリップキャスティング)により製造した。ただし、組成Dのものは鋳造法により製造した。なお、下記組成において、数値は質量百分率である。
Example 1
A raw material alloy having the following composition was manufactured by a rapid cooling method (strip casting). However, the thing of the composition D was manufactured by the casting method. In addition, in the following composition, a numerical value is a mass percentage.

組成A:30.0%Nd−1.0%B−0.5%Co−0.2%Al−0.05%Cu−Fe、
組成A1:29.3%Nd−1.1%B−0.2%Al−0.05%Cu−Fe、
組成A2:40.5%Nd−5.0%Co−0.2%Al−0.05%Cu−Fe、
組成B:28.9%Nd−2.0%Dy−1.0%B−0.5%Co−0.3%Al−0.08%Cu−Fe、
組成C:24.3%Nd−7.1%Dy−1.0%B−1.0%Co−0.5Al−0.08%Cu−0.2%Sn−Fe、
組成D:35.4%Sm−Co
Composition A: 30.0% Nd-1.0% B-0.5% Co-0.2% Al-0.05% Cu-Fe,
Composition A1: 29.3% Nd-1.1% B-0.2% Al-0.05% Cu-Fe,
Composition A2: 40.5% Nd-5.0% Co-0.2% Al-0.05% Cu-Fe,
Composition B: 28.9% Nd-2.0% Dy-1.0% B-0.5% Co-0.3% Al-0.08% Cu-Fe,
Composition C: 24.3% Nd-7.1% Dy-1.0% B-1.0% Co-0.5Al-0.08% Cu-0.2% Sn-Fe,
Composition D: 35.4% Sm-Co

これらの原料合金を、水素吸蔵により粗粉砕した後、窒素ガス気流中で微粉砕することにより、表1〜表7にそれぞれ示す酸素プア原料(微粉)および酸素リッチ原料(微粉)を得た。これらの原料微粉の平均粒径は4.0〜5.5μm程度であった。なお、これらの原料微粉の酸素含有量は、粗粉砕および微粉砕における雰囲気中の酸素濃度を制御することにより制御した。具体的には、酸素プア原料微粉は酸素濃度50ppm以下の雰囲気中で、酸素リッチ原料微粉は酸素濃度0.3〜0.5%の雰囲気中でそれぞれ作製した。各表に示す原料微粉の酸素含有量は、不活性ガス融解法により測定した。この測定は、正確な結果を得るために非酸化雰囲気中で行った。   These raw material alloys were coarsely pulverized by hydrogen storage, and then finely pulverized in a nitrogen gas stream to obtain oxygen poor raw materials (fine powder) and oxygen-rich raw materials (fine powder) shown in Tables 1 to 7, respectively. The average particle size of these raw material fine powders was about 4.0 to 5.5 μm. The oxygen content of these raw material fine powders was controlled by controlling the oxygen concentration in the atmosphere during coarse pulverization and fine pulverization. Specifically, the oxygen poor raw material fine powder was produced in an atmosphere having an oxygen concentration of 50 ppm or less, and the oxygen rich raw material fine powder was produced in an atmosphere having an oxygen concentration of 0.3 to 0.5%. The oxygen content of the raw material fine powder shown in each table was measured by an inert gas melting method. This measurement was performed in a non-oxidizing atmosphere to obtain accurate results.

これらの原料微粉を表1〜表7にそれぞれ示す比率で混合し、1200kA/mの磁場中で圧力150MPaで成形した。得られた成形体を真空中において1000〜1100℃で4時間焼結した後、アルゴンガス雰囲気中において500〜900℃の温度範囲で1〜4時間の時効処理を、1段または多段で行い、焼結磁石サンプルを得た。ただし、組成Dの粉末を含む成形体については、水素雰囲気中において1150℃で焼結した。   These raw material fine powders were mixed at the ratios shown in Tables 1 to 7, respectively, and molded at a pressure of 150 MPa in a magnetic field of 1200 kA / m. After the obtained molded body was sintered at 1000 to 1100 ° C. in vacuum for 4 hours, an aging treatment for 1 to 4 hours was performed in a temperature range of 500 to 900 ° C. in an argon gas atmosphere in one or more stages, A sintered magnet sample was obtained. However, the compact including the powder of composition D was sintered at 1150 ° C. in a hydrogen atmosphere.

