JP2006210377A - Rtb-based sintered magnet and manufacturing method thereof - Google Patents

Rtb-based sintered magnet and manufacturing method thereof Download PDF

Info

Publication number
JP2006210377A
JP2006210377A JP2005016365A JP2005016365A JP2006210377A JP 2006210377 A JP2006210377 A JP 2006210377A JP 2005016365 A JP2005016365 A JP 2005016365A JP 2005016365 A JP2005016365 A JP 2005016365A JP 2006210377 A JP2006210377 A JP 2006210377A
Authority
JP
Japan
Prior art keywords
rtb
sintered magnet
based sintered
ppm
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005016365A
Other languages
Japanese (ja)
Other versions
JP4543940B2 (en
Inventor
Yasushi Enokido
靖 榎戸
Koichi Nishizawa
剛一 西澤
Tsutomu Ishizaka
力 石坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2005016365A priority Critical patent/JP4543940B2/en
Priority to US11/337,356 priority patent/US20060165550A1/en
Priority to EP06001403A priority patent/EP1684314B1/en
Priority to DE602006011516T priority patent/DE602006011516D1/en
Priority to CN2009102079996A priority patent/CN101694798B/en
Priority to CNB2006100089114A priority patent/CN100570762C/en
Publication of JP2006210377A publication Critical patent/JP2006210377A/en
Priority to US12/646,593 priority patent/US8157927B2/en
Application granted granted Critical
Publication of JP4543940B2 publication Critical patent/JP4543940B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To unify the crystal organization of an RTB-based sintered magnet, by uniformizing the crystal organization of a raw material alloy manufactured by a strip casting method. <P>SOLUTION: In the R-T-B-based sintered magnet, a sintered body uses a crystal particle comprising an R<SB>2</SB>T<SB>14</SB>B compound (R is one type or two types of elements selected from among rare earth elements; T is one type or at least two types of elements selected from among transition metal elements containing Fe, or Fe and Co) as the main phase, P and/or S is contained in the sintered body by 10-220 ppm. P and/or S, contained in the sintered body, is preferably in the range of 50-200 ppm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、R−T−B系焼結磁石(Rは希土類元素から選択される1種又は2種以上の元素、TはFe又はFe及びCoを含む遷移金属元素から選択される1種又は2種以上の元素)に関し、特に原料合金の粉砕性を向上することにより、磁気特性を向上したR−T−B系焼結磁石に関するものである。   The present invention relates to an R-T-B based sintered magnet (R is one or more elements selected from rare earth elements, T is one or more elements selected from transition metal elements including Fe or Fe and Co, or In particular, the present invention relates to an RTB-based sintered magnet having improved magnetic properties by improving the grindability of the raw material alloy.

R−T−B系焼結磁石の基本的な製造工程は、原料合金の作製、得られた原料合金の粉砕、粉砕された合金粉末の磁場中成形、焼結及び時効処理を含んでいる。R−T−B系焼結磁石の磁気特性を向上させるため、各製造工程においても種々の試みがなされている。例えば、焼結体中の酸素量を低下するために、製造工程における雰囲気の酸素量を低減する、複数(典型的には2種類)の原料合金を用いる等、である。その中で、以下説明するように、原料母合金の組織を改善することによる磁気特性の向上が検討されている。   The basic manufacturing process of the RTB-based sintered magnet includes production of a raw material alloy, pulverization of the obtained raw material alloy, shaping of the pulverized alloy powder in a magnetic field, sintering and aging treatment. In order to improve the magnetic properties of the RTB-based sintered magnet, various attempts have been made in each manufacturing process. For example, in order to reduce the amount of oxygen in the sintered body, the amount of oxygen in the atmosphere in the manufacturing process is reduced, or a plurality (typically two types) of raw material alloys are used. Among them, as described below, improvement of magnetic properties by improving the structure of the raw material master alloy has been studied.

従来、原料母合金は、金型鋳造によるインゴット法や、冷却ロールを用いて合金溶湯を急冷するストリップキャスト法を用いて作製されていた。
インゴット法により作製された合金では、α−Feの生成が避けられず、その結果合金の粉砕効率が著しく低下し、最終的に得られる磁石特性も低いものであった。この問題を解決するため、インゴット法で得られた合金を溶体化処理することでα−Feを消失させることが知られているが、溶体化処理を行うことにより、生産性の低下と製造コストの上昇を招いていた。
Conventionally, a raw material master alloy has been produced by using an ingot method by die casting or a strip casting method in which a molten alloy is rapidly cooled using a cooling roll.
In the alloy produced by the ingot method, the production of α-Fe is unavoidable. As a result, the grinding efficiency of the alloy is remarkably lowered, and the finally obtained magnet characteristics are also low. In order to solve this problem, it is known that α-Fe disappears by solution treatment of an alloy obtained by the ingot method. However, by performing solution treatment, productivity is lowered and manufacturing cost is reduced. Was inviting a rise.

これに対し、急冷凝固法の一種であるストリップキャスト法(例えば、特開平5−222488号公報(特許文献1)、特開平5−295490号公報(特許文献2))により作製された合金では、α−Feがほとんど生成されない。また、短軸方向の結晶粒径が20〜30μmで、長軸方向は最大で300μm程度と比較的微細な結晶組織が得られる。   On the other hand, in an alloy produced by a strip cast method (for example, JP-A-5-222488 (Patent Document 1), JP-A-5-295490 (Patent Document 2)) which is a kind of rapid solidification method, Almost no α-Fe is produced. Further, a relatively fine crystal structure can be obtained, in which the crystal grain size in the minor axis direction is 20 to 30 μm and the major axis direction is about 300 μm at the maximum.

特開平5−222488号公報JP-A-5-222488 特開平5−295490号公報Japanese Patent Laid-Open No. 5-295490

ストリップキャスト法で作製された原料合金は、以上のように微細な組織を有するものの、この原料合金を一定の条件下で粉砕しても、粉砕された粉末の粒度分布にばらつきがあった。粒度分布にばらつきのある粉砕粉末を磁場中成形、焼結して得られたR−T−B系焼結磁石の結晶組織も不均一となり、磁気特性、特に保磁力が低くなり、さらにそのばらつきが大きくなるという問題が生じていた。
本発明は、このような技術的課題に基づいてなされたもので、ストリップキャスト法で作製された原料合金の結晶組織をより均一なものとすることにより、R−T−B系焼結磁石の結晶組織を均一化することを目的とする。このR−T−B系焼結磁石は保磁力の向上に有効である。
Although the raw material alloy produced by the strip cast method has a fine structure as described above, even if this raw material alloy is pulverized under certain conditions, the particle size distribution of the pulverized powder varies. The crystal structure of the R-T-B system sintered magnet obtained by molding and sintering the pulverized powder having a variation in particle size distribution in a magnetic field is also non-uniform, and the magnetic properties, particularly the coercive force, are reduced. There has been a problem of growing.
The present invention has been made on the basis of such a technical problem. By making the crystal structure of the raw material alloy produced by the strip casting method more uniform, the R-T-B system sintered magnet can be obtained. The purpose is to make the crystal structure uniform. This RTB-based sintered magnet is effective in improving the coercive force.

