JPH05135920A - Manufacture of permanent magnet - Google Patents

Manufacture of permanent magnet

Info

Publication number
JPH05135920A
JPH05135920A JP3299060A JP29906091A JPH05135920A JP H05135920 A JPH05135920 A JP H05135920A JP 3299060 A JP3299060 A JP 3299060A JP 29906091 A JP29906091 A JP 29906091A JP H05135920 A JPH05135920 A JP H05135920A
Authority
JP
Japan
Prior art keywords
permanent magnet
ingots
temperature
hot
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3299060A
Other languages
Japanese (ja)
Inventor
Seiji Ihara
清二 伊原
Osamu Kobayashi
理 小林
Fumio Takagi
富美男 高城
Sei Arai
聖 新井
Koji Akioka
宏治 秋岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP3299060A priority Critical patent/JPH05135920A/en
Publication of JPH05135920A publication Critical patent/JPH05135920A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To realize low-cost and high-performance in R-Fe-B permanent magnet manufacture. CONSTITUTION:The basic components of the material are R (R is at least one kind of rare earth elements including Y), Fe and B. Composition of it expressed in atom % is RxFeyBzM100-x-y-z (where M is at least one of the elements other than R, Fe and B, 100-x-y-z=0). Here, the alloy specified by x-2z>0, 2<=100-17z<=35 is melted and molded. More than two molded ingots are put in a metal capsule whose melting point is above 600 deg.C and then sealed. Then, hot working is done between 500-1100 deg.C. When the molded ingots are put in the metal capsule as above, columnar crystal development direction of ingots are all aligned and then sealded up fort hot working at 500-1100 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、機械的配向による磁気
異方性を有する永久磁石の製造方法、特にR(ただしR
はYを含む希土類元素のうち少なくとも1種),Fe,
Bを原料基本成分とする永久磁石の製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a permanent magnet having magnetic anisotropy due to mechanical orientation, especially R (where R is
Is at least one of rare earth elements including Y), Fe,
The present invention relates to a method for producing a permanent magnet containing B as a raw material basic component.

【0002】[0002]

【従来の技術】永久磁石は、一般家庭の各種電気製品か
ら大型コンピューターの周辺端末機器まで、幅広い分野
で使用されている重要な電気・電子材料の一つであり、
最近の電気製品の小型化、高効率化の要求にともない、
永久磁石も益々高性能化が求められている。
2. Description of the Related Art Permanent magnets are one of the important electric and electronic materials used in a wide range of fields from various household electric appliances to peripheral terminals for large computers.
With the recent demand for miniaturization and high efficiency of electrical products,
Permanent magnets are also required to have higher performance.

【0003】永久磁石は、外部から電気的エネルギーを
供給しないで磁界を発生するための材料であり、保磁力
が大きく、また残留磁束密度も高いものが適している。
The permanent magnet is a material for generating a magnetic field without supplying electric energy from the outside, and a material having a large coercive force and a high residual magnetic flux density is suitable.

【0004】現在使用されている永久磁石のうち代表的
なものはアルニコ系鋳造磁石、フェライト磁石及び希土
類−遷移金属系磁石であり、特に希土類−遷移金属系磁
石であるR−Co系永久磁石やR−Fe−B系永久磁石
は、極めて高い保磁力とエネルギー積を持つ永久磁石と
して、従来から多くの研究開発がなされている。
Typical permanent magnets currently in use are alnico type cast magnets, ferrite magnets and rare earth-transition metal type magnets, especially R-Co type permanent magnets which are rare earth-transition metal type magnets. The R-Fe-B system permanent magnet has been extensively researched and developed as a permanent magnet having an extremely high coercive force and energy product.

【0005】従来、これらR−Fe−B系の高性能異方
性永久磁石の製造方法には、次のようなものがある。
Conventionally, there are the following methods for producing these R—Fe—B type high-performance anisotropic permanent magnets.

【0006】(1)まず、特開昭59-46008号公報や M.Saga
wa,S.Fujimura,N.Togawa,H.Yamamotoand Y.Matsuura;J.
Appl.Phys.Vol.55(6),15 March 1984,p2083 等には、原
子百分比で8〜30%のR(ただしRはYを含む希土類元素
の少なくとも1種)、2〜28%のB及び残部Feからなる
磁気異方性焼結体であることを特徴とする永久磁石が粉
末冶金法に基づく焼結によって製造されることが開示さ
れている。
(1) First, Japanese Patent Laid-Open No. 59-46008 and M. Saga
wa, S.Fujimura, N.Togawa, H.Yamamoto and Y.Matsuura; J.
Appl.Phys.Vol.55 (6), 15 March 1984, p2083, etc., 8 to 30% R (where R is at least one rare earth element including Y) and 2 to 28% B in atomic percentage. It is disclosed that a permanent magnet characterized by being a magnetic anisotropic sintered body composed of Fe and the balance Fe is manufactured by sintering based on the powder metallurgy method.