これらの焼結磁石サンプルについて、密度ρ、磁気特性(残留磁束密度Br、保磁力HcJ、角形比Hk/HcJ)をB−Hトレーサで測定した。また、サンプル断面を走査型電子顕微鏡により観察して、異常粒成長(AGG:abnormal grain growth)の有無を調べた。また、サンプルの酸素含有量を、不活性ガス融解法により測定した。これらの結果を表1〜表7に示す。なお、表1〜表7の中で、表1〜表4、表7は参考例である。   About these sintered magnet samples, density ρ and magnetic properties (residual magnetic flux density Br, coercive force HcJ, squareness ratio Hk / HcJ) were measured with a BH tracer. Moreover, the sample cross section was observed with the scanning electron microscope, and the presence or absence of abnormal grain growth (AGG: abnormal grain growth) was investigated. Moreover, the oxygen content of the sample was measured by an inert gas melting method. These results are shown in Tables 1-7. In Tables 1 to 7, Tables 1 to 4 and Table 7 are reference examples.

Figure 0004692783
Figure 0004692783

Figure 0004692783
Figure 0004692783

Figure 0004692783
Figure 0004692783

Figure 0004692783
Figure 0004692783

Figure 0004692783
Figure 0004692783

Figure 0004692783
Figure 0004692783

Figure 0004692783
Figure 0004692783

表1〜表5から、酸素リッチ原料と酸素プア原料とを混合して用いることにより、残留磁束密度、保磁力および角形比がいずれも高い焼結磁石が得られることがわかる。また、酸素リッチ原料と酸素プア原料との合計に対する酸素リッチ原料の比率が60質量%以下、特に50質量%未満であれば、より良好な磁石特性が得られることがわかる。   From Table 1 to Table 5, it is understood that a sintered magnet having a high residual magnetic flux density, coercive force and squareness ratio can be obtained by using a mixture of an oxygen-rich raw material and an oxygen poor raw material. It can also be seen that better magnet properties can be obtained when the ratio of the oxygen-rich material to the total of the oxygen-rich material and the oxygen poor material is 60% by mass or less, particularly less than 50% by mass.

表6に示される磁石は、2合金法により製造したものである。表6に示す原料微粉において、組成A1は磁石の主相に近い組成であり、組成A2は磁石の粒界相に近い組成である。そして、組成A1の微粉と組成A2の微粉とを質量比でA1:A2=9:1となるように混合して製造した磁石の組成は、組成Aの微粉だけを用いて製造した磁石の組成とほぼ同じとなる。表6において、酸素リッチ原料は微粉R6であり、酸素プア原料は微粉P6−1および微粉P6−2である。表6から、2合金法を用いた場合でも、本発明の効果が実現することがわかる。   The magnets shown in Table 6 are manufactured by the two alloy method. In the raw material fine powder shown in Table 6, composition A1 is a composition close to the main phase of the magnet, and composition A2 is a composition close to the grain boundary phase of the magnet. And the composition of the magnet manufactured by mixing the fine powder of the composition A1 and the fine powder of the composition A2 so that the mass ratio is A1: A2 = 9: 1 is the composition of the magnet manufactured using only the fine powder of the composition A. Is almost the same. In Table 6, the oxygen-rich raw material is fine powder R6, and the oxygen poor raw material is fine powder P6-1 and fine powder P6-2. From Table 6, it can be seen that the effect of the present invention is realized even when the two-alloy method is used.

表7において、サンプルNo.701は、酸素リッチ微粉と酸素プア微粉とを用いて製造され、サンプルNo.702は、原料微粉を1種だけ用いて製造されたものである。サンプルNo.702に用いた原料微粉Sの酸素含有量は、サンプルNo.702の酸素含有量がサンプルNo.701とほぼ同じとなるように設定してある。   In Table 7, sample no. 701 is manufactured using oxygen-rich fine powder and oxygen poor fine powder. 702 is manufactured using only one kind of raw material fine powder. Sample No. The oxygen content of the raw material fine powder S used in 702 is the sample No. The oxygen content of 702 is sample no. It is set to be almost the same as 701.

表7から、組成がほぼ同じであっても、本発明を適用することにより角形比が向上することが明らかである。   From Table 7, it is clear that the squareness ratio is improved by applying the present invention even when the compositions are substantially the same.