ストリップキャスト法による原料合金の組織を均一にするためには、ストリップキャスト法で作製される薄帯がより均一に冷却される必要がある。つまり、ロールに供給される溶湯の厚さが厚ければ、その厚さ方向における冷却能が相違して、均一な冷却、換言すれば均一な組織を得ることが容易でなくなる。溶湯をより薄くしてロールに供給するために、溶湯状態の合金の粘度が重要と考えた。つまり、溶湯の粘度が低ければロールに供給される合金を薄くすることが可能となり、その結果として組織の均一なストリップキャストによる原料合金を提供することができる。そして、溶湯の粘度低下のためには、P(燐)及びS(硫黄)が有効であるものの、P及び/又はSの量が多くなりすぎると粉砕粉末の粒径が細かくなりすぎる不都合が生じる。本発明者らの検討によれば、P及び/又はSは、10〜220ppmの範囲であることが本発明の目的達成にとって有効である。   In order to make the structure of the raw material alloy uniform by the strip casting method, the ribbon produced by the strip casting method needs to be cooled more uniformly. That is, if the thickness of the molten metal supplied to the roll is large, the cooling ability in the thickness direction is different, so that it is not easy to obtain uniform cooling, in other words, a uniform structure. In order to make the molten metal thinner and supply it to the roll, the viscosity of the molten alloy was considered important. That is, when the viscosity of the molten metal is low, the alloy supplied to the roll can be made thin, and as a result, a raw material alloy by strip casting having a uniform structure can be provided. For reducing the viscosity of the molten metal, P (phosphorus) and S (sulfur) are effective. However, if the amount of P and / or S is too large, the particle size of the pulverized powder becomes too fine. . According to the study by the present inventors, it is effective for achieving the object of the present invention that P and / or S is in the range of 10 to 220 ppm.

すなわち本発明のR−T−B系焼結磁石は、R214B化合物(Rは希土類元素から選択される1種又は2種以上の元素、TはFe又はFe及びCoを含む遷移金属元素から選択される1種又は2種以上の元素)からなる結晶粒を主相とする焼結体であり、この焼結体中にP及び/又はSが10〜220ppm含有することを特徴としている。
本発明のR−T−B系焼結磁石において、焼結体中に含有されるP及び/又はSが50〜200ppmであることが好ましい。
また本発明のR−T−B系焼結磁石において、焼結体は、R:25〜35wt%、B:0.5〜4wt%、Al及びCuの1種又は2種を0.02〜0.6wt%、Co:0.5〜4wt%以下、残部実質的にFeからなる組成とすることが好ましい。
That is, the RTB-based sintered magnet of the present invention is an R 2 T 14 B compound (where R is one or more elements selected from rare earth elements, T is a transition metal containing Fe, Fe, and Co). 1 or 2 or more elements selected from elements) as a main phase, and the sintered body contains 10 to 220 ppm of P and / or S. Yes.
In the RTB-based sintered magnet of the present invention, P and / or S contained in the sintered body is preferably 50 to 200 ppm.
In the RTB-based sintered magnet of the present invention, the sintered body is R: 25 to 35 wt%, B: 0.5 to 4 wt%, and one or two of Al and Cu are 0.02 to 0.02 wt%. It is preferable that the composition be 0.6 wt%, Co: 0.5 to 4 wt% or less, and the balance substantially consisting of Fe.

以上の本発明R−T−B系焼結磁石は、P及び/又はSの含有量が10〜220ppmの合金溶湯をストリップキャストすることで作製された原料合金を所定粒度の粉末まで粉砕する工程と、得られた粉末を磁場中で成形して成形体を作製する工程と、この成形体を焼結する工程と、を経ることにより製造することができる。   The above-mentioned RTB-based sintered magnet of the present invention is a step of pulverizing a raw material alloy produced by strip casting a molten alloy having a P and / or S content of 10 to 220 ppm to a powder having a predetermined particle size. And it can manufacture by passing through the process of shape | molding the obtained powder in a magnetic field, and producing a molded object, and the process of sintering this molded object.

本発明によれば、ストリップキャストによる原料合金に含有されるP及び/又はSの量を50〜200ppmとすることにより、当該原料合金の組織を均一にし、ひいては磁場中成形の対象となる微粉砕粉末の粒径を微細かつシャープにすることにより、得られるR−T−B系焼結磁石の磁気特性、特に保磁力を向上することができる。   According to the present invention, by making the amount of P and / or S contained in the raw material alloy by strip casting 50 to 200 ppm, the structure of the raw material alloy is made uniform, and as a result, finely pulverized which is the object of forming in a magnetic field. By making the particle size of the powder fine and sharp, it is possible to improve the magnetic properties, particularly the coercive force, of the obtained RTB-based sintered magnet.

本発明によるR−T−B系焼結磁石は、R214B化合物からなる結晶粒を主相とする焼結体から構成される。ここで、RはYを含む概念を有しており、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb、Lu及びYから選択される1種又は2種以上の元素である。Rの中では、Ndが資源的に豊富で比較的安価であることから、Rとしての主成分をNdとすることが好ましい。また、重希土類元素(Dy、Tb、Gd、Ho、Er、Tm及びYの1種又は2種以上)の含有は異方性磁界を増加させるために、保磁力を向上させる上で有効である。よって、本発明のR−T−B系焼結磁石において、重希土類元素を含有させることもできる。重希土類元素としては、Dy及び/又はTbを用いるのが好ましい。 The RTB-based sintered magnet according to the present invention is composed of a sintered body whose main phase is crystal grains made of an R 2 T 14 B compound. Here, R has a concept including Y, and one or two selected from La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu, and Y More than a seed element. In R, since Nd is abundant in resources and relatively inexpensive, it is preferable that the main component as R is Nd. The inclusion of heavy rare earth elements (one or more of Dy, Tb, Gd, Ho, Er, Tm and Y) is effective in improving the coercive force because it increases the anisotropic magnetic field. . Therefore, a heavy rare earth element can also be contained in the RTB-based sintered magnet of the present invention. It is preferable to use Dy and / or Tb as the heavy rare earth element.