【0007】この焼結法では、溶解・鋳造により合金イ
ンゴットを作製し、粉砕して適当な粒度(数μm)の磁
性粉を得る。磁性粉は成形助剤のバインダーと混練さ
れ、磁場中でプレス成形されて成形体が出来上がる。成
形体はアルゴン中で1100℃前後の温度1時間焼結され、
その後室温まで急冷される。焼結後、600 ℃前後の温度
で熱処理する事により永久磁石はさらに保磁力を向上さ
せる。
In this sintering method, an alloy ingot is produced by melting and casting and crushed to obtain a magnetic powder having an appropriate particle size (several μm). The magnetic powder is kneaded with a binder, which is a molding aid, and press-molded in a magnetic field to form a molded body. The molded body is sintered in argon at a temperature of around 1100 ° C for 1 hour,
Then it is rapidly cooled to room temperature. After sintering, the coercive force of the permanent magnet is further improved by heat treatment at a temperature of around 600 ° C.

【0008】また、この焼結磁石の熱処理に関しては特
開昭61-217540 号公報、特開昭62-165305 号公報等に、
多段熱処理の効果が開示されている。
Regarding the heat treatment of this sintered magnet, Japanese Patent Laid-Open No. 61-217540, Japanese Patent Laid-Open No. 62-165305, etc.
The effect of multi-step heat treatment is disclosed.

【0009】(2)特開昭59-211549 号公報や R.W.Lee;
Appl.Phys.Lett.Vol.46(8),15 April1985,p790には、非
常に微細な結晶性の磁性相を持つ、メルトスピニングさ
れた合金リボンの微細片が樹脂によって接着されたR−
Fe−B磁石が開示されている。 この永久磁石は、ア
モルファス合金を製造するに用いる急冷薄帯製造装置
で、厚さ30μm程度の急冷薄片を作り、その薄片を樹脂
と混練してプレス成形することにより製造される。
(2) Japanese Patent Laid-Open No. 59-211549 and RWLee;
Appl. Phys. Lett. Vol. 46 (8), 15 April 1985, p790 describes a resin-bonded fine piece of melt-spun alloy ribbon with a very fine crystalline magnetic phase.
Fe-B magnets are disclosed. This permanent magnet is manufactured by a quenching ribbon production apparatus used for producing an amorphous alloy, by making a quenching thin piece having a thickness of about 30 μm, kneading the thin piece with a resin and press-molding.

【0010】(3)特開昭60-100402 号公報や R.W.Lee; A
ppl. Phys.Lett.Vol.46(8),15 April1985,p790には、前
記(2) の方法で使用した急冷薄片を、真空中あるいは不
活性雰囲気中で2段階ホットプレス法と呼ばれる方法で
緻密で異方性を有するR−Fe−B磁石を得ることが開
示されている。
(3) Japanese Patent Laid-Open No. 60-100402 and RWLee; A
ppl. Phys. Lett. Vol. 46 (8), 15 April1985, p790 describes the quenched thin piece used in the method of (2) above in a method called a two-step hot pressing method in vacuum or in an inert atmosphere. It is disclosed to obtain a dense and anisotropic R-Fe-B magnet.

【0011】(4)特開昭62-276803 号公報には、R(た
だしRはYを含む希土類元素のうち少なくとも1種) 8
〜30原子%,B 2〜28原子%,Co 50原子%以下,A
l 15原子%以下、及び残部が鉄及びその他の製造上不
可避な不純物からなる合金を溶解・鋳造後、該鋳造イン
ゴットを 500℃以上の温度で熱間加工することにより結
晶粒を微細化しまたその結晶軸を特定の方向に配向せし
めて、該鋳造合金を磁気的に異方性化することを特徴と
する希土類−鉄系永久磁石が開示されている。
(4) In JP-A-62-276803, R (where R is at least one of rare earth elements including Y) 8
~ 30 atom%, B 2 ~ 28 atom%, Co 50 atom% or less, A
After melting and casting an alloy containing 15 atomic% or less and the balance of iron and other impurities unavoidable in production, the cast ingot is subjected to hot working at a temperature of 500 ° C. or more to refine the crystal grains and Disclosed is a rare earth-iron-based permanent magnet characterized by orienting the crystal axis in a specific direction to magnetically anisotropy the cast alloy.

【0012】また、この熱間加工磁石の製造法に於て、
複数個の鋳造インゴットを金属カプセルに入れて熱間圧
延することは、特開平2-252218に開示されている。ま
た、複数個の鋳造インゴットを組み合わせて圧延する場
合、鋳造インゴットの表面粗さRmax が50μm 以下とな
るように研削・研磨した後、金属カプセルに入れて熱間
圧延することは、特願平3-095700に開示されている。
In addition, in the method of manufacturing this hot-worked magnet,
Japanese Patent Laid-Open No. 2-252218 discloses that a plurality of cast ingots are placed in a metal capsule and hot-rolled. Further, in the case of rolling a plurality of cast ingots in combination, it is necessary to grind and polish the cast ingots so that the surface roughness Rmax is 50 μm or less, and then hot-roll them in a metal capsule. -095700.

