JP2013197240A - Neodymium-iron-boron-based rare earth sintered magnet, and method of manufacturing the same - Google Patents

Neodymium-iron-boron-based rare earth sintered magnet, and method of manufacturing the same Download PDF

Info

Publication number
JP2013197240A
JP2013197240A JP2012061534A JP2012061534A JP2013197240A JP 2013197240 A JP2013197240 A JP 2013197240A JP 2012061534 A JP2012061534 A JP 2012061534A JP 2012061534 A JP2012061534 A JP 2012061534A JP 2013197240 A JP2013197240 A JP 2013197240A
Authority
JP
Japan
Prior art keywords
rare earth
purity
permanent magnet
earth permanent
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012061534A
Other languages
Japanese (ja)
Inventor
Yuichiro Shindo
裕一朗 新藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2012061534A priority Critical patent/JP2013197240A/en
Publication of JP2013197240A publication Critical patent/JP2013197240A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To provide a high-performance Nd-Fe-B-based rare earth permanent magnet remarkably improved in heat resistance and corrosion resistance, and largely enhanced in magnetic property.SOLUTION: The Nd-Fe-B-based rare earth sintered magnet has a purity of 99.9 wt% or larger for a component other than a gas component. The contents of sulfur and phosphorus are each 30 wtppm or less.

Description

本発明は、超高純度化技術を応用した磁性材料に関し、従来に比べて磁気特性を格段に向上させた高純度Nd−Fe−B系希土類永久磁石及びその製造方法に関する。   The present invention relates to a magnetic material to which an ultra-high purity technology is applied, and relates to a high-purity Nd—Fe—B rare earth permanent magnet whose magnetic characteristics are remarkably improved as compared with the prior art and a method for manufacturing the same.

近年、永久磁石は飛躍的な進歩に端を発して様々な分野へ応用され、その性能の向上と新しい機器の開発が日々刻々となされている。特に、省エネや環境対策の観点から、IT、自動車、家電、FA分野などへの普及が急激に伸びている。
永久磁石の用途として、パソコンでは、ハードディスクドライブ用ボイスコイルモーターやDVD/CDの光ピックアップ用部品、携帯電話では、マイクロスピーカーやバイブレーションモーター、家電や産業機器関連では、サーボモーターやリニアモーターなどの各種モーターがある。また、HEVなどの電気自動車には、1台当たり100個以上の永久磁石が使用されている。
In recent years, permanent magnets have been applied to various fields as a result of dramatic progress, and improvements in their performance and development of new devices have been made every day. In particular, from the viewpoints of energy saving and environmental measures, the spread to IT, automobiles, home appliances, FA fields, etc. is growing rapidly.
Permanent magnet applications include voice coil motors for hard disk drives and optical pickup parts for DVD / CD for personal computers, microspeakers and vibration motors for mobile phones, and servo motors and linear motors for home appliances and industrial equipment. There is a motor. Moreover, 100 or more permanent magnets are used for one electric vehicle such as HEV.

永久磁石として、アルニコ(Alnico)磁石、フェライト(Feerrite)磁石、サマコバ(SmCo)磁石、ネオジム(NdFeB)磁石などが知られている。近年では、特にネオジム磁石の研究開発が活発であり、高性能化に向けて様々な取り組みが行われている。ネオジム磁石は通常、強磁性のNdFe14金属間化合物(主相)、常磁性のBリッチ相、非磁性のNdリッチ相、さらに不純物としての酸化物などから構成されている。これにさらに種々の元素を添加するなどして、磁気特性を改善させる取り組みが行われている。
例えば、特許文献1には、R−Fe−B系希土類永久磁石(Rは、Nd、Pr、Dy、Tb、Hoのうちの1種又は2種以上)に、Co、Al、Cu及びTiを同時に添加することにより、磁気特性を著しく改良することが開示されており、また、特許文献2には、組成を調整しながらGaを添加することで、最大エネルギー積(BH)maxを42MOe以上とすることが開示されている。
As a permanent magnet, an Alnico magnet, a ferrite magnet, a Samaco magnet, a neodymium (NdFeB) magnet, and the like are known. In recent years, research and development of neodymium magnets has been particularly active, and various efforts have been made toward higher performance. A neodymium magnet is generally composed of a ferromagnetic Nd 2 Fe 14 B 4 intermetallic compound (main phase), a paramagnetic B-rich phase, a nonmagnetic Nd-rich phase, and an oxide as an impurity. Further efforts are being made to improve magnetic properties by adding various elements.
For example, Patent Document 1 discloses that an R—Fe—B rare earth permanent magnet (R is one or more of Nd, Pr, Dy, Tb, and Ho) and Co, Al, Cu, and Ti. It is disclosed that the magnetic properties are remarkably improved by the simultaneous addition, and Patent Document 2 discloses that the maximum energy product (BH) max is 42 MOe or more by adding Ga while adjusting the composition. Is disclosed.

磁気特性を向上させるために、その他にも、磁気特性を低下させる要因である不純物の酸素を適当な量導入する方法(特許文献3)、適量添加したフッ素が磁石の粒界部分に偏在することで主相結晶粒の成長を抑えて保磁力を上昇させる方法(特許文献4)、磁気特性を低下させるBリッチ相やRリッチ相を低減し、主相のRFe14B相を増加させることで磁石の性能を向上させる方法(特許文献5)などが、知られている。 In order to improve the magnetic characteristics, there are other methods of introducing an appropriate amount of impurity oxygen (a patent document 3), which is a factor that deteriorates the magnetic characteristics, and that an appropriate amount of added fluorine is unevenly distributed in the grain boundary portion of the magnet. The method of increasing the coercive force by suppressing the growth of the main phase crystal grains (Patent Document 4), reducing the B-rich phase and R-rich phase that lower the magnetic properties, and increasing the R 2 Fe 14 B phase as the main phase A method for improving the performance of the magnet (Patent Document 5) is known.

このように、磁気特性を向上させるために、新たな種類の成分元素(希土類元素、遷移金属元素、不純物元素など)を添加したり、R−Fe−B系希土類焼結磁石の組成を調整したり、その他にも結晶配向を調整するなどして、磁気特性を改善する試みが行われているが、このような方法はいずれも、製造工程を煩雑とするため、安定的な量産に適しているとは言えない。   Thus, in order to improve the magnetic properties, new types of component elements (rare earth elements, transition metal elements, impurity elements, etc.) are added, and the composition of the R—Fe—B rare earth sintered magnet is adjusted. In addition, attempts have been made to improve the magnetic properties by adjusting the crystal orientation, etc., but all of these methods make the manufacturing process complicated and suitable for stable mass production. I can't say.

特開2000−331810号公報JP 2000-331810 A 特開平6−231921号公報JP-A-6-231921 特開2005−51002号公報Japanese Patent Laying-Open No. 2005-50002 国際公開WO2005/123974号公報International Publication WO2005 / 123974 特開平7−45413号公報JP 7-45413 A

本発明は、高純度Nd−Fe−B系希土類永久磁石において、特に、硫黄及びリンの含有量を低減することにより、磁気材料特有の弱点である耐熱性、耐食性を著しく改善することができ、さらには、磁気特性を格段に向上させた高性能のNd−Fe−B系希土類永久磁石を提供することを課題とする。   The present invention is a high-purity Nd-Fe-B-based rare earth permanent magnet, and in particular, by reducing the content of sulfur and phosphorus, it is possible to remarkably improve heat resistance and corrosion resistance, which are weak points peculiar to magnetic materials, It is another object of the present invention to provide a high-performance Nd—Fe—B rare earth permanent magnet with significantly improved magnetic properties.