本発明によるR−T−B系焼結磁石は、主相の他に粒界相を備えている。この粒界相は、主相よりもNd量がリッチであるためにNdリッチ相と呼ばれる相、BがリッチであるためにBリッチ相と呼ばれる相等のいくつかの相を備えている。   The RTB-based sintered magnet according to the present invention has a grain boundary phase in addition to the main phase. This grain boundary phase has several phases such as a phase called an Nd-rich phase because the amount of Nd is richer than that of the main phase, and a phase called a B-rich phase because B is rich.

以上の主相及び粒界相を備えた本発明のR−T−B系焼結磁石は、P及び/又はSの含有量が10〜220ppmである。本発明においてP及び/又はSは、溶湯の粘度を低下させることにより得られる原料合金の組織を均一かつ微細にする効果を奏する。そのため、その後の微粉砕で得られる微粉砕粉の粒径が小さく、また粒度分布がシャープとなる。この結果、この微粉砕粉を用いて得られたR−T−B系焼結磁石の磁気特性、特に保磁力を増大させ、またR−T−B系焼結磁石の保磁力のばらつきを抑えることができる。   The RTB-based sintered magnet of the present invention having the above main phase and grain boundary phase has a P and / or S content of 10 to 220 ppm. In the present invention, P and / or S has an effect of making the structure of the raw material alloy obtained by reducing the viscosity of the molten metal uniform and fine. Therefore, the particle size of the finely pulverized powder obtained by the subsequent fine pulverization is small, and the particle size distribution is sharp. As a result, the magnetic properties of the RTB-based sintered magnet obtained using this finely pulverized powder, particularly the coercive force, is increased, and variations in the coercive force of the RTB-based sintered magnet are suppressed. be able to.

ここで、溶湯の粘度が下がれば合金の厚さを薄くすることができる。溶湯は回転するロールに触れると、ロールとの接触面から温度が低下し、柱状に結晶が成長する。ロールに接触する合金が厚いと冷却に時間がかかり、ロールとの接触面と反対側は結晶が水平方向に成長してしまう。このため、ロールから離れるほど厚みが増す形状、すなわちラッパ状に柱が形成する。こうなると粉砕粉の粒径が均一にならない、また、粒径が大きくなる、という問題が生じるものと解される。   Here, if the viscosity of a molten metal falls, the thickness of an alloy can be made thin. When the molten metal touches the rotating roll, the temperature decreases from the contact surface with the roll, and crystals grow in a columnar shape. When the alloy in contact with the roll is thick, it takes time for cooling, and crystals grow in the horizontal direction on the side opposite to the contact surface with the roll. For this reason, the pillar is formed in a shape that increases in thickness as it is separated from the roll, that is, in a trumpet shape. In this case, it is understood that the problem that the particle size of the pulverized powder does not become uniform and the particle size becomes large arises.

本発明において、P及び/又はSの含有量が10ppm未満では溶湯の粘度低下の効果が十分に発揮されないために保磁力向上の効果を得ることができない。ただし、P及び/又はSの含有量が多くなりすぎると原料合金の組織が微細になりすぎて、微粉砕後の粒径がそれに応じたものとなる。その結果、磁場中成形時の配向が不十分となり、残留磁束密度劣化が懸念される。したがって、本発明はP及び/又はSの含有量を10〜220ppmとする。P及び/又はSの好ましい含有量は50〜200ppm、さらに好ましい含有量は50〜180ppmである。   In the present invention, if the content of P and / or S is less than 10 ppm, the effect of lowering the viscosity of the molten metal is not sufficiently exhibited, so that the effect of improving the coercive force cannot be obtained. However, if the content of P and / or S is too large, the structure of the raw material alloy becomes too fine, and the particle size after pulverization becomes corresponding to it. As a result, the orientation during molding in a magnetic field becomes insufficient, and there is a concern about residual magnetic flux density degradation. Therefore, this invention makes content of P and / or S 10-220 ppm. The preferable content of P and / or S is 50 to 200 ppm, and the more preferable content is 50 to 180 ppm.

本発明におけるR−T−B系焼結磁石は、R:25〜35wt%、B:0.5〜4wt%、Al及びCuの1種又は2種:0.02〜0.6wt%、Zr及びNb、Hfの1種又は2種:2wt%以下、Co:4wt%以下、残部実質的にFeからなる組成を有することが好ましい。以下、各元素について言及する。
本発明によるR−T−B系焼結磁石は、Rを25〜35wt%含有する。
ここで、Rは前述したように、Yを含む概念を有しており、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb、Lu及びYから選択される1種又は2種以上の元素である。Rの量が25wt%未満であると、R−T−B系焼結磁石の主相となるR214B結晶粒の生成が十分ではない。このため、軟磁性を持つα−Feなどが析出し、保磁力が著しく低下する。一方、Rの量が35wt%を超えると主相を構成するR214B結晶粒の体積比率が低下し、残留磁束密度が低下する。またRの量が35wt%を超えるとRが酸素と反応し、含有する酸素量が増え、これに伴い保磁力発生に有効なR−リッチ相が減少し、保磁力の低下を招く。したがって、Rの量は25〜35wt%とする。好ましいRの量は26〜33wt%、さらに好ましいRの量は27〜32wt%である。
The RTB-based sintered magnet in the present invention is R: 25 to 35 wt%, B: 0.5 to 4 wt%, one or two of Al and Cu: 0.02 to 0.6 wt%, Zr And one or two of Nb and Hf: 2 wt% or less, Co: 4 wt% or less, and the balance being preferably substantially composed of Fe. Hereinafter, each element will be mentioned.
The RTB-based sintered magnet according to the present invention contains 25 to 35 wt% of R.
Here, as described above, R has a concept including Y, and is selected from La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu, and Y. Or one or more elements. When the amount of R is less than 25 wt%, the generation of R 2 T 14 B crystal grains that are the main phase of the R-T-B sintered magnet is not sufficient. For this reason, α-Fe or the like having soft magnetism is precipitated, and the coercive force is remarkably lowered. On the other hand, when the amount of R exceeds 35 wt%, the volume ratio of R 2 T 14 B crystal grains constituting the main phase is lowered, and the residual magnetic flux density is lowered. On the other hand, when the amount of R exceeds 35 wt%, R reacts with oxygen, and the amount of oxygen contained increases, and as a result, the R-rich phase effective for the generation of coercive force decreases and the coercive force decreases. Therefore, the amount of R is set to 25 to 35 wt%. A preferable amount of R is 26 to 33 wt%, and a more preferable amount of R is 27 to 32 wt%.