【0013】[0013]

【発明が解決しようとする課題】叙上の(1)〜(4)の従来
のR−Fe−B系永久磁石の製造方法は、次のごとき欠
点を有している。
The conventional methods for manufacturing R-Fe-B based permanent magnets (1) to (4) above have the following drawbacks.

【0014】(1)の永久磁石の製造方法は、合金を粉末
にすることを必須とするものであるが、R−Fe−B系
合金はたいへん酸素に対して活性を有するので、粉末化
すると余計酸化が激しくなり、焼結体中の酸素濃度はど
うしても高くなってしまう。
The method of producing a permanent magnet of (1) essentially requires that the alloy be made into powder. However, since the R-Fe-B alloy is very active with respect to oxygen, it cannot be powdered. Oxidation becomes excessive, and the oxygen concentration in the sintered body inevitably increases.

【0015】また粉末を成形するときに、例えばステア
リン酸亜鉛の様な成形助剤を使用しなければならず、こ
れは焼結工程で前もって取り除かれるのであるが、成形
助剤中の数割は、磁石体の中に炭素の形で残ってしま
い、この炭素は著しくR−Fe−B磁石の磁気性能を低
下させ好ましくない。
When molding the powder, it is necessary to use a molding aid such as zinc stearate, which is removed beforehand in the sintering process. However, it remains in the form of carbon in the magnet body, and this carbon remarkably deteriorates the magnetic performance of the R-Fe-B magnet, which is not preferable.

【0016】成形助剤を加えてプレス成形した後の成形
体はグリーン体と言われ、これは大変脆く、ハンドリン
グが難しい。従って焼結炉にきれいに並べて入れるのに
は、相当の手間が掛かることも大きな欠点である。
The green body is a green body after press-molding by adding a molding aid, which is very brittle and difficult to handle. Therefore, it takes a great deal of time and effort to put them neatly in the sintering furnace, which is a big drawback.

【0017】これらの欠点があるので、一般的に言って
R−Fe−B系の焼結磁石の製造には、高価な設備が必
要になるばかりでなく、その製造方法は生産効率が悪
く、結局磁石の製造コストが高くなってしまう。従っ
て、比較的原料費の安いR−Fe−B系磁石の長所を活
かすことが出来ない。
Due to these drawbacks, generally speaking, not only expensive equipment is required for producing an R--Fe--B system sintered magnet, but also the production method is inferior in production efficiency. Eventually, the manufacturing cost of the magnet increases. Therefore, it is not possible to take advantage of the advantages of the R-Fe-B magnets, which have relatively low raw material costs.

【0018】次に (2)並びに (3)の永久磁石の製造方法
は、真空メルトスピニング装置を使用するが、この装置
は、現在では大変生産性が悪くしかも高価である。
Next, in the manufacturing methods of the permanent magnets of (2) and (3), a vacuum melt spinning apparatus is used, but this apparatus is currently very poor in productivity and expensive.

【0019】(2)の永久磁石は、原理的に等方性である
ので低エネルギー積であり、ヒステリシスループの角形
性も悪く、温度特性に対しても、使用する面においても
不利である。
Since the permanent magnet of (2) is isotropic in principle, it has a low energy product, the squareness of the hysteresis loop is poor, and it is disadvantageous in terms of temperature characteristics and use.

【0020】(3)の永久磁石を製造する方法は、ホット
プレスを二段階に使うというユニークな方法であるが、
実際に量産を考えると非効率であることは否めないであ
ろう。更にこの方法では、高温例えば 800℃以上では結
晶粒の粗大化が著しく、それによって保磁力 iHc が極
端に低下し、実用的な永久磁石にはならない。
The method (3) for producing a permanent magnet is a unique method in which hot pressing is used in two steps.
It cannot be denied that it is inefficient considering mass production. Further, in this method, the crystal grains are remarkably coarsened at a high temperature, for example, 800 ° C. or higher, and the coercive force iHc is extremely lowered by this, and it cannot be a practical permanent magnet.

【0021】(4)の永久磁石を製造する方法は、粉末工
程を含まず、ホットプレスも一段階でよいために、最も
製造工程が簡略化され、量産コストの低減が図れる製造
法であるが、磁気特性が焼結法に比べやや低く、また、
インゴットを2枚以上組み合わせて熱間加工した場合、
インゴット同士の接着はインゴットの表面状態に左右さ
れ、インゴットの接合面において磁石の割れが発生する
という問題があった。
The method of manufacturing the permanent magnet of (4) does not include a powder process and requires only one step of hot pressing, so that the manufacturing process is most simplified and the mass production cost can be reduced. , The magnetic properties are slightly lower than those of the sintering method,
When hot working by combining two or more ingots,
Adhesion between the ingots depends on the surface condition of the ingots, and there is a problem that cracking of the magnet occurs at the joint surface of the ingots.