上記の課題を解決するために、本発明者らは鋭意研究を行った結果、従来では、使用原料中に含まれ、あるいは、製造工程中で混入する不可避的不純物であるとして特に問題視されていなかった硫黄、リンを低減させることで、従来のNd−Fe−B系希土類永久磁石に比べて、耐熱性や耐食性を著しく改善でき、さらに、磁気特性を格段に向上できることを見出した。   In order to solve the above-mentioned problems, the present inventors have conducted intensive research. As a result, conventionally, they have been regarded as particularly problematic as being unavoidable impurities contained in the raw materials used or mixed in the manufacturing process. It has been found that heat and corrosion resistance can be remarkably improved as compared with conventional Nd—Fe—B rare earth permanent magnets, and magnetic properties can be remarkably improved by reducing the amount of sulfur and phosphorus that are not present.

このような知見に基づき、本発明は、
1)ガス成分を除く純度が99.9wt%以上であって、硫黄、リンの含有量がそれぞれ30wtppm以下であることを特徴とするNd−Fe−B系希土類永久磁石、
2)酸素含有量が500wtppm以下であることを特徴とする前記1)記載のNd−Fe−B系希土類永久磁石、
3)炭素含有量が100wtppm以下であることを特徴とする前記1)又は2)に記載のNd−Fe−B系希土類永久磁石、
4)ガス成分を除く純度が99.99wt%以上であることを特徴とする前記1)〜3)のいずれか一に記載のNd−Fe−B系希土類永久磁石、
5)ガス成分を除く純度が99.999wt%以上であることを特徴とする前記1)〜3)のいずれか一に記載のNd−Fe−B系希土類永久磁石、
6)純度が99wt%である同一組成のNd−Fe−B系希土類永久磁石に比べて、最大エネルギー積(BH)maxの増加率が5%以上であることを特徴とする前記1)〜5)のいずれか一に記載のNd−Fe−B系希土類永久磁石、
7)純度が99wt%である同一組成のNd−Fe−B系希土類永久磁石に比べて、耐熱温度の上昇率が10%以上であることを特徴とする前記1)〜6)のいずれか一に記載のNd−Fe−B系希土類永久磁石、を提供する。
Based on such knowledge, the present invention
1) Nd—Fe—B rare earth permanent magnets having a purity excluding gas components of 99.9 wt% or more and sulfur and phosphorus contents of 30 wtppm or less,
2) The Nd—Fe—B rare earth permanent magnet according to 1) above, wherein the oxygen content is 500 wtppm or less,
3) The Nd-Fe-B rare earth permanent magnet according to 1) or 2) above, wherein the carbon content is 100 wtppm or less,
4) The Nd—Fe—B rare earth permanent magnet according to any one of 1) to 3) above, wherein the purity excluding gas components is 99.99 wt% or more,
5) The Nd—Fe—B rare earth permanent magnet according to any one of 1) to 3) above, wherein the purity excluding gas components is 99.999 wt% or more,
6) The above-mentioned 1) to 5), wherein the increase rate of the maximum energy product (BH) max is 5% or more as compared with an Nd—Fe—B rare earth permanent magnet having the same composition and a purity of 99 wt%. Nd—Fe—B based rare earth permanent magnet according to any one of
7) The increase rate of the heat-resistant temperature is 10% or more as compared with the Nd—Fe—B rare earth permanent magnet of the same composition having a purity of 99 wt%. The Nd—Fe—B rare earth permanent magnet described in 1. is provided.

また、本発明は、
8)Nd原料、B原料をそれぞれ酸化物からのCa還元により純度99.9%以上、硫黄、リン含有量をそれぞれ30wtppm以下とし、Fe原料を水溶液電解により純度99.9%以上、硫黄、リン含有量をそれぞれ30wtppm以下とし、次に、これらを配合した配合物を真空溶解してインゴットとし、このインゴットを粉砕して粉末化した後、これをプレスにより成形し、その後、この成形体を焼結、熱処理を行った後、この焼結体を表面加工することを特徴とするNd−Fe−B系希土類永久磁石の製造方法、
9)Nd原料、B原料をそれぞれ酸化物からのCa還元と溶融塩電解により純度99.99%以上、硫黄、リン含有量をそれぞれ10wtppm以下とし、Fe原料を複数回の水溶液電解により純度99.99%以上、硫黄、リン含有量をそれぞれ10wtppm以下とすることを特徴とする前記8)記載のNd−Fe−B系希土類永久磁石の製造方法、
10)Nd原料、B原料をそれぞれ酸化物からのCa還元と複数回の溶融塩電解により純度99.999%以上、硫黄、リン含有量をそれぞれ10wtppm以下とし、Fe原料を溶媒抽出と複数回の水溶液電解により純度99.999%以上、硫黄、リン含有量をそれぞれ10wtppm以下とすることを特徴とする前記9)記載のNd−Fe−B系希土類永久磁石の製造方法、
The present invention also provides:
8) Purity of Nd raw material and B raw material is reduced to 99.9% or more by reduction of Ca from oxide, sulfur and phosphorus contents are each 30 wtppm or less, and Fe raw material is purified by aqueous solution electrolysis to purity of 99.9% and sulfur, phosphorus Each content is set to 30 wtppm or less, and then a compounded mixture thereof is vacuum-dissolved to form an ingot. After the ingot is pulverized and pulverized, it is molded by pressing, and then the molded body is baked. A method for producing a Nd-Fe-B rare earth permanent magnet, characterized in that after sintering and heat treatment, the sintered body is subjected to surface processing.
9) Purity of Nd raw material and B raw material is 99.99% or more by Ca reduction from molten oxide and molten salt electrolysis, sulfur and phosphorus contents are each 10 wtppm or less, and Fe raw material is 99. 99% or more, sulfur and phosphorus contents are each 10 wtppm or less, the method for producing an Nd-Fe-B rare earth permanent magnet according to 8) above,
10) Nd raw material and B raw material were each reduced by Ca reduction from oxide and multiple times of molten salt electrolysis to a purity of 99.999% or more, sulfur and phosphorus contents were each 10 wtppm or less, Fe raw material was extracted by solvent extraction and multiple times 9) The method for producing an Nd—Fe—B rare earth permanent magnet according to 9) above, wherein the purity is 99.999% or more by aqueous solution electrolysis, and the sulfur and phosphorus contents are each 10 wtppm or less,

本発明の高純度Nd−Fe−B系希土類永久磁石は、特に、硫黄及びリンの含有量を低減したことにより、磁性材料特有の弱点である耐熱性、耐食性を著しく改善でき、さらには、製造プロセスを煩雑にすることなく、磁気特性を格段に向上させることができる優れた効果を有する。   The high-purity Nd—Fe—B rare earth permanent magnet of the present invention can remarkably improve heat resistance and corrosion resistance, which are weak points peculiar to magnetic materials, by reducing the content of sulfur and phosphorus. Without complicating the process, the magnetic properties can be improved significantly.

本発明のNd−Fe−B系希土類永久磁石は、硫黄、リンの含有量がそれぞれ30wtppm以下である。硫黄、リンの含有量が30wtppm以下とすることで、耐食性及び耐熱性を著しく向上することができる。Nd−Fe−B系希土類永久磁石は、Feを多く含有するため錆び易く、また、高温領域で使用すると減磁することが知られている。硫黄、リンの含有量がそれぞれ30wtppm以下とすることにより、これらの問題を大幅に低減することができる。   The Nd—Fe—B rare earth permanent magnet of the present invention has sulfur and phosphorus contents of 30 wtppm or less, respectively. When the content of sulfur and phosphorus is 30 wtppm or less, the corrosion resistance and heat resistance can be remarkably improved. Nd-Fe-B rare earth permanent magnets are known to rust easily because they contain a large amount of Fe, and to be demagnetized when used in a high temperature region. By setting the sulfur and phosphorus contents to 30 wtppm or less, these problems can be greatly reduced.