重希土類元素を含む場合は、重希土類元素を含んでRを25〜35wt%とする。そして、この範囲において、重希土類元素の量は0.1〜8wt%が好ましい。重希土類元素は、残留磁束密度及び保磁力のいずれを重視するかによって上記範囲内においてその量を定めることが好ましい。つまり、高い残留磁束密度を得たい場合には重希土類元素量を0.1〜3.5wt%とし、高い保磁力を得たい場合には重希土類元素量を3.5〜8wt%とすることが好ましい。   When heavy rare earth elements are included, R is 25 to 35 wt% including heavy rare earth elements. In this range, the amount of heavy rare earth element is preferably 0.1 to 8 wt%. The amount of the heavy rare earth element is preferably determined within the above range depending on which of the residual magnetic flux density and the coercive force is important. In other words, when it is desired to obtain a high residual magnetic flux density, the amount of heavy rare earth element is set to 0.1 to 3.5 wt%, and when it is desired to obtain a high coercive force, the amount of heavy rare earth element is set to 3.5 to 8 wt%. Is preferred.

本発明によるR−T−B系焼結磁石は、ホウ素(B)を0.5〜4%含有する。Bが0.5wt%未満の場合には高い保磁力を得ることができない。但し、Bが4wt%を超えると残留磁束密度が低下する傾向がある。したがって、上限を4wt%とする。好ましいBの量は0.5〜1.5wt%、さらに好ましいBの量は0.8〜1.2wt%である。   The RTB-based sintered magnet according to the present invention contains 0.5 to 4% of boron (B). When B is less than 0.5 wt%, a high coercive force cannot be obtained. However, when B exceeds 4 wt%, the residual magnetic flux density tends to decrease. Therefore, the upper limit is 4 wt%. A preferable amount of B is 0.5 to 1.5 wt%, and a more preferable amount of B is 0.8 to 1.2 wt%.

本発明によるR−T−B系焼結磁石は、Al及びCuの1種又は2種を0.02〜0.6wt%の範囲で含有することができる。この範囲でAl及びCuの1種又は2種を含有させることにより、得られるR−T−B系焼結磁石の高保磁力化、高耐食性化、温度特性の改善が可能となる。Alを添加する場合において、好ましいAlの量は0.03〜0.3wt%、さらに好ましいAlの量は0.05〜0.25wt%である。また、Cuを添加する場合において、Cuの量は0.01〜0.3wt%、好ましくは0.02〜0.2wt%、さらに好ましいCuの量は0.03〜0.15wt%である。   The RTB-based sintered magnet according to the present invention can contain one or two of Al and Cu in the range of 0.02 to 0.6 wt%. By including one or two of Al and Cu in this range, it is possible to increase the coercive force, increase the corrosion resistance, and improve the temperature characteristics of the obtained RTB-based sintered magnet. In the case of adding Al, a preferable amount of Al is 0.03 to 0.3 wt%, and a more preferable amount of Al is 0.05 to 0.25 wt%. When Cu is added, the amount of Cu is 0.01 to 0.3 wt%, preferably 0.02 to 0.2 wt%, and more preferably Cu is 0.03 to 0.15 wt%.

本発明によるR−T−B系焼結磁石は、Zr及びNb、Hfの1種又は2種を0.01〜2wt%含有する。R−T−B系焼結磁石の磁気特性向上を図るために酸素含有量を低減する際に、Zr、Nb、Hfは焼結過程での結晶粒の異常成長を抑制する効果を発揮し、焼結体の組織を均一かつ微細にする。したがって、Zr及びNb、Hfは酸素量が低い場合にその効果が顕著になる。Zr及びNb、Hfの1種又は2種の好ましい量は0.05〜1.5wt%、さらに好ましい量は0.1〜0.5wt%である。   The RTB-based sintered magnet according to the present invention contains 0.01 to 2 wt% of one or two of Zr, Nb, and Hf. When reducing the oxygen content in order to improve the magnetic properties of the RTB-based sintered magnet, Zr, Nb, and Hf exhibit the effect of suppressing abnormal growth of crystal grains during the sintering process, Make the structure of the sintered body uniform and fine. Therefore, the effect of Zr, Nb, and Hf becomes remarkable when the amount of oxygen is low. A preferable amount of one or two of Zr, Nb, and Hf is 0.05 to 1.5 wt%, and a more preferable amount is 0.1 to 0.5 wt%.

本発明のR−T−B系焼結磁石は、Coを4wt%以下含有することができる。Coはキュリー温度の向上及び耐食性の向上に効果がある。また、Cuと複合添加することにより、高い保磁力が得られる時効処理温度範囲が拡大するという効果をも有する。しかし、過剰の添加は保磁力の低下を招くとともに、コストを上昇させるため4wt%以下とする。好ましいCoの含有量は0.2〜3wt%、さらに好ましいCoの含有量は0.2〜1.5wt%である。   The RTB-based sintered magnet of the present invention can contain 4 wt% or less of Co. Co is effective in improving the Curie temperature and the corrosion resistance. Moreover, it has the effect that the aging treatment temperature range from which a high coercive force is obtained is expanded by adding together with Cu. However, excessive addition causes a decrease in coercive force and increases the cost. A preferable Co content is 0.2 to 3 wt%, and a more preferable Co content is 0.2 to 1.5 wt%.

本発明のR−T−B系焼結磁石は、その酸素量を3000ppm以下とする。酸素量が多いと非磁性成分である酸化物相が増大して、磁気特性を低下させる。そこで本発明では、焼結体中に含まれる酸素量を、3000ppm以下、好ましくは2000ppm以下、さらに好ましくは1000ppm以下とする。但し、単純に酸素量を低下させたのでは、粒成長抑制効果を有していた酸化物相が不足し、焼結時に十分な密度上昇を得る過程で異常な粒成長が容易に起こる。そこで、本発明では、そのように低酸素含有量とする場合には、焼結過程での主相結晶粒の異常成長を抑制する効果を発揮するZr、Nb及びHfの1種又は2種以上を、R−T−B系焼結磁石中に所定量含有させることが好ましい。   The RTB-based sintered magnet of the present invention has an oxygen content of 3000 ppm or less. When the amount of oxygen is large, the oxide phase, which is a nonmagnetic component, increases and the magnetic properties are deteriorated. Therefore, in the present invention, the amount of oxygen contained in the sintered body is 3000 ppm or less, preferably 2000 ppm or less, and more preferably 1000 ppm or less. However, if the oxygen amount is simply reduced, the oxide phase having the effect of suppressing grain growth is insufficient, and abnormal grain growth easily occurs in the process of obtaining a sufficient density increase during sintering. Therefore, in the present invention, in the case of such a low oxygen content, one or more of Zr, Nb and Hf exhibiting an effect of suppressing abnormal growth of main phase crystal grains during the sintering process. Is preferably contained in the RTB-based sintered magnet in a predetermined amount.