【0022】本発明は、以上の従来技術の欠点特に(4)
の永久磁石の割れの問題を解決するものであり、その目
的とするところは、高性能かつ低コストな永久磁石の製
造方法を提供することにある。
The present invention has the above-mentioned drawbacks of the prior art, particularly (4).
The problem to be solved by the invention is to provide a method of manufacturing a permanent magnet with high performance and low cost.

【0023】[0023]

【課題を解決するための手段】本発明の永久磁石の製造
方法は、R(ただしRはYを含む希土類元素のうち少な
くとも1種),Fe,Bを原料基本成分とし、原子%で
表わしたその組成が、 RxFeyz100-x-y-z (但し、MはR、Fe、B以外の元素の内少なくとも1
種で、100−x−y−z=0である場合を含む)で表
わされるとき、 x−2z>0 2≦100−17z≦35 で規定される合金を溶解・鋳造し、得られた鋳造インゴ
ットを2個以上融点が600℃以上の金属製カプセルに
入れ密封した上で500〜1100℃の温度において熱
間加工し、次に250〜1100℃において熱処理する
事を特徴とする。また、柱状晶が発達した組織を持つイ
ンゴットの場合、更に割れ防止の効果を得るためには、
鋳造インゴットを金属製カプセルに入れる際に、インゴ
ットの柱状晶発達方向を揃えて入れ、密封した上で50
0〜1100℃の温度において熱間加工し、次に250
〜1100℃において熱処理する事を特徴とする。
In the method for producing a permanent magnet of the present invention, R (where R is at least one of rare earth elements including Y), Fe and B are used as raw material basic components and expressed in atomic%. Its composition is R x Fe y B z M 100-xyz (where M is at least 1 of elements other than R, Fe and B).
, Including the case where 100-x-y-z = 0), x-2z> 0 2 ≤ 100-17z ≤ 35 is melted and cast to obtain the obtained casting. The invention is characterized in that two or more ingots are placed in a metal capsule having a melting point of 600 ° C. or more, sealed, hot-worked at a temperature of 500 to 1100 ° C., and then heat-treated at 250 to 1100 ° C. Further, in the case of an ingot having a structure in which columnar crystals have developed, in order to further obtain the effect of preventing cracks,
When the cast ingot is put into a metal capsule, the columnar crystal growth directions of the ingot are put in the same direction, sealed, and then 50
Hot working at a temperature of 0 to 1100 ° C, then 250
Characterized by heat treatment at ˜1100 ° C.

【0024】また更なる高保磁力化、高性能化のために
は、熱間加工後750〜1100℃において熱処理した
後に250〜750℃の温度において熱処理する事を特
徴とする。
Further, in order to further increase the coercive force and the performance, it is characterized in that after the hot working, the heat treatment is carried out at 750 to 1100 ° C. and then at the temperature of 250 to 750 ° C.

【0025】以下、本発明における永久磁石の好ましい
組成範囲について説明する。
The preferable composition range of the permanent magnet in the present invention will be described below.

【0026】希土類としては、Y,La,Ce,Pr,
Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,T
m,Yb,Luが候補として挙げられ、これらのうちの
1種あるいは2種以上を組み合わせて用いる。最も高い
磁気性能はPrで得られるので、実用的には Pr,P
r−Nd合金,Ce−Pr−Nd合金等が用いられる。
少量の重希土元素、例えばDy,Tb等は保磁力の向上
に有効である。
As rare earth elements, Y, La, Ce, Pr,
Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, T
m, Yb, and Lu are listed as candidates, and one or more of these are used in combination. Since the highest magnetic performance can be obtained with Pr, practically, Pr, P
An r-Nd alloy, a Ce-Pr-Nd alloy, etc. are used.
A small amount of heavy rare earth element, such as Dy or Tb, is effective for improving the coercive force.

【0027】R−Fe−B系磁石の主相はR2Fe14
である。従ってRが8原子%未満では、もはや上記化合
物を形成せず高磁気特性は得られない。一方Rが30原
子%を越えると非磁性のRリッチ相が多くなり磁気特性
は著しく低下する。よってRの範囲は8〜30原子%が
適当である。しかし高い残留磁束密度のためには、好ま
しくはR8〜25原子%が適当である。
The main phase of the R-Fe-B magnet is R 2 Fe 14 B.
Is. Therefore, if R is less than 8 atomic%, the above compound is no longer formed and high magnetic properties cannot be obtained. On the other hand, when R exceeds 30 atom%, the nonmagnetic R-rich phase is increased and the magnetic properties are remarkably deteriorated. Therefore, the range of R is suitably 8 to 30 atomic%. However, for high residual magnetic flux density, R8 to 25 atomic% is preferable.

【0028】Bは、R2Fe14B 相を形成するための必
須元素であり、2原子%未満では菱面体のR−Fe系に
なるために高保磁力は望めない。また28原子%を越え
るとBに富む非磁性相が多くなり、残留磁束密度は著し
く低下してくる。しかし高保磁力を得るためには、好ま
しくはB8原子%以下がよく、それ以上では微細なR2
Fe14B 相を得ることが困難で、保磁力は小さい。
B is an essential element for forming the R 2 Fe 14 B phase, and if it is less than 2 atomic%, a rhombohedral R-Fe system cannot be obtained, so that a high coercive force cannot be expected. On the other hand, if it exceeds 28 atomic%, the non-magnetic phase rich in B is increased and the residual magnetic flux density is significantly lowered. However, in order to obtain a high coercive force, B8 atom% or less is preferable, and if it is more than that, fine R 2
It is difficult to obtain the Fe 14 B phase, and the coercive force is small.

【0029】上記の好ましい組成範囲の中でも、さら
に、その合金の組成が RxFeyz100-x-y-z (但し、MはR、Fe、B以外の元素の内少なくとも1
種で、100−x−y−z=0である場合を含む)で表
わされるとき、 x−2z>0 2≦100−17z≦35 で規定される組成域であることが望ましい。x−2z≦
0となる組成域では、粒界相にRが含まれなくなること
によって熱間加工中の変形が阻害され、磁気特性低下の
原因となり、また、割れを引き起こす。磁性相である
2Fe14B相は硬くてもろいため、効果的に配向を行
なうには低融点の粒界相の存在が必要である。しかし、
100−17z>35である場合には、粒界相の比率が
高過ぎる状態であり、 R2Fe14B相の比率が少なくな
り高い残留磁束密度を得ることができなくなり磁気性能
が低下する。また、100−17z<2の場合には、粒
界相量が効果的な配向を行なうのに十分ではなく、また
変形が阻害されるため、磁気特性の低下、割れを起こす
原因となる。従って、熱間加工による割れを防ぎ、結晶
軸の良好な配向を得、高磁気特性を得るためには、 2≦100−17z≦35 となる組成域であることが更に望ましい。
Within the above preferable composition range, the composition of the alloy is R x Fe y B z M 100-xyz (where M is at least 1 of elements other than R, Fe and B).
It is desirable that the composition range is defined by x-2z> 0 2 ≦ 100-17z ≦ 35 when represented by the formula (including the case where 100-x-y-z = 0). x-2z ≦
In the composition range of 0, R is not contained in the grain boundary phase, which hinders deformation during hot working, which causes deterioration of magnetic properties and causes cracking. Is a magnetic phase
Since the R 2 Fe 14 B phase is hard and brittle, it is necessary to have a low-melting-point grain boundary phase for effective orientation. But,
In the case of 100-17z> 35, the ratio of the grain boundary phase is too high, the ratio of the R 2 Fe 14 B phase becomes small, and a high residual magnetic flux density cannot be obtained, and the magnetic performance deteriorates. On the other hand, in the case of 100-17z <2, the grain boundary phase amount is not sufficient for effective orientation and deformation is hindered, which causes deterioration of magnetic properties and cracking. Therefore, in order to prevent cracking due to hot working, obtain a good orientation of crystal axes, and obtain high magnetic properties, it is more desirable that the composition range is 2 ≦ 100−17z ≦ 35.

【0030】熱間加工における温度は再結晶温度以上が
望ましく、本発明R−Fe−B系合金においては好まし
くは 500℃以上である。そして、1100℃以上ではR2
14B相が急激に粒成長して保磁力を失うのでそれ以下
の温度が好ましい。
The temperature during hot working is preferably a recrystallization temperature or higher, and is preferably 500 ° C. or higher in the R—Fe—B type alloy of the present invention. And above 1100 ℃ R 2 F
Since the e 14 B phase rapidly grows to lose the coercive force, a temperature lower than that is preferable.

【0031】そして、熱処理温度は初晶のFeを拡散す
るために250℃以上が好ましく、R2Fe14B 相が 1100
℃以上では急激に粒成長して保磁力を失うのでそれ以下
の温度が好ましい。
The heat treatment temperature is preferably 250 ° C. or higher for diffusing primary crystal Fe, and the R 2 Fe 14 B phase is 1100 ° C.
If the temperature is higher than 0 ° C, the grain size will be rapidly grown and the coercive force will be lost.

【0032】また、2段階以上の熱処理を施す場合の温
度は、1段目は初晶のFeが早く拡散するように750
℃以上が好ましく、2段目は粒界のRリッチ相の融点付
近以下の温度、即ち750℃以下が好ましく、250℃
以下では熱処理の効果に時間が掛かりすぎるのでそれ以
上がよい。
In the case of performing the heat treatment in two or more steps, the temperature in the first step is set to 750 so that the primary Fe diffuses quickly.
℃ or more is preferable, and the second stage is a temperature below the melting point of the R-rich phase at the grain boundary, that is, 750 ° C or less, preferably 250 ° C.
In the following, the effect of the heat treatment takes too much time, so more is preferable.

【0033】次に本発明の実施例について述べる。Next, examples of the present invention will be described.

【0034】[0034]

【実施例】(実施例1)アルゴン雰囲気中で誘導加熱炉
を用いて、表1に示す組成の合金を溶解し、鋳造した。
この時、希土類、鉄及び銅の原料としては99.9%の純度
のものを用い、ボロンはフェロボロンを用いた。このと
き、インゴット組織は、柱状晶が強く発達した組織では
なく、等軸晶に近い組織であった。この鋳造インゴット
を、200L×200H×25Tの大きさに切断・研磨
した。このときのインゴットの表面粗さRmaxは、3
0μm≦Rmax≦45μmであった。
Example 1 An alloy having the composition shown in Table 1 was melted and cast in an argon atmosphere using an induction heating furnace.
At this time, raw materials of rare earth, iron and copper were used with a purity of 99.9% and ferroboron was used as boron. At this time, the ingot structure was not a structure in which columnar crystals were strongly developed, but a structure close to equiaxed crystals. This cast ingot was cut and polished into a size of 200L × 200H × 25T. The surface roughness Rmax of the ingot at this time is 3
It was 0 μm ≦ Rmax ≦ 45 μm.

【0035】次に、この鋳造インゴットを有機溶剤で洗
浄後5個並べて200L×200H×125Wとしたも
のを600L×450H×600WのSS41鋼製のカ
プセルに入れ、脱気し、密封した。これに対し加工温度
975℃で熱間圧延を施した。この時、加工度20%の
熱間圧延を空気中で2回、つぎに加工度30%の熱間圧
延を空気中で3回行い、最終的に加工度が78%になる
ようにした。この熱間加工時においては、合金の押され
る方向に平行になるように結晶の磁化容易軸が配向して
磁気異方性が形成された。この後、この圧延インゴット
から切り出したサンプルに対して1000℃の温度にお
いて20時間の熱処理をAr雰囲気炉で施し、炉内で5
00℃まで冷却した。この時の冷却速度は、10℃/分
である。この後引続き500℃において4時間の熱処理
を施した。
Next, after washing these casting ingots with an organic solvent and arranging them five by 5 to make 200 L × 200 H × 125 W, they were placed in a 600 L × 450 H × 600 W SS41 steel capsule, deaerated and sealed. On the other hand, hot rolling was performed at a processing temperature of 975 ° C. At this time, hot rolling with a workability of 20% was performed twice in air, and then hot rolling with a workability of 30% was performed three times in air, so that the workability finally reached 78%. During this hot working, the easy axis of magnetization of the crystal was oriented so as to be parallel to the pressing direction of the alloy, and magnetic anisotropy was formed. After that, the sample cut out from this rolling ingot was subjected to a heat treatment at a temperature of 1000 ° C. for 20 hours in an Ar atmosphere furnace, and then subjected to 5 hours in the furnace.
Cooled to 00 ° C. The cooling rate at this time is 10 ° C./minute. After that, heat treatment was subsequently performed at 500 ° C. for 4 hours.

【0036】これらの熱処理後のサンプルの磁気特性と
インゴット間の接着面4箇所に目視で観察された境界の
長さを表2に示す。なお境界の延べ長さは3150mm
であり、磁気特性はすべて40kOeでパルス着磁後B
−Hトレーサーを用いて測定した。
Table 2 shows the magnetic characteristics of these heat-treated samples and the lengths of boundaries visually observed at the four bonding surfaces between the ingots. The total length of the boundary is 3150 mm
And the magnetic characteristics are all 40 kOe and after pulse magnetization B
It was measured using a -H tracer.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】原子%で表わした組成が RxFeyz100-x-y-z (但し、MはR、Fe、B以外の元素の内少なくとも1
種で、100−x−y−z=0である場合を含む)で表
わされるとき、 x−2z>0 2≦100−17z≦35 で規定される範囲内の組成とすることにより、割れが防
止でき、境界も目視で観察できないほど良好な接着が得
られることがわかる。また、この範囲内の組成では、磁
気性能も良好な値が得られている。
The composition expressed in atomic% is R x Fe y B z M 100-xyz (where M is at least 1 of elements other than R, Fe and B).
And including a case where 100-x-y-z = 0), the cracks are generated by the composition within the range defined by x-2z> 0 2 ≦ 100-17z ≦ 35. It can be seen that good adhesion can be obtained which can be prevented and the boundary cannot be visually observed. In addition, in the composition within this range, good magnetic performance is obtained.

【0040】(実施例2)表3に示す組成の合金を実施
例1と同様に、溶解・鋳造した。このとき、インゴット
組織が柱状晶が強く発達した組織になるように鋳造し
た。また用いた原料も同様の純度のものを用いた。な
お、これらの組成は、すべて実施例1に効果を示した x−2z>0、2≦100−17z≦35 で規定される組成範囲に入っている。この鋳造インゴッ
トを200L×200Hかけ25Tの大きさに切断、研
磨した。このときのインゴット表面粗さRmaxは、1
00μm程度である。これを洗浄後、4個並べて200
L×200H×100Wとして500L×400H×3
20Wの大きさのSS41鋼製のカプセルに入れ、真空
にひき密封した。この時、柱状晶発達方向を揃えて組み
合わせたもの(条件1)及び、柱状晶発達方向が互いに
直角になるように組み合わせたもの(条件2)の2種類
を用意した。これを950℃に加熱後、加工度30%の
熱間圧延を空気中で4回行い、最終的に加工度が76%
になるようにした。
Example 2 Alloys having the compositions shown in Table 3 were melted and cast in the same manner as in Example 1. At this time, casting was performed so that the ingot structure became a structure in which columnar crystals were strongly developed. The raw materials used had the same purity. All of these compositions are within the composition range defined by x-2z> 0, 2 ≦ 100-17z ≦ 35, which showed the effect in Example 1. This cast ingot was cut into a size of 25T by 200L × 200H and polished. The surface roughness Rmax of the ingot at this time is 1
It is about 00 μm. After washing this, 4 pieces are lined up for 200
L × 200H × 100W, 500L × 400H × 3
It was put into a capsule made of SS41 steel having a size of 20 W, which was then vacuum-sealed and hermetically sealed. At this time, two types were prepared: one in which the columnar crystal growth directions were aligned and combined (condition 1), and one in which the columnar crystal growth directions were combined at right angles to each other (condition 2). After this is heated to 950 ° C, hot rolling with a working rate of 30% is performed four times in the air, and finally the working rate is 76%.
I tried to become.

【0041】この後、この圧延インゴットからサンプル
を切り出し、研磨した後、1020℃において20時間
の熱処理をAr雰囲気炉で施し、炉内でガス冷却により
400℃までを15℃/分の速度で冷却し、次に500
℃において4時間の熱処理を施し、室温までを10℃/
分の速度で冷却した。
Thereafter, a sample was cut out from this rolled ingot, polished, and then heat-treated at 1020 ° C. for 20 hours in an Ar atmosphere furnace, and cooled to 400 ° C. at a rate of 15 ° C./min by gas cooling in the furnace. Then 500
Heat treatment at ℃ for 4 hours, room temperature up to 10 ℃ /
Cooled at a rate of minutes.

【0042】これらの熱処理後のサンプルについての接
着状況を表4に示す。
Table 4 shows the adhesion status of these samples after the heat treatment.

【0043】[0043]

【表3】 [Table 3]

【0044】[0044]

【表4】 [Table 4]

【0045】以上の実施例から、R(ただしRはYを含
む希土類元素のうち少なくとも1種),Fe,Bを原料
基本成分とする鋳造インゴットを2個以上組み合わせて
金属製カプセルに入れて熱間圧延を行なう際に、原子%
で表わしたその組成が、 RxFeyz100-x-y-z (但し、MはR、Fe、B以外の元素の内少なくとも1
種で、100−x−y−z=0である場合を含む)であ
るとき、 x−2z>0 2≦100−17z≦35 と規定することにより、熱間圧延時の割れを防ぎ、2枚
以上のインゴットの良好な接着が得られ、さらに柱状晶
が発達した組織を持つ合金の鋳造インゴットの場合、イ
ンゴットを2枚以上組み合わせて金属製カプセルに入れ
る際に柱状晶方向を揃えて組み合わせることにより、割
れをなくし、更に強力な接着効果が得られることは明ら
かである。
From the above examples, two or more cast ingots containing R (where R is at least one of rare earth elements including Y), Fe and B as basic raw material components are combined and placed in a metal capsule and heated. When performing hot rolling, atomic%
The composition represented by R x Fe y B z M 100-xyz (where M is at least 1 of elements other than R, Fe and B)
(Including the case where 100-x-y-z = 0)), it is possible to prevent cracking during hot rolling by defining x-2z> 0 2 ≤100-17z ≤35. In the case of a cast ingot of an alloy that has good adhesion of more than one ingot and has a structure in which columnar crystals have further developed, when combining two or more ingots and putting them in a metal capsule, combine them so that the columnar crystal directions are aligned. It is clear that by doing so, cracking is eliminated and a stronger adhesive effect is obtained.

【0046】[0046]

【発明の効果】叙上のごとく本発明の永久磁石の製造方
法は、次のごとき効果を持つ。
As described above, the method for manufacturing a permanent magnet of the present invention has the following effects.

【0047】(1)c軸配向率を高めることができ、残留
磁束密度Brを著しく高めることができ、結晶粒を微細
化することにより保磁力iHcを高めることができ、最
大エネルギー積(BH)maxを格段に向上させること
が出来た。
(1) The c-axis orientation ratio can be increased, the residual magnetic flux density Br can be remarkably increased, and the coercive force iHc can be increased by refining the crystal grains, and the maximum energy product (BH) I was able to improve max significantly.

【0048】(2)製造プロセスが簡単なのでコストが安
い。
(2) The cost is low because the manufacturing process is simple.

【0049】(3)従来の焼結法と比較して、加工工数及
び生産投資額を著しく低減させることが出来る。
(3) Compared with the conventional sintering method, the processing man-hour and the production investment amount can be remarkably reduced.

【0050】(4)従来のメルトスピニング法による磁石
の製造方法と比較して、高性能でしかも低コストの磁石
を作ることが出来る。
(4) As compared with the conventional method of manufacturing a magnet by the melt spinning method, a magnet having high performance and low cost can be manufactured.

【0051】(5)従来の熱間加工磁石と比較して、割れ
の無い大型磁石が製造できる。
(5) As compared with the conventional hot-worked magnet, a large magnet without cracks can be manufactured.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新井 聖 長野県諏訪市大和3丁目3番5号セイコー エプソン株式会社内 (72)発明者 秋岡 宏治 長野県諏訪市大和3丁目3番5号セイコー エプソン株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor St. Arai 3-3-5 Yamato, Suwa-shi, Nagano Seiko Epson Corporation (72) Inventor Koji Akioka 3-3-5 Yamato, Suwa-shi, Nagano Seiko Epson Within the corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】R(ただしRはYを含む希土類元素のうち
少なくとも1種),Fe,Bを原料基本成分とし、原子
%で表わしたその組成が、 RxFeyz100-x-y-z (但し、MはR、Fe、B以外の元素の内少なくとも1
種で、 100−x−y−z=0である場合を含む)で表わされ
るとき、 x−2z>0 2≦100−17z≦35 で規定される合金を溶解・鋳造し、得られた鋳造インゴ
ットを2個以上、融点が600℃以上の金属製カプセル
に入れ密封した上で500〜1100℃の温度において
熱間加工し、次に250〜1100℃において熱処理す
る事を特徴とする永久磁石の製造方法。
1. R (where R is at least one of rare earth elements including Y), Fe and B as raw material basic components, and the composition expressed in atomic% is R x Fe y B z M 100-xyz. (However, M is at least 1 of the elements other than R, Fe, and B.
And the case where 100-x-y-z = 0) is included), an alloy defined by x-2z> 0 2 ≦ 100-17z ≦ 35 is melted and cast, and the obtained casting is obtained. A permanent magnet characterized in that two or more ingots are placed in a metal capsule having a melting point of 600 ° C. or higher, sealed, hot-worked at a temperature of 500 to 1100 ° C., and then heat-treated at 250 to 1100 ° C. Production method.
【請求項2】鋳造インゴットを金属製カプセルに入れる
際に、インゴットの柱状晶発達方向を揃えて入れ、密封
した上で500〜1100℃の温度において熱間加工
し、次に250〜1100℃において熱処理する事を特
徴とする永久磁石の製造方法。
2. When a cast ingot is put into a metal capsule, the columnar crystal growth directions of the ingot are put in the same direction, sealed, hot-worked at a temperature of 500 to 1100 ° C., and then at 250 to 1100 ° C. A method for producing a permanent magnet, characterized by heat treatment.
JP3299060A 1991-11-14 1991-11-14 Manufacture of permanent magnet Pending JPH05135920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3299060A JPH05135920A (en) 1991-11-14 1991-11-14 Manufacture of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3299060A JPH05135920A (en) 1991-11-14 1991-11-14 Manufacture of permanent magnet

Publications (1)

Publication Number Publication Date
JPH05135920A true JPH05135920A (en) 1993-06-01

Family

ID=17867688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3299060A Pending JPH05135920A (en) 1991-11-14 1991-11-14 Manufacture of permanent magnet

Country Status (1)

Country Link
JP (1) JPH05135920A (en)

Similar Documents

Publication Publication Date Title
EP0126802B1 (en) Process for producing of a permanent magnet
JP3143156B2 (en) Manufacturing method of rare earth permanent magnet
JPH0510807B2 (en)
JPH01219143A (en) Sintered permanent magnet material and its production
JP2853838B2 (en) Manufacturing method of rare earth permanent magnet
JPH045740B2 (en)
JPH06207204A (en) Production of rare earth permanent magnet
JPH05135976A (en) Manufacture of permanent magnet
JP2579787B2 (en) Manufacturing method of permanent magnet
JPH04143221A (en) Production of permanent magnet
JPH0644526B2 (en) Rare earth magnet manufacturing method
JPH10130796A (en) Production of fine crystal permanent magnet alloy and isotropic permanent magnet powder
JP2893705B2 (en) Manufacturing method of permanent magnet
JPH05135920A (en) Manufacture of permanent magnet
JPH0521219A (en) Production of rare-earth permanent magnet
JPH0475303B2 (en)
JP2730441B2 (en) Manufacturing method of alloy powder for permanent magnet
JP2611221B2 (en) Manufacturing method of permanent magnet
JP2746111B2 (en) Alloy for permanent magnet
JP2573865B2 (en) Manufacturing method of permanent magnet
JPH0422104A (en) Method of manufacturing permanent magnet
JPH04134806A (en) Manufacture of permanent magnet
JPH05315120A (en) Rare earth sintered magnet and its manufacture
JPH06151219A (en) Manufacture of permanent magnet
JPH0422105A (en) Method of manufacturing permanent magnet