また、本発明のNd−Fe−B系希土類永久磁石は、ガス成分を除く純度が99.9wt%以上、好ましくは、純度99.99wt%以上、さらに好ましくは、99.999wt%以上である。
本発明のNd−Fe−B系希土類永久磁石は、高純度のNd、Fe、Bを原料として使用することで、特に煩雑なプロセスを経ることなく、磁気特性を格段に向上させるものである。したがって、従来のように希土類永久磁石の成分組成を調整することにより、磁気特性の向上させるものではないので、永久磁石として通常の磁気特性を有するものであれば、成分組成に特に制限はない。
The Nd—Fe—B rare earth permanent magnet of the present invention has a purity excluding gas components of 99.9 wt% or more, preferably a purity of 99.99 wt% or more, more preferably 99.999 wt% or more.
The Nd—Fe—B-based rare earth permanent magnet of the present invention uses a high purity Nd, Fe, B as a raw material, so that the magnetic properties are remarkably improved without a particularly complicated process. Therefore, since the magnetic properties are not improved by adjusting the component composition of the rare earth permanent magnet as in the prior art, the component composition is not particularly limited as long as the permanent magnet has normal magnetic properties.

本発明のNd−Fe−B系希土類永久磁石は、Nd、Fe、Bが典型的な成分であるが、磁気特性の向上や耐食性などの改善のために、添加成分として、Dy、Pr、Tb、Hoなどの希土類元素や、Co、Ni、Alなどの遷移金属元素を含んでもよい。但し、これらの添加成分は、本発明のNd−Fe−B系希土類永久磁石の純度から除かれる、すなわち、不純物にはカウントしないことは言うまでもない。   In the Nd—Fe—B rare earth permanent magnet of the present invention, Nd, Fe, and B are typical components. However, in order to improve magnetic properties and corrosion resistance, Dy, Pr, and Tb are added as additive components. , Ho and other rare earth elements, and Co, Ni, Al and other transition metal elements. However, it goes without saying that these additive components are excluded from the purity of the Nd—Fe—B rare earth permanent magnet of the present invention, that is, not counted as impurities.

本発明のNd−Fe−B系希土類永久磁石は、これまで知られている、同一の組成の希土類永久磁石と比べて優れた磁気特性を有する。希土類永久磁石として、31Nd−68Fe−1B(用途:MRI)、26Nd−5Dy−68Fe−1B(用途:OA機器サーボモーター)、21Nd−10Dy−68Fe−1B(用途:ハイブリッドカー用モーター)などが知られているが、これらの全てにおいて、成分元素を高純度化することにより、従来のものよりも磁気特性を向上させることができる。   The Nd-Fe-B rare earth permanent magnet of the present invention has excellent magnetic properties as compared with rare earth permanent magnets of the same composition known so far. Known rare earth permanent magnets include 31Nd-68Fe-1B (use: MRI), 26Nd-5Dy-68Fe-1B (use: OA equipment servo motor), 21Nd-10Dy-68Fe-1B (use: motor for hybrid cars), etc. However, in all of these, by increasing the purity of the component elements, the magnetic properties can be improved as compared with the conventional one.

本発明のNd−Fe−B系希土類永久磁石は、酸素含有量が500wtppm以下である。また、炭素含有量が100wtppm以下である。酸素含有量が500wtppm以下、また、炭素含有量が100wtppm以下とすることで、従来よりも優れた耐食性及び耐熱性が得られる。従来は、これらのガス成分は不可避的不純物として、通常混入する量であれば特に問題ないとされていたが、これらの含有量を本発明レベルまで極めて低減することにより、耐食性や耐熱性を大幅に向上することが本発明の最も重要な特徴である。   The Nd—Fe—B rare earth permanent magnet of the present invention has an oxygen content of 500 wtppm or less. The carbon content is 100 wtppm or less. By setting the oxygen content to 500 wtppm or less and the carbon content to 100 wtppm or less, corrosion resistance and heat resistance superior to conventional ones can be obtained. In the past, these gas components were unavoidable as impurities, so long as they were normally mixed, there was no particular problem, but by reducing these contents to the level of the present invention, corrosion resistance and heat resistance were greatly improved. This is the most important feature of the present invention.

本発明のNd−Fe−B系希土類永久磁石は、純度が99wt%(2Nレベル)である同一組成の永久磁石に比べて、最大エネルギー積(BH)maxの増加率が5%以上であることが好ましい。より好ましくは10%以上、さらに好ましくは20%以上である。なお、最大エネルギー積(BH)maxは、残留磁束密度(B)と保磁力(H)との積である。
また、本発明の高純度ネオジム系希土類永久磁石は、純度が99wt%(2Nレベル)である同一組成の永久磁石に比べて、耐熱温度の上昇率が10%以上であることが好ましい。ネオジム系永久磁石は、用途によっては耐熱性が要求される。一般にジスプロシウムなどを添加することで、耐熱温度を上昇させることが行われているが、本発明ではこのような元素を添加することなしに、耐熱性を向上させることができるという優れた効果を有する。
The Nd—Fe—B rare earth permanent magnet of the present invention has an increase rate of the maximum energy product (BH) max of 5% or more as compared with a permanent magnet of the same composition having a purity of 99 wt% (2N level). Is preferred. More preferably, it is 10% or more, More preferably, it is 20% or more. The maximum energy product (BH) max is a product of the residual magnetic flux density (B) and the coercive force (H).
In addition, the high-purity neodymium-based rare earth permanent magnet of the present invention preferably has an increase rate of the heat-resistant temperature of 10% or more as compared with a permanent magnet having the same composition with a purity of 99 wt% (2N level). Neodymium permanent magnets are required to have heat resistance depending on the application. In general, dysprosium or the like is added to increase the heat resistance temperature, but the present invention has an excellent effect that heat resistance can be improved without adding such an element. .

また、本発明において、耐食性や脆性を低減するために、一般に希土類永久磁石をニッケルなどの金属でメッキすることが知られているが、本発明はこれらのメッキ処理を施す工程を省略することができる。一方、これらの技術を組み合わせることによって、耐食性や加工性などをさらに向上させることができる。   In the present invention, it is generally known that rare earth permanent magnets are plated with a metal such as nickel in order to reduce corrosion resistance and brittleness. However, the present invention omits the step of performing these plating treatments. it can. On the other hand, by combining these techniques, the corrosion resistance and workability can be further improved.

以下に製造方法の詳細を説明するが、この製造方法は、代表的かつ好適な例を示すものである。すなわち、本発明は以下の製造方法に制限するものではなく、他の製造方法であっても、本願発明の目的と条件を達成できるものであれば、それらの製造法を任意に採用できることは容易に理解される。   Details of the production method will be described below, but this production method shows a typical and preferred example. In other words, the present invention is not limited to the following production methods, and it is easy to adopt any other production method as long as the object and conditions of the present invention can be achieved. To be understood.

まず、市販のNd原料(純度2Nレベル)、市販のFe原料(純度2〜3Nレベル)、市販のB原料(純度2Nレベル)を用意する。また場合に応じて、添加成分としての、市販のDy原料(純度2Nレベル)などを用意する。
次いで、Nd原料及びB原料を酸化物からのCa還元と溶融塩電解により、硫黄、リンの含有量を30wtppm以下、酸素、炭素の含有量を100wtppm以下、純度4N〜5NレベルのNd、Bが得られる。また、Fe原料を溶媒抽出と1回又は2回以上の水溶液電解により、硫黄、リンの含有量を10wtppm以下、酸素、炭素の含有量を10wtppm以下、純度5N〜6NレベルのFeが得られる。
なお、含有量が少ない成分、例えば、Bについては高純度化せずそのまま使用することも可能である。
First, a commercially available Nd material (purity 2N level), a commercially available Fe material (purity 2 to 3N level), and a commercially available B material (purity 2N level) are prepared. Moreover, according to the case, the commercially available Dy raw material (purity 2N level) etc. as an additional component are prepared.
Next, Nd raw material and B raw material are subjected to Ca reduction from oxide and molten salt electrolysis. can get. Also, Fe extraction with solvent extraction and aqueous solution electrolysis once or twice or more can provide Fe of sulfur and phosphorus content of 10 wtppm or less, oxygen and carbon content of 10 wtppm or less, and purity levels of 5N to 6N.
In addition, about a component with little content, for example, B, it is also possible to use as it is, without refinement | purifying.