次に、本発明によるR−T−B系焼結磁石の製造方法の好ましい形態について説明する。
原料金属を真空又は不活性ガス、好ましくはAr雰囲気中でストリップキャスティングすることにより、原料合金を得ることができる。原料合金を得るための原料金属としては、希土類金属あるいは希土類合金、純鉄、フェロボロン、さらにはこれらの合金等を使用することができる。この際、得られるR−T−B系焼結磁石のP及び/又はSの含有量が10〜220ppmとなるように原料金属を選定する必要がある。P及び/又はSは、原料金属、たとえば純鉄中に不純物として含有される元素であるため、原料金属の不純物レベルを選定することにより本発明のR−T−B系焼結磁石を得ることができる。原料金属の不純物レベルを選定することなく、適宜、P及び/又はSを添加することにより本発明のP及び/又はSの含有量を得ることもできる。要するに、溶湯として必要な量のP及び/又はSを含有していればよい。
Next, the preferable form of the manufacturing method of the RTB system sintered magnet by this invention is demonstrated.
A raw material alloy can be obtained by strip casting the raw metal in a vacuum or an inert gas, preferably in an Ar atmosphere. As a raw material metal for obtaining a raw material alloy, a rare earth metal or a rare earth alloy, pure iron, ferroboron, or an alloy thereof can be used. At this time, it is necessary to select the raw metal so that the content of P and / or S of the obtained RTB-based sintered magnet is 10 to 220 ppm. Since P and / or S is an element contained as an impurity in a raw metal, for example, pure iron, the RTB-based sintered magnet of the present invention is obtained by selecting the impurity level of the raw metal. Can do. The content of P and / or S of the present invention can be obtained by appropriately adding P and / or S without selecting the impurity level of the raw metal. In short, what is necessary is just to contain the quantity of P and / or S required as a molten metal.

原料合金が作製された後、これらの原料合金は粉砕される。粉砕工程には、粗粉砕工程と微粉砕工程とがある。まず、各母合金をそれぞれ粒径数百μm程度になるまで粗粉砕する。粗粉砕は、スタンプミル、ジョークラッシャー、ブラウンミル等を用い、不活性ガス雰囲気中にて行なうことが好ましい。粗粉砕性を向上させるために、水素を吸蔵させた後、粗粉砕を行なうことが効果的である。また、水素吸蔵を行った後に、水素を放出させることにより、粗粉砕を行うこともできる。高磁気特性を得るために、粉砕処理(粉砕処理後の回収)から焼結(焼結炉に投入する)までの各工程の雰囲気を、100ppm未満の酸素濃度に抑えることが好ましい。そうすることにより、焼結体に含まれる酸素量を3000ppm以下に制御することができる。   After the raw material alloys are produced, these raw material alloys are pulverized. The pulverization process includes a coarse pulverization process and a fine pulverization process. First, each mother alloy is coarsely pulverized until the particle size becomes about several hundred μm. The coarse pulverization is preferably performed in an inert gas atmosphere using a stamp mill, a jaw crusher, a brown mill or the like. In order to improve the coarse pulverization property, it is effective to perform coarse pulverization after occlusion of hydrogen. Further, after hydrogen absorption, coarse pulverization can be performed by releasing hydrogen. In order to obtain high magnetic properties, it is preferable to suppress the atmosphere in each step from pulverization (recovery after pulverization) to sintering (put into a sintering furnace) to an oxygen concentration of less than 100 ppm. By doing so, the amount of oxygen contained in the sintered body can be controlled to 3000 ppm or less.

水素吸蔵は、原料合金を常温下で水素含有雰囲気に曝すことにより行うことができる。水素吸蔵反応は発熱反応であるため、温度上昇に伴って吸蔵水素量が低下することを防止するために、反応容器を冷却する等の手段を適用してもよい。水素吸蔵された原料合金は、例えば粒界に沿って亀裂が生じる。   Hydrogen storage can be performed by exposing the raw material alloy to a hydrogen-containing atmosphere at room temperature. Since the hydrogen occlusion reaction is an exothermic reaction, means such as cooling the reaction vessel may be applied to prevent the amount of occluded hydrogen from decreasing as the temperature rises. In the raw material alloy stored with hydrogen, cracks occur, for example, along grain boundaries.

水素吸蔵が終了した後に、水素吸蔵が行われた原料合金を加熱保持する脱水素処理が施される。この処理は、磁石として不純物となる水素を減少させることを目的として行われる。加熱保持の温度は、200℃以上、好ましくは350℃以上とする。保持時間は、保持温度との関係、原料合金の厚さ等によって変わるが、少なくとも30分以上、好ましくは1時間以上とする。脱水素処理は、真空中又はArガスフローにて行う。なお、脱水素処理は必須の処理ではない。   After the hydrogen storage is completed, a dehydrogenation process is performed in which the raw material alloy that has been subjected to hydrogen storage is heated and held. This treatment is performed for the purpose of reducing hydrogen as an impurity as a magnet. The heating and holding temperature is 200 ° C. or higher, preferably 350 ° C. or higher. The holding time varies depending on the relationship with the holding temperature, the thickness of the raw material alloy, etc., but is at least 30 minutes or more, preferably 1 hour or more. The dehydrogenation process is performed in a vacuum or Ar gas flow. Note that the dehydrogenation process is not an essential process.

粗粉砕工程後、微粉砕工程に移る。微粉砕は、主にジェットミルが用いられ、粒径数百μm程度の粗粉砕粉末が、平均粒径3〜5μmになるまで粉砕される。ジェットミルは、高圧の不活性ガス(例えば窒素ガス)を狭いノズルより開放して高速のガス流を発生させ、この高速のガス流により粗粉砕粉末を加速し、粗粉砕粉末同士の衝突やターゲットあるいは容器壁との衝突を発生させて粉砕する方法である。微粉砕時に、ステアリン酸亜鉛等の添加剤を0.01〜0.3wt%程度添加することにより、成形時に配向性の高い微粉を得ることができる。   After the coarse pulverization process, the process proceeds to the fine pulverization process. In the fine pulverization, a jet mill is mainly used, and a coarsely pulverized powder having a particle diameter of about several hundreds of micrometers is pulverized until the average particle diameter becomes 3 to 5 μm. The jet mill opens a high-pressure inert gas (for example, nitrogen gas) from a narrow nozzle to generate a high-speed gas flow, and the high-speed gas flow accelerates the coarsely pulverized powder. Or it is the method of generating and colliding with a container wall. By adding about 0.01 to 0.3 wt% of additives such as zinc stearate at the time of fine pulverization, fine powder having high orientation can be obtained at the time of molding.