参考例1
実施例1と同様にして粗粉砕まで行うことにより酸素リッチ原料(粗粉)と酸素プア原料(粗粉)とを製造し、これらの粗粉を混合した後、微粉砕した。ただし、表9に示す酸素リッチ粗粉R9を製造するに際しては、酸素含有量を多くするために、加熱も併用した。微粉砕の際の雰囲気中の酸素濃度は、50ppm以下とした。このほかは実施例1と同様にして、焼結磁石サンプルを作製した。これらのサンプルについて実施例1と同様な測定を行った。結果を表8および表9に示す。
Reference example 1
Oxygen-rich raw material (coarse powder) and oxygen poor raw material (coarse powder) were produced by carrying out until coarse pulverization in the same manner as in Example 1, and these coarse powders were mixed and then finely pulverized. However, in producing the oxygen-rich coarse powder R9 shown in Table 9, heating was also used in order to increase the oxygen content. The oxygen concentration in the atmosphere during pulverization was set to 50 ppm or less. Other than this, a sintered magnet sample was produced in the same manner as in Example 1. These samples were measured in the same manner as in Example 1. The results are shown in Table 8 and Table 9.

Figure 0004692783
Figure 0004692783

Figure 0004692783
Figure 0004692783

表8および表9から、酸素リッチ原料と酸素プア原料とを粗粉砕後かつ微粉砕前に混合した場合でも、本発明の効果が得られることがわかる。   From Tables 8 and 9, it can be seen that the effects of the present invention can be obtained even when the oxygen-rich raw material and the oxygen poor raw material are mixed after coarse pulverization and before fine pulverization.

参考例2
組成E:28.2%Nd−1.0%B−0.2%Co−0.05%Al−0.05%Cu−Fe
の原料合金を用いたほかは参考例1と同様にして、焼結磁石サンプルを作製した。これらのサンプルについて実施例1と同様な測定を行った。結果を表10に示す。
Reference example 2
Composition E: 28.2% Nd-1.0% B-0.2% Co-0.05% Al-0.05% Cu-Fe
A sintered magnet sample was prepared in the same manner as in Reference Example 1 except that the above raw material alloy was used. These samples were measured in the same manner as in Example 1. The results are shown in Table 10.

Figure 0004692783
Figure 0004692783

本参考例で用いた組成Eは、R含有量が少ないため、元素Rの酸化に対するマージンが小さい。そのため、酸素量に関連して特性が敏感に変化する。このような低R組成に対して本発明を適用する場合、酸素リッチ原料の比率を比較的低くすることにより、特に40質量%以下とすることにより、特に良好な性能が得られることがわかる。   Since the composition E used in this reference example has a small R content, the margin for the oxidation of the element R is small. Therefore, the characteristics change sensitively in relation to the amount of oxygen. When the present invention is applied to such a low R composition, it can be seen that particularly good performance can be obtained by making the ratio of the oxygen-rich raw material relatively low, in particular, 40% by mass or less.

Claims (9)