これらの高純度の原料を所望の組成になるように秤量する。このとき、組成は用途に応じて適宜決定することができる。一例として、Nd15〜35wt%、Dy0〜10wt%、B0.5〜2wt%、Fe60〜90wt%となるように、原料を配合することができる。
次いで、これらの原料を高周波溶解炉にて、加熱溶解してインゴットを形成する。なお、加熱温度は1250℃程度とするのが好ましい。このインゴットも、硫黄、リンの含有量が10wtppm以下、酸素、炭素の含有量が100wtppm以下であった。
その後、このインゴットをジェットミル等の公知の手法を用いて、粉砕する。このとき、混合中の酸化の問題を考慮すると、不活性ガス雰囲気中あるいは真空中で混合することが好ましい。粉砕粉の平均粒径は3〜5μm程度とするのが好ましい。
These high purity raw materials are weighed so as to have a desired composition. At this time, a composition can be suitably determined according to a use. As an example, a raw material can be mix | blended so that it may become Nd15-35 wt%, Dy0-10 wt%, B0.5-2 wt%, Fe60-90 wt%.
Next, these raw materials are heated and melted in a high-frequency melting furnace to form an ingot. In addition, it is preferable that heating temperature shall be about 1250 degreeC. This ingot also had a sulfur and phosphorus content of 10 wtppm or less and an oxygen and carbon content of 100 wtppm or less.
Thereafter, the ingot is pulverized using a known method such as a jet mill. At this time, considering the problem of oxidation during mixing, it is preferable to mix in an inert gas atmosphere or in a vacuum. The average particle size of the pulverized powder is preferably about 3 to 5 μm.

次いで、合金化した粉砕粉を磁場プレス機によって成形する。このとき、磁場強度15〜30KOe、成形密度4〜5g/ccとするのが好ましい。また、高性能の永久磁石の場合には、窒素雰囲気で成形することが好ましい。
次に、得られた成形体を焼結炉で焼結し、その後、この焼結体を熱処理炉で熱処理する。このとき、焼結炉の温度を1100〜1150℃とし、また熱処理炉の温度を500〜1000℃とするのが好ましい。それぞれの炉内の雰囲気は、真空中で行うことが好ましい。なお、焼結と熱処理を同一の炉内にて行うことも可能である。
Next, the alloyed pulverized powder is formed by a magnetic field press. At this time, it is preferable that the magnetic field strength is 15 to 30 KOe and the molding density is 4 to 5 g / cc. Further, in the case of a high performance permanent magnet, it is preferable to mold in a nitrogen atmosphere.
Next, the obtained molded body is sintered in a sintering furnace, and then the sintered body is heat-treated in a heat treatment furnace. At this time, the temperature of the sintering furnace is preferably 1100 to 1150 ° C, and the temperature of the heat treatment furnace is preferably 500 to 1000 ° C. The atmosphere in each furnace is preferably performed in a vacuum. It is also possible to perform sintering and heat treatment in the same furnace.

次に、得られた焼結体をスライジングマシンなど公知の手法を用いて切断加工した後、表面や外周部分を研磨器や研削盤を用いて最終表面処理を行う。その後、必要に応じて、表面にニッケルや銅などによって金属メッキを行うことができる。メッキ方法は、公知の手法を用いることができる。めっき厚みは10〜20μmとするのが好ましい。   Next, the obtained sintered body is cut using a known method such as a sizing machine, and then the surface or outer peripheral portion is subjected to final surface treatment using a polishing machine or a grinding machine. Thereafter, if necessary, the surface can be plated with nickel, copper, or the like. As the plating method, a known method can be used. The plating thickness is preferably 10 to 20 μm.

以上によって、ガス成分を除く純度が99.99wt%以上であって、硫黄、リンの含有量がそれぞれ10wtppm以下であるNd−Fe−B系希土類永久磁石を得ることができる。このような、高純度の希土類永久磁石は従来の、同一組成を有する希土類永久磁石に比べて、耐熱性、耐食性などを改善することができ、また、磁気特性を向上させることができる。
本発明の高純度希土類永久磁石は、Nd、Fe、Bを成分として含有する全ての永久磁石に適用できる。したがって、他の成分、含有量については、特に制限のないことは容易に理解できるであろう。つまり、既に公知の成分からなる希土類永久磁石に特に有用である。
As described above, an Nd—Fe—B rare earth permanent magnet having a purity excluding gas components of 99.99 wt% or more and sulfur and phosphorus contents of 10 wtppm or less can be obtained. Such a high-purity rare earth permanent magnet can improve heat resistance, corrosion resistance, and the like, and can improve magnetic properties as compared with a conventional rare earth permanent magnet having the same composition.
The high-purity rare earth permanent magnet of the present invention can be applied to all permanent magnets containing Nd, Fe, and B as components. Therefore, it can be easily understood that there are no particular restrictions on other components and contents. That is, it is particularly useful for rare earth permanent magnets made of already known components.

次に、本発明の実施例について説明する。なお、本実施例はあくまで一例であり、この例に制限されるものではない。すなわち、本発明の技術思想の範囲に含まれる実施例以外の態様あるいは変形を全て包含するものである。   Next, examples of the present invention will be described. In addition, a present Example is an example to the last, and is not restrict | limited to this example. That is, all the aspects or modifications other than the Example included in the scope of the technical idea of the present invention are included.