次いで、微粉砕された合金粉末を、磁場印加によってその結晶軸を配向させた状態で磁場中成形する。磁場中成形における成形圧力は0.3〜3ton/cm2(30〜300MPa)の範囲とすればよい。成形圧力は成形開始から終了まで一定であってもよく、漸増または漸減してもよく、あるいは不規則変化してもよい。成形圧力が低いほど配向性は良好となるが、成形圧力が低すぎると成形体の強度が不足してハンドリングに問題が生じるので、この点を考慮して上記範囲から成形圧力を選択する。磁場中成形で得られる成形体の最終的な相対密度は、通常、50〜60%である。また、印加する磁場は、12〜20kOe(960〜1600kA/m)程度とすればよい。また、印加する磁場は静磁場に限定されず、パルス状の磁場とすることもできる。また、静磁場とパルス状磁場を併用することもできる。 Next, the finely pulverized alloy powder is formed in a magnetic field with its crystal axis oriented by applying a magnetic field. The molding pressure in the magnetic field molding may be in the range of 0.3 to 3 ton / cm 2 (30 to 300 MPa). The molding pressure may be constant from the beginning to the end of molding, may be gradually increased or gradually decreased, or may vary irregularly. The lower the molding pressure is, the better the orientation is. However, if the molding pressure is too low, the strength of the molded body is insufficient and handling problems occur. Therefore, the molding pressure is selected from the above range in consideration of this point. The final relative density of the molded body obtained by molding in a magnetic field is usually 50 to 60%. The applied magnetic field may be about 12 to 20 kOe (960 to 1600 kA / m). Further, the applied magnetic field is not limited to a static magnetic field, and may be a pulsed magnetic field. A static magnetic field and a pulsed magnetic field can also be used in combination.

磁場中成形後、その成形体を真空又は不活性ガス雰囲気中で焼結する。焼結温度は、組成、粉砕方法、粒度と粒度分布の違い等、諸条件により調整する必要があるが、1000〜1200℃で1〜10時間程度焼結すればよい。焼結後、得られた焼結体に時効処理を施すことができる。時効処理は、保磁力を制御する上で重要である。時効処理を2段に分けて行なう場合には、800〜900℃近傍、600〜700℃近傍での所定時間の保持が有効である。   After molding in a magnetic field, the compact is sintered in a vacuum or an inert gas atmosphere. Although it is necessary to adjust sintering temperature by various conditions, such as a composition, a grinding | pulverization method, a particle size, and a particle size distribution difference, what is necessary is just to sinter at 1000-1200 degreeC for about 1 to 10 hours. After sintering, the obtained sintered body can be subjected to an aging treatment. The aging treatment is important for controlling the coercive force. In the case where the aging treatment is performed in two stages, it is effective to maintain a predetermined time in the vicinity of 800 to 900 ° C. and in the vicinity of 600 to 700 ° C.

高純度のFe原料を用意した。ストリップキャスト法により、26.5wt%Nd−5.9wt%Dy−0.25wt%Al−0.5wt%Co−0.07wt%Cu−1wt%B−bal.Feの組成を有する原料合金を作製した。このとき、適宜P(リン)およびS(硫黄)を添加し、異なるP、S量の原料合金を作製した。
次いで、室温にて原料合金に水素を吸蔵させた後、Ar雰囲気中で600℃×1時間の脱水素を行う水素粉砕処理を行った。水素粉砕処理が施された合金に、粉砕性の向上並びに成形時の配向性の向上に寄与する潤滑剤を0.05〜0.1wt%混合した。潤滑剤の混合は、例えばナウターミキサ等により5〜30分間ほど行う程度でよい。その後、一定の条件で微粉砕を行い、平均粒径4〜5μmの粉砕粉末を得た。なお、微粉砕はジェットミルで行った。すべての組成試料に対し、同条件で微粉砕を行った。レーザー回折式粒度分布測定装置により測定した粉砕粉末の粒径を表1に示す。
A high purity Fe raw material was prepared. 26.5 wt% Nd-5.9 wt% Dy-0.25 wt% Al-0.5 wt% Co-0.07 wt% Cu-1 wt% B-bal. A raw material alloy having a composition of Fe was produced. At this time, P (phosphorus) and S (sulfur) were appropriately added to produce raw material alloys having different amounts of P and S.
Next, after hydrogen was occluded in the raw material alloy at room temperature, hydrogen pulverization treatment was performed in which dehydrogenation was performed at 600 ° C. for 1 hour in an Ar atmosphere. The alloy that has been subjected to hydrogen pulverization treatment was mixed with 0.05 to 0.1 wt% of a lubricant that contributes to improvement of pulverization and orientation during molding. The lubricant may be mixed for about 5 to 30 minutes using, for example, a Nauta mixer. Thereafter, pulverization was performed under certain conditions to obtain a pulverized powder having an average particle size of 4 to 5 μm. The fine pulverization was performed with a jet mill. All the composition samples were pulverized under the same conditions. Table 1 shows the particle size of the pulverized powder measured by a laser diffraction particle size distribution analyzer.

Figure 2006210377
Figure 2006210377

得られた微粉砕粉末を磁場中成形した。磁場中成形は、15kOeの磁場中で1.4ton/cm2の圧力で行った。得られた成形体を真空中で1080℃まで昇温し4時間保持して焼結を行った。次いで得られた焼結体に800℃×1時間と560℃×1時間(ともにAr雰囲気中)の2段時効処理を施した。焼結体を所定の形状に研磨加工後、磁気特性を測定した。その結果を表1に示す。
次に、焼結体中のP、Sの含有量を蛍光X線分析により測定した。測定した結果を表1に示す。
The resulting finely pulverized powder was molded in a magnetic field. Molding in a magnetic field was performed at a pressure of 1.4 ton / cm 2 in a magnetic field of 15 kOe. The obtained molded body was heated to 1080 ° C. in a vacuum and held for 4 hours for sintering. Next, the obtained sintered body was subjected to a two-stage aging treatment of 800 ° C. × 1 hour and 560 ° C. × 1 hour (both in an Ar atmosphere). After the sintered body was polished into a predetermined shape, the magnetic properties were measured. The results are shown in Table 1.
Next, the contents of P and S in the sintered body were measured by fluorescent X-ray analysis. The measured results are shown in Table 1.

また、図1にP及びSの含有量とD50の関係を、図2にP及びSの含有量と保磁力(iHc)の関係を、さらに図3にP及びSの含有量と残留磁束密度(Br)の関係を示す。表1及び図1〜図3より以下のことが言える。
P及びSの含有量が増加すると、微粉砕粉の粒径が小さくなる。また、P及びSの含有量が増加すると、D90−D10の差が小さくなり、粒度分布が狭くシャープになることがわかる。さらに、P及びSの含有量が増加すると保磁力(iHc)が増加する。一方、P及びSの含有量が増加すると残留磁束密度(Br)は一定もしくは微増し、220ppmを超えると減少した。
1 shows the relationship between the P and S contents and D50, FIG. 2 shows the relation between the P and S contents and the coercive force (iHc), and FIG. 3 shows the P and S contents and the residual magnetic flux density. The relationship of (Br) is shown. The following can be said from Table 1 and FIGS.
As the P and S contents increase, the particle size of the finely pulverized powder decreases. Further, it can be seen that when the contents of P and S are increased, the difference of D90-D10 becomes small, and the particle size distribution becomes narrow and sharp. Furthermore, the coercive force (iHc) increases as the P and S contents increase. On the other hand, the residual magnetic flux density (Br) was constant or slightly increased as the contents of P and S increased, and decreased when exceeding 220 ppm.

P及びSの含有量とD50の関係を示すグラフである。It is a graph which shows the relationship between content of P and S, and D50. P及びSの含有量と保磁力(iHc)の関係を示すグラフである。It is a graph which shows the relationship between content of P and S, and a coercive force (iHc). P及びSの含有量と残留磁束密度(Br)の関係を示すグラフである。It is a graph which shows the relationship between content of P and S, and residual magnetic flux density (Br).

Claims (4)

214B化合物(Rは希土類元素から選択される1種又は2種以上の元素、TはFe又はFe及びCoを含む遷移金属元素から選択される1種又は2種以上の元素)からなる結晶粒を主相とする焼結体であり、
前記焼結体中にP及び/又はSが10〜220ppm含有することを特徴とするR−T−B系焼結磁石。
From R 2 T 14 B compound (R is one or more elements selected from rare earth elements, T is one or more elements selected from transition metal elements including Fe or Fe and Co) A sintered body having a crystal grain as a main phase,
An RTB-based sintered magnet containing 10 to 220 ppm of P and / or S in the sintered body.
前記焼結体中に含有されるP及び/又はSが50〜200ppmであることを特徴とする請求項1に記載のR−T−B系焼結磁石。   The RTB-based sintered magnet according to claim 1, wherein P and / or S contained in the sintered body is 50 to 200 ppm. 前記焼結体は、R:25〜35wt%、B:0.5〜4wt%、Al及びCuの1種又は2種を0.02〜0.6wt%、Co:0.5〜4wt%以下、残部実質的にFeからなる組成を有することを特徴とする請求項1又は2に記載のR−T−B系焼結磁石。   The sintered body is R: 25 to 35 wt%, B: 0.5 to 4 wt%, one or two of Al and Cu, 0.02 to 0.6 wt%, Co: 0.5 to 4 wt% or less The RTB-based sintered magnet according to claim 1, wherein the balance is substantially composed of Fe. 214B化合物(Rは希土類元素から選択される1種又は2種以上の元素、TはFe又はFe及びCoを含む遷移金属元素から選択される1種又は2種以上の元素)からなる結晶粒を主相とする焼結体からなるR−T−B系焼結磁石の製造方法であって、
P及び/又はSの含有量が10〜220ppmの合金溶湯をストリップキャストすることで作製された原料合金を所定粒度の粉末まで粉砕する工程と、
前記粉末を磁場中で成形して成形体を作製する工程と、
前記成形体を焼結する工程と、
を備えることを特徴とするR−T−B系焼結磁石の製造方法。
From R 2 T 14 B compound (R is one or more elements selected from rare earth elements, T is one or more elements selected from transition metal elements including Fe or Fe and Co) A method for producing an RTB-based sintered magnet comprising a sintered body having crystal grains as a main phase,
A step of pulverizing the raw material alloy produced by strip casting the molten alloy having a P and / or S content of 10 to 220 ppm to a powder having a predetermined particle size;
Forming the powder in a magnetic field to produce a molded body;
Sintering the molded body;
The manufacturing method of the RTB system sintered magnet characterized by including these.
JP2005016365A 2005-01-25 2005-01-25 Method for producing RTB-based sintered magnet Active JP4543940B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2005016365A JP4543940B2 (en) 2005-01-25 2005-01-25 Method for producing RTB-based sintered magnet
US11/337,356 US20060165550A1 (en) 2005-01-25 2006-01-23 Raw material alloy for R-T-B system sintered magnet, R-T-B system sintered magnet and production method thereof
DE602006011516T DE602006011516D1 (en) 2005-01-25 2006-01-24 Starting material for R-T-B sintered magnet, R-T-B sintered magnet and related manufacturing method
EP06001403A EP1684314B1 (en) 2005-01-25 2006-01-24 Raw material alloy for R-T-B system sintered magnet, R-T-B system sintered magnet and production method thereof
CN2009102079996A CN101694798B (en) 2005-01-25 2006-01-25 R-t-b system sintered magnet and production method thereof
CNB2006100089114A CN100570762C (en) 2005-01-25 2006-01-25 R-T-B class sintered magnet raw alloy, R-T-B class sintered magnet and manufacture method thereof
US12/646,593 US8157927B2 (en) 2005-01-25 2009-12-23 Raw material alloy for R-T-B system sintered magnet, R-T-B system sintered magnet and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005016365A JP4543940B2 (en) 2005-01-25 2005-01-25 Method for producing RTB-based sintered magnet

Publications (2)

Publication Number Publication Date
JP2006210377A true JP2006210377A (en) 2006-08-10
JP4543940B2 JP4543940B2 (en) 2010-09-15

Family

ID=36844854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005016365A Active JP4543940B2 (en) 2005-01-25 2005-01-25 Method for producing RTB-based sintered magnet

Country Status (2)

Country Link
JP (1) JP4543940B2 (en)
CN (1) CN100570762C (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114571A1 (en) 2007-03-22 2008-09-25 Showa Denko K.K. R-t-b base alloy, process for production thereof, fine powder for r-t-b base rare earth permanent magnet, and r-t-b base rare earth permanent magnet
CN100437842C (en) * 2006-09-19 2008-11-26 北京大学 Method for preparing rolling anisotropic magnetic powder and magnet
JP2013197240A (en) * 2012-03-19 2013-09-30 Jx Nippon Mining & Metals Corp Neodymium-iron-boron-based rare earth sintered magnet, and method of manufacturing the same
JP2013204119A (en) * 2012-03-29 2013-10-07 Seiko Epson Corp Composition for injection molding and method for manufacturing sintered body
JP2015023285A (en) * 2013-07-17 2015-02-02 煙台首鋼磁性材料株式有限公司 R-t-m-b-based sintered magnet and production method therefor
CN108213404A (en) * 2016-12-21 2018-06-29 三环瓦克华(北京)磁性器件有限公司 It prepares the micro mist of Nd-Fe-B permanent magnet material, target formula airflow milling powder method and goes out powder

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5328161B2 (en) 2008-01-11 2013-10-30 インターメタリックス株式会社 Manufacturing method of NdFeB sintered magnet and NdFeB sintered magnet
EP2453448A4 (en) 2009-07-10 2014-08-06 Intermetallics Co Ltd Ndfeb sintered magnet, and process for production thereof
CN106409456B (en) * 2016-08-26 2018-09-07 宁波同创强磁材料有限公司 A kind of rare earth permanent magnet preparation process improving magnetic property

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59163805A (en) * 1983-03-08 1984-09-14 Sumitomo Special Metals Co Ltd Permanent magnet
JPS6027105A (en) * 1983-07-25 1985-02-12 Sumitomo Special Metals Co Ltd Rare earth, iron, boron alloy powder for permanent magnet
JPS60221551A (en) * 1984-03-21 1985-11-06 Hitachi Metals Ltd Permanent magnet alloy
JPS61243154A (en) * 1985-02-25 1986-10-29 新日本製鐵株式会社 Permanent magnet alloy enhanced in residual magnetization and its magnetic body and its production
JPS63287006A (en) * 1987-05-19 1988-11-24 Seiko Epson Corp Permanent magnet and manufacture thereof
JPH05211102A (en) * 1992-10-15 1993-08-20 Daido Steel Co Ltd Powder for permanent magnet and permanent magnet
JPH0920954A (en) * 1995-06-30 1997-01-21 Sumitomo Special Metals Co Ltd Slab for r-fe-b-c magnet alloy excellent in corrosion resistance and its production
JP2003247022A (en) * 2002-02-25 2003-09-05 Hitachi Metals Ltd Method for manufacturing r-t-b sintered magnet
JP2004250781A (en) * 2002-10-08 2004-09-09 Neomax Co Ltd Sintered type permanent magnet, and production method therefor
JP2005268538A (en) * 2004-03-18 2005-09-29 Neomax Co Ltd Sintered rare earth permanent magnet and manufacturing method thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59163805A (en) * 1983-03-08 1984-09-14 Sumitomo Special Metals Co Ltd Permanent magnet
JPS6027105A (en) * 1983-07-25 1985-02-12 Sumitomo Special Metals Co Ltd Rare earth, iron, boron alloy powder for permanent magnet
JPS60221551A (en) * 1984-03-21 1985-11-06 Hitachi Metals Ltd Permanent magnet alloy
JPS61243154A (en) * 1985-02-25 1986-10-29 新日本製鐵株式会社 Permanent magnet alloy enhanced in residual magnetization and its magnetic body and its production
JPS63287006A (en) * 1987-05-19 1988-11-24 Seiko Epson Corp Permanent magnet and manufacture thereof
JPH05211102A (en) * 1992-10-15 1993-08-20 Daido Steel Co Ltd Powder for permanent magnet and permanent magnet
JPH0920954A (en) * 1995-06-30 1997-01-21 Sumitomo Special Metals Co Ltd Slab for r-fe-b-c magnet alloy excellent in corrosion resistance and its production
JP2003247022A (en) * 2002-02-25 2003-09-05 Hitachi Metals Ltd Method for manufacturing r-t-b sintered magnet
JP2004250781A (en) * 2002-10-08 2004-09-09 Neomax Co Ltd Sintered type permanent magnet, and production method therefor
JP2005268538A (en) * 2004-03-18 2005-09-29 Neomax Co Ltd Sintered rare earth permanent magnet and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100437842C (en) * 2006-09-19 2008-11-26 北京大学 Method for preparing rolling anisotropic magnetic powder and magnet
WO2008114571A1 (en) 2007-03-22 2008-09-25 Showa Denko K.K. R-t-b base alloy, process for production thereof, fine powder for r-t-b base rare earth permanent magnet, and r-t-b base rare earth permanent magnet
JP2013197240A (en) * 2012-03-19 2013-09-30 Jx Nippon Mining & Metals Corp Neodymium-iron-boron-based rare earth sintered magnet, and method of manufacturing the same
JP2013204119A (en) * 2012-03-29 2013-10-07 Seiko Epson Corp Composition for injection molding and method for manufacturing sintered body
JP2015023285A (en) * 2013-07-17 2015-02-02 煙台首鋼磁性材料株式有限公司 R-t-m-b-based sintered magnet and production method therefor
US9672981B2 (en) 2013-07-17 2017-06-06 Yantai Shougang Magnetic Materials Inc. Method for producing an R-T-B-M sintered magnet
CN108213404A (en) * 2016-12-21 2018-06-29 三环瓦克华(北京)磁性器件有限公司 It prepares the micro mist of Nd-Fe-B permanent magnet material, target formula airflow milling powder method and goes out powder

Also Published As

Publication number Publication date
JP4543940B2 (en) 2010-09-15
CN1812008A (en) 2006-08-02
CN100570762C (en) 2009-12-16

Similar Documents

Publication Publication Date Title
CN107871582B (en) R-Fe-B sintered magnet
CN107871581B (en) Method for preparing R-Fe-B sintered magnet
JP4543940B2 (en) Method for producing RTB-based sintered magnet
US8157927B2 (en) Raw material alloy for R-T-B system sintered magnet, R-T-B system sintered magnet and production method thereof
US20210005380A1 (en) Method for manufacturing rare earth permanent magnet
JP4900085B2 (en) Rare earth magnet manufacturing method
JP4821128B2 (en) R-Fe-B rare earth permanent magnet
JP2015207663A (en) R-t-b-based permanent magnet, and raw material alloy for r-t-b-based permanent magnets
JP6468435B2 (en) R-T-B sintered magnet
JP4702522B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP4556727B2 (en) Manufacturing method of rare earth sintered magnet
JP4753024B2 (en) Raw material alloy for RTB-based sintered magnet, RTB-based sintered magnet, and manufacturing method thereof
JP2007250605A (en) Method for manufacturing r-t-b-based rare-earth permanent magnet
JP4529180B2 (en) Rare earth permanent magnet
JP4534553B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP2006274344A (en) Production method of r-t-b system sintered magnet
JP4618437B2 (en) Method for producing rare earth permanent magnet and raw material alloy thereof
JP4076080B2 (en) Rare earth permanent magnet manufacturing method
JP2006100434A (en) Method of manufacturing r-t-b based rare earth permanent magnet
JP2005286174A (en) R-t-b-based sintered magnet
JP2005286173A (en) R-t-b based sintered magnet
CN111755190B (en) Alloy for R-T-B permanent magnet and method for producing R-T-B permanent magnet
JP2005159053A (en) Method for manufacturing r-t-b-based permanent magnet
JP4353430B2 (en) Method for removing lubricant and method for producing rare earth sintered magnet
JP2005281795A (en) R-T-B BASED SINTERED MAGNET ALLOY CONTAINING Dy AND Tb AND ITS PRODUCTION METHOD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4543940

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250