R(Rは、希土類元素の少なくとも1種)、FeおよびBを含有する原料合金を鋳造法または急冷法により製造する原料合金製造工程と、原料合金を1段階または多段階で粉砕して原料粉末を得る粉砕工程と、原料粉末を成形して成形体を得る成形工程と、成形体を焼結してR:28〜32質量%、B:0.8〜1.2質量%、残部:Feからなる焼結磁石を得る焼結工程とを有し、
原料合金を粉砕して得られた粉砕粉を原料と呼んだとき、
酸素含有量が相対的に多くなるように製造され、酸素含有量が1200〜5000ppm(質量比)の原料である酸素リッチ原料の少なくとも1種と、
酸素含有量が相対的に少なくなるように製造され、酸素含有量が300〜1000ppm(質量比)であり、かつ酸素リッチ原料より酸素含有量が1000ppm(質量比)以上少なく、さらに酸素含有量を除いた組成が酸素リッチ原料と異なる原料である酸素プア原料の少なくとも1種とを、成形工程の前に混合する希土類焼結磁石の製造方法。
A raw material alloy production process for producing a raw material alloy containing R (R is at least one rare earth element), Fe and B by a casting method or a rapid cooling method, and a raw material powder obtained by pulverizing the raw material alloy in one stage or multiple stages A pulverizing step to obtain a green body, a forming step to form a raw material powder to obtain a green body, and sintering the green body to obtain R: 28 to 32% by mass, B: 0.8 to 1.2% by mass, and the balance: Fe A sintering step of obtaining a sintered magnet consisting of
When the pulverized powder obtained by pulverizing the raw material alloy is called the raw material,
Manufactured with a relatively high oxygen content, and at least one oxygen-rich raw material that is a raw material having an oxygen content of 1200 to 5000 ppm (mass ratio);
Manufactured so that the oxygen content is relatively low, the oxygen content is 300 to 1000 ppm (mass ratio), the oxygen content is less than 1000 ppm (mass ratio) than the oxygen-rich raw material, and the oxygen content is further reduced A method for producing a rare earth sintered magnet, wherein at least one oxygen poor raw material that is different from an oxygen-rich raw material in composition removed is mixed before the forming step.
酸素リッチ原料と酸素プア原料との合計に対する酸素リッチ原料の比率が10質量%以上90質量%未満である請求項1の希土類焼結磁石の製造方法。   The method for producing a rare earth sintered magnet according to claim 1, wherein the ratio of the oxygen-rich material to the total of the oxygen-rich material and the oxygen poor material is 10% by mass or more and less than 90% by mass. 酸素リッチ原料と酸素プア原料との合計に対する酸素リッチ原料の比率が10〜60質量%である請求項1または2の希土類焼結磁石の製造方法。   The method for producing a rare earth sintered magnet according to claim 1 or 2, wherein the ratio of the oxygen-rich material to the total of the oxygen-rich material and the oxygen poor material is 10 to 60% by mass. 酸素リッチ原料および酸素プア原料の少なくとも一方が、酸素含有量の相異なる2種以上の原料から構成され、その2種以上の原料間における酸素含有量の差の最大値が、酸素リッチ原料を構成する原料と酸素プア原料を構成する原料との間の酸素含有量の差の最小値よりも小さい請求項1〜3のいずれかの希土類焼結磁石の製造方法。   At least one of the oxygen-rich raw material and the oxygen poor raw material is composed of two or more raw materials having different oxygen contents, and the maximum value of the difference in oxygen content between the two or more raw materials constitutes the oxygen-rich raw material The method for producing a rare earth sintered magnet according to any one of claims 1 to 3, which is smaller than a minimum value of a difference in oxygen content between a raw material to be formed and a raw material constituting the oxygen poor raw material. 酸素含有量(質量比)が500〜4500ppmである焼結磁石が製造される請求項1〜4のいずれかの希土類焼結磁石の製造方法。   The method for producing a rare earth sintered magnet according to any one of claims 1 to 4, wherein a sintered magnet having an oxygen content (mass ratio) of 500 to 4500 ppm is produced. 酸素リッチ原料と酸素プア原料との間の酸素含有量の相違が、これら両原料の製造工程の少なくとも一部において、雰囲気中の酸素濃度を相異なるものとすることにより実現されたものである請求項1〜5のいずれかの希土類焼結磁石の製造方法。   The difference in oxygen content between the oxygen-rich raw material and the oxygen poor raw material is realized by making the oxygen concentration in the atmosphere different in at least a part of the manufacturing process of both raw materials. Item 6. A method for producing a rare earth sintered magnet according to any one of Items 1 to 5. 酸素リッチ原料は、製造工程の少なくとも一部において、酸化性気体または水分を含む孔部を有する多孔性物質との接触または前記多孔性物質の近傍に配置されることにより、酸素含有量が制御されたものである請求項1〜6のいずれかの希土類焼結磁石の製造方法。   In at least a part of the production process, the oxygen-rich raw material is placed in contact with or in the vicinity of the porous material having pores containing an oxidizing gas or moisture, thereby controlling the oxygen content. The method for producing a rare earth sintered magnet according to claim 1. 粉砕工程において原料合金が多段階で粉砕され、
少なくとも1段階の粉砕を行った後に、酸素リッチ原料と酸素プア原料とを混合する請求項1〜7のいずれかの希土類焼結磁石の製造方法。
In the pulverization process, the raw material alloy is pulverized in multiple stages,
The method for producing a rare earth sintered magnet according to any one of claims 1 to 7, wherein the oxygen-rich raw material and the oxygen poor raw material are mixed after at least one stage of pulverization.
粉砕工程において原料合金が多段階で粉砕され、
多段階の粉砕の最終段階終了後に、酸素リッチ原料と酸素プア原料とを混合する請求項1〜7のいずれかの希土類焼結磁石の製造方法。
In the pulverization process, the raw material alloy is pulverized in multiple stages,
The method for producing a rare earth sintered magnet according to any one of claims 1 to 7, wherein the oxygen-rich raw material and the oxygen poor raw material are mixed after the final stage of the multistage grinding.
JP2008205638A 2008-08-08 2008-08-08 Manufacturing method of rare earth sintered magnet Expired - Fee Related JP4692783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008205638A JP4692783B2 (en) 2008-08-08 2008-08-08 Manufacturing method of rare earth sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008205638A JP4692783B2 (en) 2008-08-08 2008-08-08 Manufacturing method of rare earth sintered magnet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002231363A Division JP4194021B2 (en) 2002-08-08 2002-08-08 Manufacturing method of rare earth sintered magnet