[組成:31Nd−68Fe−1B]
(参照例1)
市販の純度2Nレベルのネオジム原料を31kg用意した。また、市販の純度3Nレベルの鉄を68kg用意した。また、市販の純度2Nレベルのボロンを1kg用意した。
次に、上記の原料を高周波溶解炉において、加熱温度を1250℃程度にて、加熱溶解してインゴットを製造した。その後、製造したインゴットを、不活性ガスアルゴン雰囲気中、ジェットミルを用いて粉砕した。このとき、粉砕粉の平均粒径を4μm程度とした。
次に、このように合金化させた粉砕粉を、窒素雰囲気中、磁場強度20KOe、成形密度4.5g/ccとして、磁場プレス機を用いて成形した。その後、この成形体を焼結炉にて焼結した後、この焼結体を熱処理炉で熱処理した。このとき、焼結炉の温度を1150℃、熱処理炉の温度を700℃とした。また、それぞれの炉内の雰囲気を真空とした。
このようにして製造した焼結体を、スライシングマシンを用いて切断加工し、その後、表面や外周部分を研磨器や研削盤を用いて最終表面処理を行った。なお、一般に、この後に酸化防止のためメッキ処理を施すことがあるが、今回は行わなかった。
その結果、参照例1で作製したネオジム系希土類永久磁石の純度、磁気特性及び耐熱温度をそれぞれ表1に示す。表1に示すように、参照例1のネオジム系希土類永久磁石の純度は2N(99wt%)レベルであり、Pの含有量は45ppm、Sの含有量は120ppm、O含有量は920ppm、C含有量は320ppmであった。このとき、最大エネルギー積(BH)maxが46MOeであった。また、耐熱温度が105℃であり、耐熱性は後述する実施例1−3に比べて劣る結果をなった。なお、耐食性は、「JIS Z 2371(塩水噴霧試験方法)」を用い、各種試料の状態を観察して、比較評価した。
[Composition: 31Nd-68Fe-1B]
(Reference Example 1)
31 kg of a commercially available neodymium raw material with a purity level of 2N was prepared. Moreover, 68 kg of commercially available iron having a purity level of 3N was prepared. Further, 1 kg of commercially available boron having a purity level of 2N was prepared.
Next, the above raw material was heated and melted in a high-frequency melting furnace at a heating temperature of about 1250 ° C. to produce an ingot. Thereafter, the produced ingot was pulverized using a jet mill in an inert gas argon atmosphere. At this time, the average particle size of the pulverized powder was about 4 μm.
Next, the pulverized powder alloyed in this manner was molded using a magnetic field press in a nitrogen atmosphere at a magnetic field strength of 20 KOe and a molding density of 4.5 g / cc. Thereafter, the compact was sintered in a sintering furnace, and then the sintered body was heat-treated in a heat treatment furnace. At this time, the temperature of the sintering furnace was 1150 ° C., and the temperature of the heat treatment furnace was 700 ° C. Moreover, the atmosphere in each furnace was made into vacuum.
The sintered body thus produced was cut using a slicing machine, and then the final surface treatment was performed on the surface and the outer peripheral portion using a polishing machine and a grinding machine. In general, after this, plating treatment may be performed to prevent oxidation, but this time it was not performed.
As a result, Table 1 shows the purity, magnetic properties, and heat-resistant temperature of the neodymium-based rare earth permanent magnet produced in Reference Example 1. As shown in Table 1, the purity of the neodymium-based rare earth permanent magnet of Reference Example 1 is 2N (99 wt%) level, P content is 45 ppm, S content is 120 ppm, O content is 920 ppm, C content The amount was 320 ppm. At this time, the maximum energy product (BH) max was 46 MOe. Moreover, the heat resistant temperature was 105 ° C., and the heat resistance was inferior to that of Example 1-3 described later. Corrosion resistance was evaluated by using “JIS Z 2371 (salt spray test method)” and observing the state of various samples.

(実施例1)
純度2Nレベルのネオジム原料を、3Nレベルのネオジム酸化物を4Nレベルのカルシウムを用いて還元することにより純度3Nレベルとし、それを31kg製造した。また、純度3Nレベルの鉄原料を、カソライトを塩酸系(アノライトは硫酸系)の水溶液にした隔膜電解により純度4Nレベルと、それを68kg製造した。また、ボロン原料については、市販の純度2Nレベルを1kg用意した。その後の工程は、参照例1と同様の条件とした。
その結果、実施例1で作製したネオジム系希土類永久磁石の純度、磁気特性及び耐熱温度をそれぞれ表1に示す。表1に示すように、実施例1のネオジム系希土類永久磁石の純度は3N(99.9wt%)レベルであり、Pの含有量は30ppm、Sの含有量は30ppm、O含有量は500ppm、C含有量は100ppmであった。このとき、最大エネルギー積(BH)maxが49MOeであり、参照例1に比べて7%上昇していた。また、耐熱温度が140℃であり、参照例1に比べて33%上昇していた。さらに、耐食性も参照例1に比べて良好な結果を示した。
Example 1
A 2N level neodymium raw material was reduced to 3N level by reducing 3N level neodymium oxide with 4N level calcium, and 31 kg of it was produced. Further, the iron raw material having a purity level of 3N was produced by membrane electrolysis in which catholyte was converted into a hydrochloric acid-based (an anolyte was sulfuric acid-based) aqueous solution to produce a 4N purity level of 68 kg. Moreover, about the boron raw material, 1 kg of commercially available purity 2N level was prepared. Subsequent steps were performed under the same conditions as in Reference Example 1.
As a result, Table 1 shows the purity, magnetic properties, and heat-resistant temperature of the neodymium-based rare earth permanent magnet produced in Example 1. As shown in Table 1, the purity of the neodymium rare earth permanent magnet of Example 1 is 3N (99.9 wt%) level, the P content is 30 ppm, the S content is 30 ppm, the O content is 500 ppm, The C content was 100 ppm. At this time, the maximum energy product (BH) max was 49 MOe, which was 7% higher than that of Reference Example 1. The heat-resistant temperature was 140 ° C., which was 33% higher than that of Reference Example 1. Further, the corrosion resistance was better than that of Reference Example 1.

(実施例2)
純度2Nレベルのネオジム原料を、3Nレベルのネオジム酸化物を4Nレベルのカルシウムを用いて還元及び溶融塩電解することにより純度4Nレベルとし、それを31kg製造した。また、純度3Nレベルの鉄原料を、カソライトを塩酸系(アノライトは硫酸系)の水溶液にした隔膜電解を2回行うことにより純度4Nレベルとし、それを68kg製造した。また、ボロン原料については、市販の純度2Nレベルを1kg用意した。その後の工程は、参照例1と同様の条件とした。
その結果、実施例2で作製したネオジム系希土類永久磁石の純度、磁気特性及び耐熱温度をそれぞれ表1に示す。表1に示すように、実施例2のネオジム系希土類永久磁石の純度は4N(99.99wt%)レベルであり、Pの含有量は10ppm、Sの含有量は10ppm、O含有量は80ppm、C含有量は20ppmであった。このとき、最大エネルギー積(BH)maxが54MOeであり、参照例1に比べて17%上昇していた。また、耐熱温度が170℃であり、参照例1に比べて62%上昇していた。さらに、耐食性も参照例1に比べて非常に良好な結果を示した。
(Example 2)
A 2N level neodymium raw material was reduced to a 4N level by reducing and melting salt electrolysis of 3N level neodymium oxide using 4N level calcium, and 31 kg of it was produced. In addition, the iron raw material having a purity level of 3N was subjected to diaphragm electrolysis twice using an aqueous solution of catholyte in hydrochloric acid system (anolyte is sulfuric acid system) to obtain a purity level of 4N, and 68 kg of it was produced. Moreover, about the boron raw material, 1 kg of commercially available purity 2N level was prepared. Subsequent steps were performed under the same conditions as in Reference Example 1.
As a result, Table 1 shows the purity, magnetic properties, and heat-resistant temperature of the neodymium-based rare earth permanent magnet produced in Example 2. As shown in Table 1, the purity of the neodymium rare earth permanent magnet of Example 2 is 4N (99.99 wt%) level, the P content is 10 ppm, the S content is 10 ppm, the O content is 80 ppm, The C content was 20 ppm. At this time, the maximum energy product (BH) max was 54 MOe, which was 17% higher than that of Reference Example 1. The heat-resistant temperature was 170 ° C., which was 62% higher than that of Reference Example 1. Further, the corrosion resistance was very good as compared with Reference Example 1.

(実施例3)
純度2Nレベルのネオジム原料を、3Nレベルのネオジム酸化物を4Nレベルのカルシウムを用いて還元及び2回の溶融塩電解することにより純度5Nレベルとし、それを31kg製造した。また、純度3Nレベルの鉄原料を、塩酸系の電解液を溶媒抽出により不純物を除去し、その液をカソライトとして用い、アノライトは硫酸系の水溶液の隔膜電解を2回繰り返すことにより純度5Nレベルとし、それを68kg製造した。また、ボロン原料については、市販の純度6Nレベルを1kg用意した。その後の工程は、参照例1と同様の条件とした。
その結果、実施例3で作製したネオジム系希土類永久磁石の純度、磁気特性及び耐熱温度をそれぞれ表1に示す。表1に示すように、実施例3のネオジム系希土類永久磁石の純度は5N(99.999wt%)レベルであり、Pの含有量は<10ppm、Sの含有量は<10ppm、O含有量は<10ppm、C含有量は<10ppmであった。このとき、最大エネルギー積(BH)maxが58MOeであり、参照例1に比べて26%上昇していた。また、耐熱温度が220℃であり、参照例1と比べて110%上昇していた。さらに、耐食性も参照例1に比べて非常に良好な結果を示した。
(Example 3)
A 2N level neodymium raw material was reduced to 3N level neodymium oxide by using 4N level calcium and subjected to molten salt electrolysis twice, and 31 kg of it was produced. Moreover, impurities were removed from the iron raw material with a purity level of 3N by solvent extraction with a hydrochloric acid-based electrolyte, and the solution was used as catholyte. 68 kg of it was produced. Moreover, about the boron raw material, 1 kg of commercially available 6N levels of purity was prepared. Subsequent steps were performed under the same conditions as in Reference Example 1.
As a result, the purity, magnetic characteristics, and heat-resistant temperature of the neodymium-based rare earth permanent magnet produced in Example 3 are shown in Table 1, respectively. As shown in Table 1, the purity of the neodymium rare earth permanent magnet of Example 3 is at a 5N (99.999 wt%) level, the P content is <10 ppm, the S content is <10 ppm, and the O content is <10 ppm, C content was <10 ppm. At this time, the maximum energy product (BH) max was 58 MOe, which was 26% higher than that of Reference Example 1. The heat-resistant temperature was 220 ° C., which was 110% higher than that of Reference Example 1. Further, the corrosion resistance was very good as compared with Reference Example 1.

[組成:26Nd−5Dy−68Fe−1B]
(参照例2)
市販の純度2Nレベルのネオジム原料を26kg用意した。また、市販の純度3Nレベルの鉄を68kg用意した。また、市販の純度2Nレベルのボロンを1kg用意した。さらに、市販の純度2Nレベルのジスプロシウム原料を5kg用意した。その後の工程は、参照例1と同様の条件とした。
その結果、参照例2で作製したネオジム系希土類永久磁石の純度、磁気特性及び耐熱温度をそれぞれ表1に示す。表1に示すように、参照例2のネオジム系希土類永久磁石の純度は2N(99wt%)レベルであり、Pの含有量は64ppm、Sの含有量は160ppm、O含有量は1200ppm、C含有量は560ppmであった。このとき、最大エネルギー積(BH)maxが41MOeであった。また、耐熱温度が150℃であり、耐熱性は後述する実施例4に比べて劣る結果をなった。
[Composition: 26Nd-5Dy-68Fe-1B]
(Reference Example 2)
26 kg of a commercially available neodymium raw material with a purity level of 2N was prepared. Moreover, 68 kg of commercially available iron having a purity level of 3N was prepared. Further, 1 kg of commercially available boron having a purity level of 2N was prepared. Furthermore, 5 kg of a commercially available dysprosium raw material having a purity level of 2N was prepared. Subsequent steps were performed under the same conditions as in Reference Example 1.
As a result, the purity, magnetic characteristics, and heat-resistant temperature of the neodymium rare earth permanent magnet produced in Reference Example 2 are shown in Table 1, respectively. As shown in Table 1, the purity of the neodymium rare earth permanent magnet of Reference Example 2 is at a 2N (99 wt%) level, the P content is 64 ppm, the S content is 160 ppm, the O content is 1200 ppm, and the C content is The amount was 560 ppm. At this time, the maximum energy product (BH) max was 41 MOe. Moreover, the heat resistant temperature was 150 ° C., and the heat resistance was inferior to that of Example 4 described later.

(実施例4)
純度2Nレベルのネオジム原料を、3Nレベルのネオジム酸化物を4Nレベルのカルシウムを用いて還元及び溶融塩電解することにより純度4Nレベルとし、それを26kg製造した。また、純度3Nレベルの鉄原料を、カソライトを塩酸系(アノライトは硫酸系)の水溶液を用いた隔膜電解を2回繰り返すことにより純度4Nレベルとし、それを68kg製造した。また、ボロン原料については、市販の純度2Nレベルを1kg用意した。また、純度2Nレベルのジスプロシウムを、真空蒸留法により純度4Nレベルとし、5kg用意した。その後の工程は、参照例1と同様の条件とした。
その結果、実施例4で作製したネオジム系希土類永久磁石の純度、磁気特性及び耐熱温度をそれぞれ表1に示す。表1に示すように、実施例4のネオジム系希土類永久磁石の純度は4N(99.99wt%)レベルであり、Pの含有量は<10ppm、Sの含有量は10ppm、O含有量は170ppm、C含有量は20ppmであった。このとき、最大エネルギー積(BH)maxが44MOeであり、参照例2に比べて7%上昇していた。また、耐熱温度が170℃であり、参照例2に比べて13%上昇していた。さらに、耐熱性も参照例2に比べて良好な結果を示していた。
Example 4
A 2N level neodymium raw material was reduced to a 4N level by reducing and melting salt electrolysis of 3N level neodymium oxide using 4N level calcium, and 26 kg of it was produced. Further, the iron raw material having a purity level of 3N was subjected to diaphragm electrolysis twice using a catholyte-based aqueous solution of hydrochloric acid (anorite is sulfuric acid) to obtain a purity level of 4N, and 68 kg was produced. Moreover, about the boron raw material, 1 kg of commercially available purity 2N level was prepared. Further, 5 kg of dysprosium having a purity level of 2N was prepared to a purity level of 4N by vacuum distillation. Subsequent steps were performed under the same conditions as in Reference Example 1.
As a result, the purity, magnetic characteristics, and heat-resistant temperature of the neodymium-based rare earth permanent magnet produced in Example 4 are shown in Table 1, respectively. As shown in Table 1, the purity of the neodymium rare earth permanent magnet of Example 4 is 4N (99.99 wt%) level, the P content is <10 ppm, the S content is 10 ppm, and the O content is 170 ppm. The C content was 20 ppm. At this time, the maximum energy product (BH) max was 44 MOe, which was 7% higher than that of Reference Example 2. The heat-resistant temperature was 170 ° C., which was 13% higher than that of Reference Example 2. Further, the heat resistance was better than that of Reference Example 2.

[組成:21Nd−10Dy−68Fe−1B]
(参照例3)
市販の純度2Nレベルのネオジム原料を21kg用意した。また、市販の純度3Nレベルの鉄を68kg用意した。また、市販の純度2Nレベルのボロンを1kg用意した。さらに、市販の純度2Nレベルのジスプロシウム原料を10kg用意した。その後の工程は、参照例1と同様の条件とした。
その結果、参照例3で作製したネオジム系希土類永久磁石の純度、磁気特性及び耐熱温度をそれぞれ表1に示す。表1に示すように、参照例3のネオジム系希土類永久磁石の純度は2N(99wt%)レベルであり、Pの含有量は89ppm、Sの含有量は210ppm、O含有量は1500ppm、C含有量は680ppmであった。このとき、最大エネルギー積(BH)maxが36MOeであった。また、耐熱温度が220℃であり、耐熱性は後述する実施例5に比べて劣る結果をなった。
[Composition: 21Nd-10Dy-68Fe-1B]
(Reference Example 3)
21 kg of a commercially available neodymium raw material with a purity level of 2N was prepared. Moreover, 68 kg of commercially available iron having a purity level of 3N was prepared. Further, 1 kg of commercially available boron having a purity level of 2N was prepared. Furthermore, 10 kg of commercially available dysprosium raw material having a purity level of 2N was prepared. Subsequent steps were performed under the same conditions as in Reference Example 1.
As a result, the purity, magnetic characteristics, and heat-resistant temperature of the neodymium rare earth permanent magnet produced in Reference Example 3 are shown in Table 1, respectively. As shown in Table 1, the purity of the neodymium-based rare earth permanent magnet of Reference Example 3 is 2N (99 wt%) level, the P content is 89 ppm, the S content is 210 ppm, the O content is 1500 ppm, and the C content is The amount was 680 ppm. At this time, the maximum energy product (BH) max was 36 MOe. Moreover, the heat-resistant temperature was 220 degreeC, and the heat resistance was inferior compared with Example 5 mentioned later.

(実施例5)
純度2Nレベルのネオジム原料を、3Nレベルのネオジム酸化物を4Nレベルのカルシウムを用いて還元及び溶融塩電解することにより純度4Nレベルとし、それを21kg製造した。また、純度3Nレベルの鉄原料を、カソライトを塩酸系(アノライトは硫酸系)の水溶液を用いた隔膜電解を2回繰り返すことにより純度4Nレベルとし、それを68kg製造した。また、ボロン原料については、市販の純度2Nレベルを1kg用意した。また、純度2Nレベルのジスプロシウムを、真空蒸留法により純度4Nレベルとし、10kg用意した。その後の工程は、参照例1と同様の条件とした。
その結果、実施例5で作製したネオジム系希土類永久磁石の純度、磁気特性及び耐熱温度をそれぞれ表1に示す。表1に示すように、実施例5のネオジム系希土類永久磁石の純度は4N(99.99wt%)レベルであり、Pの含有量は<10ppm、Sの含有量は10ppm、O含有量は250ppm、C含有量は30ppmであった。このとき、最大エネルギー積(BH)maxが40MOeであり、参照例3に比べて11%上昇していた。また、耐熱温度が250℃であり、参照例3に比べて14%上昇していた。さらに耐熱性も参照例3に比べて良好な結果を示していた。
(Example 5)
A 2N level neodymium raw material was reduced to 4N level by reducing and melting salt electrolysis of 3N level neodymium oxide using 4N level calcium, and 21 kg of it was produced. Further, the iron raw material having a purity level of 3N was subjected to diaphragm electrolysis twice using a catholyte-based aqueous solution of hydrochloric acid (anorite is sulfuric acid) to obtain a purity level of 4N, and 68 kg was produced. Moreover, about the boron raw material, 1 kg of commercially available purity 2N level was prepared. Further, dysprosium having a purity level of 2N was adjusted to a purity level of 4N by vacuum distillation, and 10 kg was prepared. Subsequent steps were performed under the same conditions as in Reference Example 1.
As a result, the purity, magnetic characteristics, and heat-resistant temperature of the neodymium-based rare earth permanent magnet produced in Example 5 are shown in Table 1, respectively. As shown in Table 1, the purity of the neodymium-based rare earth permanent magnet of Example 5 is 4N (99.99 wt%) level, the P content is <10 ppm, the S content is 10 ppm, and the O content is 250 ppm. The C content was 30 ppm. At this time, the maximum energy product (BH) max was 40 MOe, which was 11% higher than that of Reference Example 3. Further, the heat resistant temperature was 250 ° C., which was 14% higher than that of Reference Example 3. Furthermore, the heat resistance was better than that of Reference Example 3.

Figure 2013197240
Figure 2013197240

本発明のNd−Fe−B系希土類永久磁石は、超高純度技術を磁性材料に応用することにより、磁気特性を格段に向上させることができ、さらに、磁性材料特有の弱点である耐熱性、耐食性を改善することができるので、製造プロセスを煩雑にすることなく、高性能の永久磁石の提供に有用である。   The Nd-Fe-B rare earth permanent magnet of the present invention can significantly improve magnetic properties by applying ultra-high purity technology to a magnetic material, and further, heat resistance, which is a weak point unique to magnetic materials, Since the corrosion resistance can be improved, it is useful for providing a high-performance permanent magnet without complicating the manufacturing process.

Claims (10)

ガス成分を除く純度が99.9wt%以上であって、硫黄、リンの含有量がそれぞれ30wtppm以下であることを特徴とするNd−Fe−B系希土類永久磁石。   A Nd-Fe-B rare earth permanent magnet having a purity excluding gas components of 99.9 wt% or more and sulfur and phosphorus contents of 30 wtppm or less, respectively. 酸素含有量が500wtppm以下であることを特徴とする請求項1記載のNd−Fe−B系希土類永久磁石。   The Nd-Fe-B rare earth permanent magnet according to claim 1, wherein the oxygen content is 500 wtppm or less. 炭素含有量が100wtppm以下であることを特徴とする請求項1又は2に記載のNd−Fe−B系希土類永久磁石。   The Nd-Fe-B rare earth permanent magnet according to claim 1 or 2, wherein the carbon content is 100wtppm or less. ガス成分を除く純度が99.99wt%以上であることを特徴とする請求項1〜3のいずれか一項に記載のNd−Fe−B系希土類永久磁石。   The Nd-Fe-B rare earth permanent magnet according to any one of claims 1 to 3, wherein the purity excluding gas components is 99.99 wt% or more. ガス成分を除く純度が99.999wt%以上であることを特徴とする請求項1〜3のいずれか一項に記載のNd−Fe−B系希土類永久磁石。   The Nd-Fe-B rare earth permanent magnet according to any one of claims 1 to 3, wherein the purity excluding gas components is 99.999 wt% or more. 純度が99wt%である同一組成のNd−Fe−B系希土類永久磁石に比べて、最大エネルギー積(BH)maxの増加率が5%以上であることを特徴とする請求項1〜5のいずれか一項に記載のNd−Fe−B系希土類永久磁石。   6. The increase rate of the maximum energy product (BH) max is 5% or more as compared with an Nd—Fe—B rare earth permanent magnet of the same composition having a purity of 99 wt%. The Nd—Fe—B rare earth permanent magnet according to claim 1. 純度が99wt%である同一組成のNd−Fe−B系希土類永久磁石に比べて、耐熱温度の上昇率が10%以上であることを特徴とする請求項1〜6のいずれか一項に記載のNd−Fe−B系希土類永久磁石。   The rate of increase in heat-resistant temperature is 10% or more as compared with an Nd—Fe—B rare earth permanent magnet having the same composition with a purity of 99 wt%. Nd—Fe—B rare earth permanent magnets. Nd原料、B原料をそれぞれ酸化物からのCa還元により純度99.9%以上、硫黄、リン含有量をそれぞれ30wtppm以下とし、Fe原料を水溶液電解により純度99.9%以上、硫黄、リン含有量をそれぞれ30wtppm以下とし、次に、これらを配合した配合物を真空溶解してインゴットとし、このインゴットを粉砕して粉末化した後、これをプレスにより成形し、その後、この成形体を焼結、熱処理を行った後、この焼結体を表面加工することを特徴とするNd−Fe−B系希土類永久磁石の製造方法 Nd raw material and B raw material are each reduced by Ca reduction from oxide to a purity of 99.9% or higher, sulfur and phosphorus contents are each 30 wtppm or lower, and Fe raw material is purified by aqueous solution electrolysis to a purity of 99.9% or higher, sulfur and phosphorus content Each of which is 30 wtppm or less, and then, the compounded mixture of these is vacuum-dissolved into an ingot. After the ingot is pulverized and powdered, it is molded by a press, and then the molded body is sintered. A method for producing an Nd—Fe—B rare earth permanent magnet, characterized by subjecting the sintered body to surface processing after heat treatment Nd原料、B原料をそれぞれ酸化物からのCa還元と溶融塩電解により純度99.99%以上、硫黄、リン含有量をそれぞれ10wtppm以下とし、Fe原料を複数回の水溶液電解により純度99.99%以上、硫黄、リン含有量をそれぞれ10wtppm以下とすることを特徴とする請求項8記載のNd−Fe−B系希土類永久磁石の製造方法   Nd raw material and B raw material have purity of 99.99% or more by Ca reduction from molten oxide and molten salt electrolysis respectively, sulfur and phosphorus contents are each 10 wtppm or less, and Fe raw material has purity of 99.99% by aqueous solution electrolysis several times. The method for producing an Nd-Fe-B rare earth permanent magnet according to claim 8, wherein the sulfur and phosphorus contents are each 10 wtppm or less. Nd原料、B原料をそれぞれ酸化物からのCa還元と複数回の溶融塩電解により純度99.999%以上、硫黄、リン含有量をそれぞれ10wtppm以下とし、Fe原料を溶媒抽出と複数回の水溶液電解により純度99.999%以上、硫黄、リン含有量をそれぞれ10wtppm以下とすることを特徴とする請求項9記載のNd−Fe−B系希土類永久磁石の製造方法。   The Nd raw material and the B raw material are each reduced by Ca from an oxide and subjected to molten salt electrolysis several times to a purity of 99.999% or more, sulfur and phosphorus contents are each 10 wtppm or less, Fe raw material is subjected to solvent extraction and multiple aqueous electrolysis The method for producing a Nd—Fe—B rare earth permanent magnet according to claim 9, wherein the purity is 99.999% or more, and the sulfur and phosphorus contents are each 10 wtppm or less.
JP2012061534A 2012-03-19 2012-03-19 Neodymium-iron-boron-based rare earth sintered magnet, and method of manufacturing the same Pending JP2013197240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012061534A JP2013197240A (en) 2012-03-19 2012-03-19 Neodymium-iron-boron-based rare earth sintered magnet, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012061534A JP2013197240A (en) 2012-03-19 2012-03-19 Neodymium-iron-boron-based rare earth sintered magnet, and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2013197240A true JP2013197240A (en) 2013-09-30

Family

ID=49395852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012061534A Pending JP2013197240A (en) 2012-03-19 2012-03-19 Neodymium-iron-boron-based rare earth sintered magnet, and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2013197240A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015193925A (en) * 2014-03-27 2015-11-05 日立金属株式会社 R-t-b alloy powder and r-t-b sintered magnet
CN106910615A (en) * 2017-02-28 2017-06-30 京磁材料科技股份有限公司 The preparation method of corrosion-resistant Ne-Fe-B magnet
CN113481545A (en) * 2016-12-16 2021-10-08 包头稀土研究院 Lanthanum-iron alloy

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077943A (en) * 1983-10-03 1985-05-02 Sumitomo Special Metals Co Ltd Manufacture of raw material alloy for rare earth magnet
JPS61287107A (en) * 1985-06-13 1986-12-17 Hitachi Metals Ltd Method for molding permanent magnet alloy powder
JPH0790411A (en) * 1993-09-14 1995-04-04 Sumitomo Light Metal Ind Ltd Production of high-purity rare earth metal
JP2006210377A (en) * 2005-01-25 2006-08-10 Tdk Corp Rtb-based sintered magnet and manufacturing method thereof
JP2008248369A (en) * 2007-03-30 2008-10-16 Hitachi Metals Ltd Nd-Fe-B-BASED META-STABLE SOLIDIFICATION ALLOY AND NANO-COMPOSITE MAGNET MANUFACTURED BY USING THE SAME, AND METHOD FOR MANUFACTURING THE SAME
WO2009122709A1 (en) * 2008-03-31 2009-10-08 日立金属株式会社 R-t-b-type sintered magnet and method for production thereof
JP2010010665A (en) * 2008-05-29 2010-01-14 Toyota Motor Corp HIGH COERCIVE FIELD NdFeB MAGNET AND CONSTRUCTION METHOD THEREFOR

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077943A (en) * 1983-10-03 1985-05-02 Sumitomo Special Metals Co Ltd Manufacture of raw material alloy for rare earth magnet
JPS61287107A (en) * 1985-06-13 1986-12-17 Hitachi Metals Ltd Method for molding permanent magnet alloy powder
JPH0790411A (en) * 1993-09-14 1995-04-04 Sumitomo Light Metal Ind Ltd Production of high-purity rare earth metal
JP2006210377A (en) * 2005-01-25 2006-08-10 Tdk Corp Rtb-based sintered magnet and manufacturing method thereof
JP2008248369A (en) * 2007-03-30 2008-10-16 Hitachi Metals Ltd Nd-Fe-B-BASED META-STABLE SOLIDIFICATION ALLOY AND NANO-COMPOSITE MAGNET MANUFACTURED BY USING THE SAME, AND METHOD FOR MANUFACTURING THE SAME
WO2009122709A1 (en) * 2008-03-31 2009-10-08 日立金属株式会社 R-t-b-type sintered magnet and method for production thereof
JP2010010665A (en) * 2008-05-29 2010-01-14 Toyota Motor Corp HIGH COERCIVE FIELD NdFeB MAGNET AND CONSTRUCTION METHOD THEREFOR

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015193925A (en) * 2014-03-27 2015-11-05 日立金属株式会社 R-t-b alloy powder and r-t-b sintered magnet
CN113481545A (en) * 2016-12-16 2021-10-08 包头稀土研究院 Lanthanum-iron alloy
CN113481545B (en) * 2016-12-16 2023-07-14 包头稀土研究院 Lanthanum-iron alloy
CN106910615A (en) * 2017-02-28 2017-06-30 京磁材料科技股份有限公司 The preparation method of corrosion-resistant Ne-Fe-B magnet
CN106910615B (en) * 2017-02-28 2018-08-21 京磁材料科技股份有限公司 The preparation method of corrosion-resistant Ne-Fe-B magnet

Similar Documents

Publication Publication Date Title
JP6084601B2 (en) Neodymium rare earth permanent magnet and manufacturing method thereof
JP6090596B2 (en) Nd-Fe-B rare earth sintered magnet
JP5754232B2 (en) Manufacturing method of high coercive force NdFeB magnet
JP6572550B2 (en) R-T-B sintered magnet
JP6037128B2 (en) R-T-B rare earth magnet powder, method for producing R-T-B rare earth magnet powder, and bonded magnet
JP5120710B2 (en) RL-RH-T-Mn-B sintered magnet
JP6108029B2 (en) Method for producing RTB-based sintered magnet
JP6500907B2 (en) Method of manufacturing RTB based sintered magnet
JPWO2002103719A1 (en) Rare earth permanent magnet material
JP2015023285A (en) R-t-m-b-based sintered magnet and production method therefor
WO2005015580A1 (en) R-t-b sintered magnet and rare earth alloy
US9601979B2 (en) Alloy material for R-T-B system rare earth permanent magnet, method for producing R-T-B system rare earth permanent magnet, and motor
JP2000234151A (en) Rare earth-iron-boron system rare earth permanent magnet material
JP2015122395A (en) Method for manufacturing r-t-b-based sintered magnet
JPH04184901A (en) Rare earth iron based permanent magnet and its manufacture
JP2013197240A (en) Neodymium-iron-boron-based rare earth sintered magnet, and method of manufacturing the same
JP2012057182A (en) Alloy material for r-t-b-based rare-earth permanent magnet, method for producing r-t-b-based rare-earth permanent magnet, and motor
JP2019169560A (en) Manufacturing method of r-t-b-based sintered magnet
JP2013197241A (en) Neodymium-based rare earth sintered magnet and method of manufacturing the same
JP2000331810A (en) R-Fe-B RARE EARTH PERMANENT MAGNET MATERIAL
JP6828623B2 (en) RTB-based rare earth sintered magnets and RTB-based rare earth sintered magnet alloys
JPH04143221A (en) Production of permanent magnet
JP2020161787A (en) Method for manufacturing r-t-b based sintered magnet
JPH06151219A (en) Manufacture of permanent magnet
JPH05135920A (en) Manufacture of permanent magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170221