Publications (2)

Publication Number Publication Date
JP2009016853A JP2009016853A (en) 2009-01-22
JP4692783B2 true JP4692783B2 (en) 2011-06-01

Family

ID=40357292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008205638A Expired - Fee Related JP4692783B2 (en) 2008-08-08 2008-08-08 Manufacturing method of rare earth sintered magnet

Country Status (1)

Country Link
JP (1) JP4692783B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011082365A (en) * 2009-10-07 2011-04-21 Hitachi Metals Ltd R-t-b-based sintered magnet
JP6249275B2 (en) * 2013-09-30 2017-12-20 日立金属株式会社 Method for producing RTB-based sintered magnet

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60205364A (en) * 1984-03-30 1985-10-16 Kyoto Daiichi Kagaku:Kk Analyzing means having oxygen supply layer
JPH0533973A (en) * 1991-07-25 1993-02-09 Mitsubishi Electric Corp Humidifier
JPH08288112A (en) * 1995-04-19 1996-11-01 Hitachi Metals Ltd Rare-earth permanent magnet and its manufacture
JPH09232121A (en) * 1996-02-27 1997-09-05 Hitachi Metals Ltd R-m-b magnet
JPH10335125A (en) * 1997-06-02 1998-12-18 Sumitomo Metal Mining Co Ltd R-fe-b system alloy powder for permanent magnet
JP2002170728A (en) * 2000-09-19 2002-06-14 Sumitomo Special Metals Co Ltd Rare earth magnet and its manufacturing method
JP2003049234A (en) * 2001-05-30 2003-02-21 Sumitomo Special Metals Co Ltd Method for producing sintered compact for rare earth magnet

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60205364A (en) * 1984-03-30 1985-10-16 Kyoto Daiichi Kagaku:Kk Analyzing means having oxygen supply layer
JPH0533973A (en) * 1991-07-25 1993-02-09 Mitsubishi Electric Corp Humidifier
JPH08288112A (en) * 1995-04-19 1996-11-01 Hitachi Metals Ltd Rare-earth permanent magnet and its manufacture
JPH09232121A (en) * 1996-02-27 1997-09-05 Hitachi Metals Ltd R-m-b magnet
JPH10335125A (en) * 1997-06-02 1998-12-18 Sumitomo Metal Mining Co Ltd R-fe-b system alloy powder for permanent magnet
JP2002170728A (en) * 2000-09-19 2002-06-14 Sumitomo Special Metals Co Ltd Rare earth magnet and its manufacturing method
JP2003049234A (en) * 2001-05-30 2003-02-21 Sumitomo Special Metals Co Ltd Method for producing sintered compact for rare earth magnet

Also Published As

Publication number Publication date
JP2009016853A (en) 2009-01-22

Similar Documents

Publication Publication Date Title
JP5892139B2 (en) Rare earth anisotropic magnet and manufacturing method thereof
US9997284B2 (en) Sintered magnet
EP1544870B1 (en) Process for producing anisotropic magnet powder
WO2011145674A1 (en) Method for producing rare earth permanent magnets, and rare earth permanent magnets
JP2018093202A (en) R-t-b based permanent magnet
JP4076175B2 (en) R-T-B rare earth permanent magnet
JP5757394B2 (en) Rare earth permanent magnet manufacturing method
US11915861B2 (en) Method for manufacturing rare earth permanent magnet
JP4766453B2 (en) Rare earth permanent magnet
JP2006210377A (en) Rtb-based sintered magnet and manufacturing method thereof
JP4766452B2 (en) Rare earth permanent magnet
CN108630367B (en) R-T-B rare earth magnet
JPWO2004029999A1 (en) R-T-B rare earth permanent magnet
JP4692783B2 (en) Manufacturing method of rare earth sintered magnet
JP6468435B2 (en) R-T-B sintered magnet
JP4702522B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP4194021B2 (en) Manufacturing method of rare earth sintered magnet
JP2007250605A (en) Method for manufacturing r-t-b-based rare-earth permanent magnet
JPH07130522A (en) Manufacture of permanent magnet
JP4556727B2 (en) Manufacturing method of rare earth sintered magnet
JP4529180B2 (en) Rare earth permanent magnet
JP4534553B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP4618437B2 (en) Method for producing rare earth permanent magnet and raw material alloy thereof
JP4650218B2 (en) Method for producing rare earth magnet powder
JP2005286174A (en) R-t-b-based sintered magnet

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4692783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees