JP2005268538A - Sintered rare earth permanent magnet and manufacturing method thereof - Google Patents

Sintered rare earth permanent magnet and manufacturing method thereof Download PDF

Info

Publication number
JP2005268538A
JP2005268538A JP2004078851A JP2004078851A JP2005268538A JP 2005268538 A JP2005268538 A JP 2005268538A JP 2004078851 A JP2004078851 A JP 2004078851A JP 2004078851 A JP2004078851 A JP 2004078851A JP 2005268538 A JP2005268538 A JP 2005268538A
Authority
JP
Japan
Prior art keywords
rare earth
amount
permanent magnet
nitrogen
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004078851A
Other languages
Japanese (ja)
Other versions
JP2005268538A5 (en
Inventor
Kimio Uchida
公穂 内田
Nobuhiko Fujimori
信彦 藤森
Kazuhiro Sonoda
和博 園田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Neomax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neomax Co Ltd filed Critical Neomax Co Ltd
Priority to JP2004078851A priority Critical patent/JP2005268538A/en
Publication of JP2005268538A publication Critical patent/JP2005268538A/en
Publication of JP2005268538A5 publication Critical patent/JP2005268538A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sintered rare earth permanent magnet excellent in corrosion resistance and further improved in magnetic characteristics by low oxygenation. <P>SOLUTION: The sintered rare earth permanent magnet is employed with the composition of 27.0-34.0% of R (R is at least one kind or more of rare earth element containing Y), 0.5-2.0% of B, 0.03-0.10% of O, 0.05-0.25% of N, 0.15% or less of C, 0.003% or less of H in wt.% and the residue of Fe while the contained amount of N is more than the contained amount of O. Preferably, the permanent magnet contains one kind or two or more kinds among 0.2-0.5% of Co, 0.05-0.5% of Nb, 0.01-0.5% of Al, 0.01-0.3% of Ga, 0.01-0.5% of Cu and 0.005-0.05% of P in wt.%. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高耐食性を有する焼結型R−Fe−B系希土類永久磁石に関するものである。   The present invention relates to a sintered R—Fe—B rare earth permanent magnet having high corrosion resistance.

従来の希土類元素を用いた永久磁石は、高い耐蝕性を得ることを目的として、例えば、重量百分率でR(RはYを含む希土類元素のうちの1種又は2種以上)27.0〜31.0%、B0.5〜2.0%、N0.02〜0.15%、O0.25%以下、C0.15%以下、残部Feの組成を有することにより耐蝕性が向上しており、かつ保持力iHcが13.0kOe以上であることを特徴とする焼結型永久磁石を開示している(特許文献1)。   For the purpose of obtaining high corrosion resistance, conventional permanent magnets using rare earth elements are, for example, R in weight percentage (R is one or more of rare earth elements including Y) 27.0 to 31. Corrosion resistance is improved by having a composition of 0.0%, B0.5-2.0%, N0.02-0.15%, O0.25% or less, C0.15% or less, balance Fe, In addition, a sintered permanent magnet having a holding force iHc of 13.0 kOe or more is disclosed (Patent Document 1).

他の従来の技術は、高い保持力と残留磁束密度を得ること目的として、例えば、重量百分率で28〜35R(RはNd、Pr、Dy、Tb、Hoから選択される1種又は2種以上の希土類元素)、Co=0.1〜3.6%、B=0.9〜1.3%、Al=0.05〜1.0%、Cu=0.02〜0.25%、Zr及び/又はCr=0.02〜0.3%、C=0.03〜0.1%、O=0.03〜0.1%、N=0.002〜0.02%、残部Fe及び不可避の不純物からなることを特徴とするR−Fe−B系希土類永久磁石材料を開示している(特許文献2)。   Other conventional techniques have, for example, 28 to 35R (R is one or more selected from Nd, Pr, Dy, Tb, and Ho in weight percentage) for the purpose of obtaining high coercive force and residual magnetic flux density. Rare earth elements), Co = 0.1 to 3.6%, B = 0.9 to 1.3%, Al = 0.05 to 1.0%, Cu = 0.02 to 0.25%, Zr And / or Cr = 0.02 to 0.3%, C = 0.03 to 0.1%, O = 0.03 to 0.1%, N = 0.002 to 0.02%, the balance Fe and An R—Fe—B rare earth permanent magnet material comprising inevitable impurities is disclosed (Patent Document 2).

他の従来の技術は、磁気特性を改善することを目的として、例えば、材料の組成が、(Fe1−x−y1−m、ただし、RはY、Thおよびすべてのランタノイド元素から成る群の中から選ばれた1種または2種以上の元素、0.07≦x≦0.30、0.005≦y≦0.20、0.001≦m≦0.20であることを特徴とする鉄−希土類−窒素永久磁石を開示している。具体的には窒素(N)とボロンとを共に含有させることにより磁気特性を改善すると共に製造コストを低減させたと説明している(特許文献3)。 Other conventional techniques aim at improving magnetic properties, for example, the composition of the material is (Fe 1-xy R x B y ) 1-m N m , where R is Y, Th and One or more elements selected from the group consisting of all lanthanoid elements, 0.07 ≦ x ≦ 0.30, 0.005 ≦ y ≦ 0.20, 0.001 ≦ m ≦ 0. An iron-rare earth-nitrogen permanent magnet is disclosed. Specifically, it is described that the inclusion of both nitrogen (N) and boron has improved the magnetic characteristics and reduced the manufacturing cost (Patent Document 3).

他の従来の技術は、優れた耐蝕性を得ることを目的として、例えば、窒素を100〜3000ppm含有させた、希土類金属と鉄とを主成分とするボンド型永久磁石を開示している。希土類金属と鉄とを主成分とする合金粉に窒素を含浸させ、次にこれに樹脂を加えて圧縮成型し、しかる後に硬化処理を行なうことを特徴とする(特許文献4)。   Another conventional technique discloses a bonded permanent magnet containing, as a main component, a rare earth metal and iron containing, for example, 100 to 3000 ppm of nitrogen for the purpose of obtaining excellent corrosion resistance. An alloy powder containing rare earth metal and iron as main components is impregnated with nitrogen, and then a resin is added to the powder, followed by compression molding, followed by a curing treatment (Patent Document 4).

特開平9−24709号公報(第2頁、第4頁)JP-A-9-24709 (2nd and 4th pages) 特開2000−234151号公報(第2頁、図2、図6、図8)JP 2000-234151 A (page 2, FIG. 2, FIG. 6, FIG. 8) 特開昭60−176202号公報(第1〜3頁)JP-A-60-176202 (pages 1 to 3) 特開平3−148805号公報(第1〜3頁、第1表)JP-A-3-148805 (pages 1 to 3, Table 1)

特許文献1の構成は、例えば実施例でBrが13.7kG(すなわち1.37T)でありiHcが15.5kOe(すなわち1234kA/m)である。また、比較例2等では酸素量が多すぎるため、保磁力iHcが低い。実施例の組成にはまだ所定の酸素量が含有されていることを踏まえると、比較例と実施例の違いから実施例において更なる酸素量の低減を図れば磁気特性の向上を期待できる。しかし、原料合金を微粉砕する際にジェットミル内の雰囲気中に含有させる酸素ガスの濃度を更に低くしてほとんどゼロにして、微粉砕粉と溶媒(油類)を合わせてスラリーとする低酸素プロセスであっても、極微量の酸素をひろう為に、最終的な焼結体の含有酸素量を更に減らすことは容易ではない。   In the configuration of Patent Document 1, for example, Br is 13.7 kG (that is, 1.37 T) and iHc is 15.5 kOe (that is, 1234 kA / m) in the embodiment. In Comparative Example 2 and the like, since the amount of oxygen is too large, the coercive force iHc is low. In view of the fact that the composition of the example still contains a predetermined amount of oxygen, the improvement in magnetic properties can be expected by further reducing the amount of oxygen in the example from the difference between the comparative example and the example. However, when the raw material alloy is finely pulverized, the concentration of oxygen gas contained in the atmosphere in the jet mill is further reduced to almost zero, and the low oxygen content is made into a slurry by combining the finely pulverized powder and solvent (oils). Even in the process, it is not easy to further reduce the amount of oxygen contained in the final sintered body in order to absorb a very small amount of oxygen.

特許文献2の構成は、Zr及びCrをCuと共に添加することにより保磁力を増加させる点で特徴があるが、酸素含有量が多すぎる。実施例をみると図1及び図5ではBrが最大で12.9kGであり、iHcが最大で14kOe程度であり、特許文献1には及ばない。また、含有酸素量は0.1〜0.8%の範囲であり、0.1%未満であると過焼結しやすくなって角型製も低下すると説明している。含有窒素量は0.002〜0.02%の範囲とし、0.02%を超えると焼結性や角型性が共に低下すると説明している。   The configuration of Patent Document 2 is characterized in that the coercive force is increased by adding Zr and Cr together with Cu, but the oxygen content is too large. In the example, in FIGS. 1 and 5, Br is 12.9 kG at the maximum and iHc is about 14 kOe at the maximum, which is inferior to Patent Document 1. Further, it is explained that the oxygen content is in the range of 0.1 to 0.8%, and when it is less than 0.1%, oversintering is facilitated and the square product is also lowered. It is explained that the nitrogen content is in the range of 0.002 to 0.02%, and if it exceeds 0.02%, both the sinterability and the squareness deteriorate.

特許文献3の構成は、侵入型原子としてよく知られているB、C及びNを利用することができるとしている。すなわち、Nを主要元素にすると共にFeの格子間に侵入する元素として利用しており、Nd−Fe−B系永久磁石とは異なるR−Fe−B−N系永久磁石である。高い保磁力の値を得ているが、Brや耐蝕性については何ら説明していない。   The configuration of Patent Document 3 states that B, C, and N, which are well known as interstitial atoms, can be used. That is, it is an R—Fe—B—N permanent magnet that is different from an Nd—Fe—B permanent magnet and uses N as a main element and an element that penetrates between Fe lattices. Although a high coercive force value is obtained, there is no explanation about Br or corrosion resistance.

特許文献4の構成は、高い耐蝕性を得ているが、ボンド磁石であって焼結磁石ではない。実施例を見るとBrは最大で8.6kGであり、iHcは最大で9.0kOeであり、特許文献1や2には及ばない。なお、粉末に窒素を含浸させるようにしたので、合金中に窒素を容易かつ確実に侵入させることができる効果が得られると記述している。   The configuration of Patent Document 4 obtains high corrosion resistance, but is a bonded magnet and not a sintered magnet. Looking at the examples, Br is 8.6 kG at the maximum, and iHc is 9.0 kOe at the maximum, which is inferior to Patent Documents 1 and 2. It is described that since the powder is impregnated with nitrogen, an effect that nitrogen can easily and surely enter the alloy can be obtained.

上記の特許文献1乃至4のいずれか基にして、高耐食性の永久磁石について更なる磁気特性の向上を図ることは容易ではない。そこで、本発明の目的は、耐食性に優れ、低酸素化して更なる磁気特性の向上を図った焼結型希土類永久磁石を提供することにある。   It is not easy to further improve the magnetic properties of the highly corrosion-resistant permanent magnet based on any one of the above Patent Documents 1 to 4. Accordingly, an object of the present invention is to provide a sintered rare earth permanent magnet which has excellent corrosion resistance and is further reduced in oxygen to further improve magnetic properties.

(1) 本発明の焼結型希土類永久磁石は、質量百分率でR(RはYを含む希土類元素の内の少なくとも1種以上)27.0〜34.0%、B0.5〜2.0%、O0.03〜0.10%、N0.05〜0.25%、C0.15%以下、残部Feの組成を有し、N量がO量より多く含有されることを特徴とする。   (1) The sintered rare earth permanent magnet of the present invention has a mass percentage of R (R is at least one of rare earth elements including Y) 27.0 to 34.0%, B0.5 to 2.0. %, O 0.03 to 0.10%, N 0.05 to 0.25%, C 0.15% or less, and the balance Fe, and the N content is greater than the O content.

(2) 本発明の焼結型希土類永久磁石は、質量百分率でR(RはYを含む希土類元素の内の少なくとも1種以上)27.0〜34.0%、B0.5〜2.0%、O0.03〜0.10%、N0.05〜0.25%、C0.15%以下、H0.003%以下、残部Feの組成を有し、N量がO量より多く含有されることを特徴とする。   (2) The sintered rare earth permanent magnet of the present invention has a mass percentage of R (R is at least one of rare earth elements including Y) 27.0 to 34.0%, B0.5 to 2.0. %, O 0.03 to 0.10%, N 0.05 to 0.25%, C 0.15% or less, H 0.003% or less, and the balance Fe content, N content is more than O content It is characterized by that.

(3) 上記(1)又は(2)に記載の焼結型希土類永久磁石は、質量百分率で0.2〜5.0%のCo、0.05〜0.5%のNb、0.01〜0.5%のAl、0.01〜0.3%のGa、0.01〜0.5%のCu、0.005〜0.05%のPのうちの1種又は2種以上を含有していることを特徴とする。   (3) The sintered rare earth permanent magnet according to (1) or (2) is 0.2 to 5.0% Co, 0.05 to 0.5% Nb, 0.01% by mass percentage. One type or two or more types of -0.5% Al, 0.01-0.3% Ga, 0.01-0.5% Cu, 0.005-0.05% P It is characterized by containing.

上記(1)又は(2)に記載の焼結型希土類永久磁石は、焼結体密度が7.50g/cc以上である。好ましくは7.50〜7.80g/ccである。密度の単位1g/ccは10kg/mに相当する。また、固有保磁力iHc≧955kA/mであることを特徴とし、好ましくはiHc≧1114kA/m、更に望ましくはiHc≧1200kA/m以上とする(室温で測定)。 The sintered rare earth permanent magnet according to the above (1) or (2) has a sintered body density of 7.50 g / cc or more. Preferably it is 7.50-7.80 g / cc. The unit of density 1 g / cc corresponds to 10 3 kg / m 3 . Further, the intrinsic coercive force is iHc ≧ 955 kA / m, preferably iHc ≧ 1114 kA / m, and more preferably iHc ≧ 1200 kA / m (measured at room temperature).

本発明に係る焼結型希土類永久磁石では、望ましくは質量百分率でR(RはYを含む希土類元素の内の少なくとも1種以上)を27.0%以上且つ31.0%以下の範囲で含有することが望ましい。   The sintered rare earth permanent magnet according to the present invention desirably contains R (R is at least one of rare earth elements including Y) in a mass percentage in the range of 27.0% or more and 31.0% or less. It is desirable to do.

本発明の焼結型希土類永久磁石の製造方法は、質量百分率でR(RはYを含む希土類元素の内の少なくとも1種以上)27.0〜34.0%、B0.5〜2.0%、O0.03〜0.10%、N0.05〜0.25%、C0.15%以下、残部Feの組成(望ましくはH0.003%以下)を有し、Nの含有量がOの含有量より多い焼結型希土類永久磁石の製造方法であって、
希土類磁石用の原料合金に水素処理と窒素雰囲気中熱処理を行い、
得られた粗粉を、酸素の含有量が実質的に0%の窒素ガス又はアルゴンガスあるいはこれらの混合ガス中で微粉砕し、
得られた微粉砕粉を鉱物油又は合成油あるいはこれらの混合油中に回収してスラリー状の原料とし、前記スラリー状の原料を成形し、
得られた成形体を焼成することを特徴とする。
In the method for producing a sintered rare earth permanent magnet of the present invention, R (R is at least one of rare earth elements including Y) 27.0 to 34.0%, B0.5 to 2.0 in mass percentage. %, O 0.03-0.10%, N 0.05-0.25%, C 0.15% or less, the balance Fe composition (desirably H0.003% or less), N content is O A method for producing a sintered rare earth permanent magnet having a content greater than that,
The raw material alloy for rare earth magnets is subjected to hydrogen treatment and heat treatment in a nitrogen atmosphere.
The obtained coarse powder is finely pulverized in nitrogen gas or argon gas having a substantially 0% oxygen content or a mixed gas thereof,
The obtained finely pulverized powder is recovered in mineral oil or synthetic oil or a mixed oil thereof to form a slurry raw material, and the slurry raw material is molded,
The obtained molded body is fired.

なお、前記水素処理は、いわゆるHDDR処理に相当し、水素ガス、若しくは水素ガスと窒素ガスの混合ガスを雰囲気として磁石用原料のインゴット若しくはSTC合金(ストリップキャスト合金)に水素脆性を施す処理である。この水素処理を終えた後に窒素ガス雰囲気中で熱処理を行う。熱処理温度は200〜600℃の範囲内で行うことよい。炉内で温度を昇降する場合には、温度が200℃以上になったら窒素ガスを炉内に導入して窒化を開始し、600℃を超えたら窒化を終了することが望ましい。前記熱処理によって、含有される窒素量500〜1500ppm、酸素量300〜700ppmである粗粉を得る。熱処理により水素雰囲気由来の水素は雰囲気中に排出されるので含有される水素量は数ppm程度に低く抑えられる(望ましくは3ppm以下とする)。微粉砕の雰囲気中の酸素濃度をほとんどゼロにし、最終的に得られる焼結体において含有される窒素量500〜1500、酸素量300〜700ppmであり、微粉砕以降のプロセスにおける酸化はほとんど抑制される。   The hydrogen treatment corresponds to so-called HDDR treatment, and is a treatment for imparting hydrogen embrittlement to an ingot or STC alloy (strip cast alloy) as a raw material for magnets using hydrogen gas or a mixed gas of hydrogen gas and nitrogen gas as an atmosphere. . After this hydrogen treatment, heat treatment is performed in a nitrogen gas atmosphere. The heat treatment temperature is preferably within a range of 200 to 600 ° C. When raising or lowering the temperature in the furnace, it is desirable to start nitriding by introducing nitrogen gas into the furnace when the temperature reaches 200 ° C. or higher, and to end nitriding when the temperature exceeds 600 ° C. By the heat treatment, coarse powder having a nitrogen content of 500 to 1500 ppm and an oxygen content of 300 to 700 ppm is obtained. Since hydrogen derived from the hydrogen atmosphere is discharged into the atmosphere by the heat treatment, the amount of hydrogen contained is suppressed to a few ppm (desirably 3 ppm or less). The oxygen concentration in the atmosphere of fine pulverization is made almost zero, the amount of nitrogen contained in the finally obtained sintered body is 500-1500, and the amount of oxygen is 300-700 ppm. Oxidation in the processes after fine pulverization is almost suppressed. The

ここで、“水素処理と窒素雰囲気中熱処理”に包含される方法として次の方法が挙げられる。第1の方法は、先に水素ガス雰囲気中で水素処理をを行い、ついで雰囲気を窒素ガスに置換して熱処理を行う方法である。第2の方法は、先に水素ガス及び窒素ガスからなる混合ガスの雰囲気中で水素処理を行い、ついで雰囲気を窒素ガスのみに置換して熱処理を行う方法である。   Here, the following methods may be mentioned as methods included in “hydrogen treatment and heat treatment in nitrogen atmosphere”. The first method is a method in which hydrogen treatment is first performed in a hydrogen gas atmosphere, and then the heat treatment is performed by replacing the atmosphere with nitrogen gas. The second method is a method in which hydrogen treatment is first performed in an atmosphere of a mixed gas composed of hydrogen gas and nitrogen gas, and then the heat treatment is performed by replacing the atmosphere with only nitrogen gas.

本発明の他の焼結型希土類永久磁石の製造方法は、質量百分率でR(RはYを含む希土類元素の内の少なくとも1種以上)27.0〜34.0%、B0.5〜2.0%、O0.03〜0.10%、N0.05〜0.25%、C0.15%以下、残部Feの組成(望ましくはH0.003%以下)を有し、Nの含有量がOの含有量より多い焼結型希土類永久磁石の製造方法であって、
希土類磁石用の原料合金を水素および窒素を含む雰囲気中で水素処理を行い、ついで脱水素処理を行ない、
得られた粗粉を、酸素の含有量が実質的に0%の窒素ガス又はアルゴンガスあるいはこれらの混合ガス中で微粉砕し、
得られた微粉砕粉を鉱物油又は合成油あるいはこれらの混合油中に回収してスラリー状の原料とし、前記スラリー状の原料を成形し、
得られた成形体を焼成することを特徴とする。
According to another method of manufacturing a sintered rare earth permanent magnet of the present invention, R (R is at least one of rare earth elements including Y) 27.0 to 34.0%, B0.5 to 2 in mass percentage. 0.0%, O0.03-0.10%, N0.05-0.25%, C0.15% or less, the composition of the balance Fe (desirably H0.003% or less), and the content of N is A method for producing a sintered rare earth permanent magnet with a content greater than O,
The raw material alloy for rare earth magnets is treated with hydrogen in an atmosphere containing hydrogen and nitrogen, then dehydrogenated,
The obtained coarse powder is finely pulverized in nitrogen gas or argon gas having a substantially 0% oxygen content or a mixed gas thereof,
The obtained finely pulverized powder is recovered in mineral oil or synthetic oil or a mixed oil thereof to form a slurry raw material, and the slurry raw material is molded,
The obtained molded body is fired.

本発明は更なる含有酸素量の低減を図るべく、焼結体組成において窒素量が酸素量より多くなるように焼結型希土類永久磁石を作製し、低酸素量で耐食性が高く且つ磁気特性を更に向上させるものである。焼結体中において粗粉の段階で含有させる窒素量を増やすことで酸素の侵入を抑制する。すなわち、粉砕工程以降における酸素の出入を抑制する。焼結体に含有される窒素量を酸素量より大とすることにより、窒素量大による保磁力低下の効果が酸素量小による保磁力向上の効果を上回ることを見出した。特許文献1では「Nの量が0.15%を超えると保磁力が急激に低下する。これは、窒化物の形成による磁気的に有効な希土類元素の減少によるためと考えられる。」と説明している。これに対して、本発明の焼結型希土類永久磁石は、窒素量が多くても保磁力を向上させることができるという点で異なっている。なお、窒素量を更に増やしていくと保磁力向上の効果が飽和してくるので、窒素量の上限は0.25%とすることが望ましい。   In the present invention, in order to further reduce the oxygen content, a sintered rare earth permanent magnet is produced so that the nitrogen content is larger than the oxygen content in the sintered body composition, and the corrosion resistance and magnetic properties are low with a low oxygen content. Further improvement. Intrusion of oxygen is suppressed by increasing the amount of nitrogen contained in the coarse powder in the sintered body. That is, oxygen entry / exit after the pulverization step is suppressed. It has been found that by making the amount of nitrogen contained in the sintered body larger than the amount of oxygen, the effect of reducing the coercive force due to the large amount of nitrogen exceeds the effect of improving the coercive force due to the small amount of oxygen. According to Patent Document 1, “when the amount of N exceeds 0.15%, the coercive force is drastically lowered. This is considered to be due to a decrease in magnetically effective rare earth elements due to the formation of nitrides”. doing. In contrast, the sintered rare earth permanent magnet of the present invention is different in that the coercive force can be improved even if the amount of nitrogen is large. In addition, since the effect of improving the coercive force is saturated when the nitrogen amount is further increased, the upper limit of the nitrogen amount is preferably set to 0.25%.

本発明の焼結型希土類磁石の磁気特性(室温で測定)は、例えば飽和磁束密度Brが1.40T以上で且つ保磁力iHcが1200〜1750kA/mの範囲、あるいは飽和磁束密度Brが1.35T以上で且つ保磁力iHcが1751〜2100kA/mの範囲、あるいは飽和磁束密度Brが1.30T以上で且つ保磁力iHcが2101kA/m以上とすることができる。また、窒素量を増やすことで、特許文献1の焼結型永久磁石と同等もしくはそれ以上の耐蝕性を得られる。耐蝕性を見るために、特許文献1と同様のNiメッキ被覆を施してからPCT試験で高温高湿下に磁石を長時間保持し、磁石の劣化を反映してメッキ膜に劣化が生じないかを観察する。   The magnetic characteristics (measured at room temperature) of the sintered rare earth magnet of the present invention include, for example, a saturation magnetic flux density Br of 1.40 T or more and a coercive force iHc of 1200 to 1750 kA / m, or a saturation magnetic flux density Br of 1. The coercive force iHc is in the range of 1751 to 2100 kA / m, or the saturation magnetic flux density Br is 1.30 T or more, and the coercive force iHc is 2101 kA / m or more. Further, by increasing the amount of nitrogen, corrosion resistance equivalent to or higher than that of the sintered permanent magnet of Patent Document 1 can be obtained. In order to check the corrosion resistance, the same Ni plating coating as in Patent Document 1 is applied, and then the PCT test holds the magnet under high temperature and high humidity for a long time. Observe.

本発明に係る窒素Nは侵入型というよりはむしろ希土類元素Rの窒化物として焼結体の結晶粒界を中心に存在する。結晶粒内への窒素侵入を主とする構成に比べて、窒素が主として粒界に侵入・分布することで、粒界の耐食性が向上するものと考えられる。   Nitrogen N according to the present invention exists as a nitride of rare earth element R, rather than an interstitial type, around the crystal grain boundary of the sintered body. It is considered that the corrosion resistance of the grain boundary is improved by the penetration and distribution of nitrogen mainly at the grain boundary as compared with the structure mainly composed of nitrogen penetration into the crystal grain.

本発明に係る質量百分率でR(RはYを含む希土類元素の内の少なくとも1種以上)27.0〜34.0%、B0.5〜2.0%、O0.03〜0.10%、N0.05〜0.25%、C0.15%以下、残部Feの組成(望ましくはH0.003%以下)を有し、Nの含有量がOの含有量より多い組成により、高耐食性であり且つ保磁力を向上させた焼結型希土類永久磁石を得ることができる。特に、含有窒素量を増やすと共に含有酸素量を減らした低酸素量の焼結型希土類永久磁石を得ることができる。   R (R is at least one of rare earth elements including Y) 27.0 to 34.0%, B 0.5 to 2.0%, O 0.03 to 0.10% by mass percentage according to the present invention N 0.05 to 0.25%, C 0.15% or less, the balance Fe composition (desirably H0.003% or less), N content is higher than O content, high corrosion resistance There can be obtained a sintered rare earth permanent magnet with improved coercive force. In particular, it is possible to obtain a sintered rare earth permanent magnet having a low oxygen content in which the nitrogen content is increased and the oxygen content is decreased.

(製造方法)
[1] 本発明に係る第1の製造方法について述べる。まず、STC(ストリップキャスト)合金材料もしくはインゴット合金材料を機械粉砕する。粉砕装置では、粉砕用空間内について外気を置換すべく、排気後にArガス雰囲気を満たしてから粉砕を行う。平均粒径が50〜200μm程度である粗粉を得る(粗粉砕工程)。この粗粉は質量%で酸素を0.01〜0.08%含有し、窒素を0.02%以下含有する。ついで、実質的に無酸素の窒素ガス雰囲気中で前記粗粉を微粉砕する。微粉のd50が3〜6μmとなるように微粉砕した後、微粉砕用の粉砕装置内で、微粉を非酸化性溶媒中に取り込み、スラリーを構成する。この微粉砕の工程の際に、粗粉の供給速度と供給重量(フィード)と粉砕圧力を調整し、微粉が窒化される度合いを制御する。このスラリーを成形機でプレスして成形体を得る。ついで、成形体から前記非酸化性溶媒をできる限り除去し、焼結することにより焼結体を得る。組成を分析すると、質量%で、酸素Oが0.03〜0.10%含有され、窒素Nが0.05〜0.25%が含有され、含有される窒素量が酸素量より多い焼結体を得る。
(Production method)
[1] A first manufacturing method according to the present invention will be described. First, an STC (strip cast) alloy material or an ingot alloy material is mechanically pulverized. In the pulverizing apparatus, in order to replace the outside air in the pulverizing space, the pulverization is performed after the Ar gas atmosphere is filled after exhausting. A coarse powder having an average particle size of about 50 to 200 μm is obtained (coarse pulverization step). This coarse powder contains 0.01 to 0.08% oxygen and 0.02% or less nitrogen in mass%. Next, the coarse powder is pulverized in a substantially oxygen-free nitrogen gas atmosphere. After d 50 of fine powder was milled so as to be 3 to 6 [mu] m, in a pulverizer for fine pulverization takes fines nonoxidizing solvent to form a slurry. During the fine pulverization step, the coarse powder supply rate, supply weight (feed), and pulverization pressure are adjusted to control the degree of fine powder nitriding. The slurry is pressed with a molding machine to obtain a molded body. Next, the non-oxidizing solvent is removed from the molded body as much as possible and sintered to obtain a sintered body. When the composition is analyzed, it is sintered by mass%, oxygen O is contained in an amount of 0.03 to 0.10%, nitrogen N is contained in an amount of 0.05 to 0.25%, and the amount of nitrogen contained is larger than the amount of oxygen. Get the body.

[2] 本発明に係る第2の製造方法について述べる。まず、上記[1]と同様の粗粉砕工程により、平均粒径が50〜200μmであり、質量%で酸素O量が0.01〜0.08%であり且つ窒素N量が0.02%以下である粗粉を得る。粗粉砕装置内を真空排気し、窒素ガスとArガスの混合ガス雰囲気を満たし、該雰囲気内で温度を400℃〜550℃程度とし、粗粉を保持する容器を回転させながら雰囲気に粗粉を曝しつつ更なる粉砕を進める。窒素ガス(N)とArガスの混合比、粗粉砕機の回転数、加熱温度と時間を変えることにより、粗粉の窒化量を制御する。得られた粗粉は、平均粒径が50〜200μmであり、質量%で酸素が0.02〜0.09%含有され且つ窒素が0.03〜0.20%含有される。ついで、上記[1]と同様の微粉砕工程と、成形工程と、焼結工程を経ることにより、焼結体を得る。微粉砕の雰囲気には、窒素ガス、または窒素ガスとArガスの混合ガスを用いる。微粉の供給速度と供給重量(フィード)、粉砕圧力、窒素ガスとArガスの混合比を組合わせることにより、微粉の窒化量を制御する。得られる焼結体は、質量%で酸素が0.03〜0.10%含有され且つ窒素が0.05〜0.25%含有され、窒素量が酸素量より多く含有される。 [2] A second manufacturing method according to the present invention will be described. First, by the same coarse pulverization step as in the above [1], the average particle size is 50 to 200 μm, the oxygen O content is 0.01 to 0.08% by mass%, and the nitrogen N content is 0.02%. A coarse powder is obtained which is The inside of the coarse pulverizer is evacuated, filled with a mixed gas atmosphere of nitrogen gas and Ar gas, the temperature is set to about 400 ° C. to 550 ° C. in the atmosphere, and the coarse powder is put into the atmosphere while rotating the container holding the coarse powder. Proceed with further crushing while exposing. The nitridation amount of the coarse powder is controlled by changing the mixing ratio of nitrogen gas (N 2 ) and Ar gas, the rotational speed of the coarse pulverizer, the heating temperature and the time. The obtained coarse powder has an average particle size of 50 to 200 μm, contains 0.02 to 0.09% of oxygen and 0.03 to 0.20% of nitrogen by mass%. Next, a sintered body is obtained through the same pulverization step, molding step, and sintering step as in [1] above. Nitrogen gas or a mixed gas of nitrogen gas and Ar gas is used for the fine pulverizing atmosphere. The nitriding amount of the fine powder is controlled by combining the fine powder supply speed and supply weight (feed), the pulverization pressure, and the mixing ratio of nitrogen gas and Ar gas. The obtained sintered body contains 0.03 to 0.10% of oxygen and 0.05 to 0.25% of nitrogen, and the amount of nitrogen is larger than the amount of oxygen.

[3] 本発明に係る第3の製造方法について述べる。まず、STC合金材料若しくはインゴット合金材料である磁石用合金材料を、処理炉内に入れて、真空排気の後に雰囲気として水素ガスを導入する。水素脆性の作用により磁石用合金材料は脆化・崩壊する。ついで、処理炉の雰囲気を窒素ガスに置換し、炉体を回転させながら450〜550℃の範囲内の温度で熱処理することにより、崩壊させた磁石用合金材料を窒化させる。窒化の量は処理炉内の温度、熱処理時間、回転数で制御する。ついで、550℃の温度にて雰囲気を真空排気し、脱水素処理を行う。このように処理した磁石用合金粗粉をアルゴンガス雰囲気中で粗粉砕し、平均粒径が50〜200μmの粗粉とする。粗粉は質量百分率で窒素Nを0.03〜0.20%、酸素Oを0.02〜0.09%、水素Hを0.10〜0.20%含有する。上記[1]若しくは[2]と同様の方法で微粉砕を行う。得られたスラリーを湿式成形し、成形体中の溶媒を加熱除去した後、真空焼結して焼結体を得る。得られる焼結体には質量%で酸素が0.03〜0.10%含有され且つ窒素が0.05〜0.25%含有され、窒素量が酸素量より多く含有される。焼結体中の水素含有量は、真空焼結中に脱水素処理がさらに進行するため、質量%で0.003%以下となる。   [3] A third manufacturing method according to the present invention will be described. First, a magnet alloy material, which is an STC alloy material or an ingot alloy material, is placed in a processing furnace, and hydrogen gas is introduced as an atmosphere after evacuation. Due to the effect of hydrogen embrittlement, the magnet alloy material becomes brittle and collapses. Next, the atmosphere of the processing furnace is replaced with nitrogen gas, and the collapsed alloy material for magnet is nitrided by heat treatment at a temperature in the range of 450 to 550 ° C. while rotating the furnace body. The amount of nitriding is controlled by the temperature in the processing furnace, the heat treatment time, and the rotation speed. Next, the atmosphere is evacuated at a temperature of 550 ° C., and dehydrogenation is performed. The magnet alloy coarse powder thus treated is coarsely pulverized in an argon gas atmosphere to obtain a coarse powder having an average particle size of 50 to 200 μm. The coarse powder contains 0.03 to 0.20% nitrogen N, 0.02 to 0.09% oxygen O, and 0.10 to 0.20% hydrogen H in mass percent. Fine pulverization is performed in the same manner as in the above [1] or [2]. The obtained slurry is wet-molded, and the solvent in the molded body is removed by heating, followed by vacuum sintering to obtain a sintered body. The obtained sintered body contains 0.03 to 0.10% oxygen and 0.05 to 0.25% nitrogen by mass%, and contains more nitrogen than oxygen. The hydrogen content in the sintered body is 0.003% by mass or less because the dehydrogenation process further proceeds during vacuum sintering.

[4] 本発明に係る第4の製造方法について述べる。STC合金材料若しくはインゴット合金材料である磁石用合金材料を、処理炉内に入れて、真空排気の後に雰囲気として水素ガスと窒素ガスの混合ガスを導入し、ファンで混合ガスを攪拌する。混合ガス中の水素による水素脆性作用により、磁石用合金材料は脆化・崩壊する。ついで、炉体を回転させながら、450〜550℃の範囲内の温度まで徐々に加熱し、この温度で保持して熱処理する。脆化・崩壊した磁石用合金材料は、混合ガス中の窒素によって、200℃を超えるころから窒化され始め、加熱温度の上昇にしたがって窒化反応は加速される。窒化の量は、混合ガス中の窒素ガスの濃度と処理炉内の温度、熱処理時間、炉体の回転数で制御する。最後に炉内温度を550℃とし、この温度下で雰囲気を真空排気して、脱水素処理する。このように処理した磁石用合金材料を、アルゴンガス雰囲気中で粗粉砕し、平均粒径が50〜200μmの粗粉とする。粗粉は、質量百分率で窒素Nを0.03〜0.20%、酸素Oを0.02〜0.09%、水素Hを0.10〜0.20%含有する。上記[1]若しくは[2]と同様の方法で粗粉を微粉砕し、得られたスラリーを上記[3]と同じ方法で焼結体とする。焼結体には質量%で酸素が0.03〜0.10%含有され、且つ窒素が0.05〜0.25%含有され、窒素量が酸素量より多く含有される。水素の含有量は0.003%以下である。   [4] A fourth manufacturing method according to the present invention will be described. An alloy material for magnet, which is an STC alloy material or an ingot alloy material, is put in a processing furnace, and after evacuation, a mixed gas of hydrogen gas and nitrogen gas is introduced as an atmosphere, and the mixed gas is stirred by a fan. Due to the hydrogen embrittlement effect of hydrogen in the mixed gas, the magnet alloy material becomes brittle and collapses. Next, while rotating the furnace body, the furnace body is gradually heated to a temperature in the range of 450 to 550 ° C. and kept at this temperature for heat treatment. The embrittled / collapsed magnet alloy material starts to be nitrided by nitrogen in the mixed gas at a temperature exceeding 200 ° C., and the nitriding reaction is accelerated as the heating temperature rises. The amount of nitriding is controlled by the concentration of nitrogen gas in the mixed gas, the temperature in the processing furnace, the heat treatment time, and the rotational speed of the furnace body. Finally, the furnace temperature is set to 550 ° C., and the atmosphere is evacuated at this temperature to perform dehydrogenation treatment. The magnet alloy material thus treated is roughly pulverized in an argon gas atmosphere to obtain a coarse powder having an average particle size of 50 to 200 μm. The coarse powder contains 0.03 to 0.20% nitrogen N, 0.02 to 0.09% oxygen O, and 0.10 to 0.20% hydrogen H in mass percentages. The coarse powder is finely pulverized by the same method as [1] or [2], and the obtained slurry is made into a sintered body by the same method as [3]. The sintered body contains 0.03 to 0.10% oxygen by mass%, 0.05 to 0.25% nitrogen, and more nitrogen than oxygen. The hydrogen content is 0.003% or less.

上記の製造方法では、所定の組成を有するR−Fe−B系永久磁石用の粗粉に窒素を含有させ、ついで実質的に無酸素の窒素ガス又はアルゴンガスあるいはこれらの混合ガス中で、ジェットミル粉砕して平均粒径が例えば3〜6μmの微粉砕粉とし、前記微粉砕粉を大気に触れさせずに直接鉱物油又は合成油あるいはこれらの混合油中に回収してスラリー状の原料とする。前記スラリー状の原料を磁界を印加した金型キャビティ内に注入し、磁界を印加したまま湿式成形して成形体を得る。注入の際にはスラリーに圧力を加えて行うこと(加圧注入)が望ましい。成形体を減圧下で加熱して成形体から鉱物油又は合成油あるいはこれらの混合油を除去した後、成形体を真空中で焼結して焼結体を得る。   In the manufacturing method described above, nitrogen is contained in the coarse powder for an R—Fe—B permanent magnet having a predetermined composition, and then in a substantially oxygen-free nitrogen gas, an argon gas, or a mixed gas thereof, a jet Milled into a finely pulverized powder having an average particle size of, for example, 3 to 6 μm. The finely pulverized powder is recovered directly in mineral oil, synthetic oil or a mixed oil thereof without contacting with the atmosphere, To do. The slurry-like raw material is injected into a mold cavity to which a magnetic field is applied, and is wet-formed while the magnetic field is applied to obtain a molded body. In the injection, it is desirable to apply pressure to the slurry (pressure injection). The molded body is heated under reduced pressure to remove mineral oil, synthetic oil or a mixed oil thereof from the molded body, and then the molded body is sintered in vacuum to obtain a sintered body.

また、上記の製造方法では、ジェットミル粉砕する際に、微量の酸素を導入した窒素ガス又はアルゴンガスあるいはこれらの混合ガスから選ばれる少なくとも1種の雰囲気を用い、前記雰囲気の含有酸素を質量百分率で0.6%以下とすることが望ましい。   Further, in the above production method, at the time of jet mill pulverization, at least one atmosphere selected from nitrogen gas or argon gas into which a trace amount of oxygen is introduced or a mixed gas thereof is used, and the oxygen content in the atmosphere is expressed as a percentage by mass. Is preferably 0.6% or less.

また、スラリー状の原料中の微粉砕粉を配向させるための、金型キャビティにあらかじめ印加しておく場合、配向磁界の強さは、159kA/m以上(即ち、2kOe以上)、より好ましくは239kA/m以上(即ち、3kOe以上)である。原料スラリーを加圧注入後、この配向磁界を維持したまま加圧湿式成形を行なう。配向磁界の強さが159kA/m未満(2kOe未満)では、微粉砕粉は配向が不十分となり、良好な磁気特性が得られない。また、金型キャビティに159kA/m以上(2kOe以上)の配向磁界をあらかじめ印加しておき、スラリー状の原料を上記の注入圧力の範囲で注入し、その注入の途中又は注入終了後に、当初の配向磁界強度よりも高い配向磁界を与え、その高い配向磁界下で加圧湿式成形しても良い。流動性の改善されたスラリー状の原料を、本発明の以上の注入、成形条件の元で湿式成形することによって、4.0〜4.8Mg/m(即ち、4.0〜4.8g/cc)という高い成形体密度を有する成形体が得られる。 In the case of applying in advance to the mold cavity for orienting the finely pulverized powder in the slurry-like raw material, the strength of the orientation magnetic field is 159 kA / m or more (that is, 2 kOe or more), more preferably 239 kA. / M or more (that is, 3 kOe or more). After the raw material slurry is injected under pressure, pressure wet molding is performed while maintaining this orientation magnetic field. When the strength of the orientation magnetic field is less than 159 kA / m (less than 2 kOe), the finely pulverized powder has insufficient orientation, and good magnetic properties cannot be obtained. In addition, an orientation magnetic field of 159 kA / m or more (2 kOe or more) is applied in advance to the mold cavity, and the slurry-like raw material is injected within the above injection pressure range. An orientation magnetic field higher than the orientation magnetic field strength may be applied, and pressure wet molding may be performed under the high orientation magnetic field. By subjecting the slurry-like raw material with improved fluidity to wet molding under the above injection and molding conditions of the present invention, 4.0 to 4.8 Mg / m 3 (that is, 4.0 to 4.8 g). A compact having a high density of / cc) is obtained.

成形体の減圧下での加熱処理の条件は、真空度は13.3Pa(約0.1Torr)より低くし、加熱温度は100℃以上である。加熱時間は成形体の重量や処理量によって異なるが、1時間以上が好ましい。焼結は133mPa(約0.001Torr)より低い真空下で、1000〜1150℃の範囲で行う。これによって、微粉砕時の雰囲気の酸素の含有量が実質0%の条件下で微粉砕されたスラリー状の原料を用いた焼結体では、7.52Mg/m以上、より好ましくは7.52〜7.85Mg/m(即ち、7.52〜7.85g/cc)の密度となる。なお、本発明に係る製造方法は主に湿式成形法であるが、スラリーではなく乾式の微粉を用いて成形する乾式成形法を用いることもできる。 The conditions of the heat treatment under reduced pressure of the molded body are that the degree of vacuum is lower than 13.3 Pa (about 0.1 Torr) and the heating temperature is 100 ° C. or higher. The heating time varies depending on the weight of the molded body and the processing amount, but is preferably 1 hour or longer. Sintering is performed in the range of 1000 to 1150 ° C. under a vacuum lower than 133 mPa (about 0.001 Torr). Accordingly, in the sintered body using the slurry-like raw material finely pulverized under the condition that the oxygen content in the atmosphere during fine pulverization is substantially 0%, 7.52 Mg / m 3 or more, more preferably 7. The density is 52 to 7.85 Mg / m 3 (that is, 7.52 to 7.85 g / cc). In addition, although the manufacturing method which concerns on this invention is mainly a wet-molding method, the dry-type molding method shape | molded using a dry fine powder instead of a slurry can also be used.

本発明に係る焼結型希土類永久磁石は、ラジアルリング磁石とすることができる。例えば、質量百分率でR(RはYを含む希土類元素の内の少なくとも1種以上)27.0〜34.0%、B0.5〜2.0%、O0.03〜0.10%、N0.05〜0.25%、C0.15%以下、P0.001〜0.05%、残部Feの組成を有し、N量がO量より多く含有され、外径10〜100mm、内径8〜96mm、高さ10〜70mmで、円周方向に磁気的異方性を有することを特徴とする。前記磁気異方性はラジアル異方性もしくは極異方性とする。   The sintered rare earth permanent magnet according to the present invention can be a radial ring magnet. For example, R in mass percentage (R is at least one of rare earth elements including Y) 27.0 to 34.0%, B 0.5 to 2.0%, O 0.03 to 0.10%, N0 0.05 to 0.25%, C 0.15% or less, P0.001 to 0.05%, balance Fe content, N content is greater than O content, outer diameter 10 to 100 mm, inner diameter 8 to It is 96 mm in height and 10 to 70 mm in height, and has magnetic anisotropy in the circumferential direction. The magnetic anisotropy is radial anisotropy or polar anisotropy.

本発明に係る焼結型希土類永久磁石は、焼結体そのもの、または焼結体の表面にメッキ、樹脂コーティング若しくは表面処理の少なくとも1種を施したものとすることができる。なお、“焼結体の密度”はメッキ膜や樹脂膜など焼結体表面を覆うものを除外して測定した密度であることが望ましい。また、組成は被覆を除外した“焼結体”自体の組成に相当する。   The sintered rare earth permanent magnet according to the present invention may be a sintered body itself or a surface of the sintered body that has been subjected to at least one of plating, resin coating, or surface treatment. The “density of the sintered body” is preferably a density measured by excluding those covering the surface of the sintered body such as a plating film or a resin film. The composition corresponds to the composition of the “sintered body” itself excluding the coating.

なお、本願明細書において、質量百分率、すなわち質量%(mass%)は物質の質量で組成比を表している。すなわち、永久磁石の焼結体の単位質量に対して各元素成分の含有質量を表す。本願明細書中では、体積%表示するか又は特にことわって表示するかをしない限り、組成の「%」表示は質量%を表わす。さらに、本願明細書において、各元素の組成比の範囲の記載を、例えば、「N0.002〜0.15%」と記載したものは「窒素Nは0.002%以上且つ0.15%以下の範囲内で含有される」という表現と等価な記載として用いる。組成毎の質量%は、例えば焼結型希土類永久磁石の焼結体を蛍光X線分析で測定する。すなわち、組成比が判明している材料を基準として、測定対象と蛍光X線の強度を比較することにより、測定対象に含有される元素の数の比を求め、原子量を元に含有される元素毎の数を質量に換算して求めることができる。   In the present specification, the mass percentage, that is, mass% (mass%) represents the composition ratio by the mass of the substance. That is, the content mass of each element component is expressed with respect to the unit mass of the sintered body of the permanent magnet. In the present specification, the “%” notation of the composition represents% by mass unless indicated otherwise by volume or otherwise indicated. Further, in the present specification, the description of the range of the composition ratio of each element is, for example, “N 0.002 to 0.15%” is “Nitrogen N is 0.002% or more and 0.15% or less. It is used as a description equivalent to the expression “contained within the range of”. The mass% for each composition is measured, for example, by fluorescent X-ray analysis of a sintered rare earth permanent magnet sintered body. That is, by comparing the measurement object and the intensity of fluorescent X-rays based on a material whose composition ratio is known, the ratio of the number of elements contained in the measurement object is obtained, and the element contained based on the atomic weight Each number can be calculated by converting to mass.

本発明の永久磁石に係る焼結体組成の限定理由を説明する。微粉砕時の雰囲気の酸素の含有量が実質0%の条件下で微粉砕されたスラリー状の原料を用いた焼結体の組成は、質量百分率でR(RはYを含む希土類元素の内の少なくとも1種以上)27.0〜34.0%、B0.5〜2.0%、O0.03〜0.10%、N0.05〜0.25%、C0.15%以下、P0.05%以下、残部Feの組成を有し、N量がO量より多く含有されることを特徴とする。さらにH0.003%以下が望ましい。さらに、Feの一部を質量百分率で0.3〜5.0%のCo、0.05〜1.0%のNb、0.01〜1.0%のAl、0.01〜0.5%のGa、0.01〜1.0%のCuのうちの1種又は2種以上で置換しても良い。   The reason for limitation of the sintered compact composition which concerns on the permanent magnet of this invention is demonstrated. The composition of the sintered body using the slurry-like raw material finely pulverized under the condition that the oxygen content in the atmosphere at the time of fine pulverization is substantially 0% is R (R is a ratio of the rare earth elements including Y in mass percentage). 27.0-34.0%, B0.5-2.0%, O0.03-0.10%, N0.05-0.25%, C0.15% or less, P0. It has a composition of 05% or less and the balance Fe, and the N content is more than the O content. Furthermore, H0.003% or less is desirable. Furthermore, a part of Fe is 0.3-5.0% Co, 0.05-1.0% Nb, 0.01-1.0% Al, 0.01-0.5 by mass percentage. You may substitute by 1 type (s) or 2 or more types of% Ga and 0.01-1.0% Cu.

焼結体のO量が0.10%以下の場合、希土類元素であるRの量が34.0%を超えると、焼結体内部の希土類に富む相の量が多くなり且つ形態も粗大化して、耐蝕性が低下し始める。一方、希土類元素の量が27.0%未満であると、焼結体の緻密化に必要な液相量が不足して焼結体密度が低下し、同時に磁気特性のうち残留磁束密度Brと保持力iHcが共に低下する。従って、希土類元素Rの量は、質量百分率で27.0〜34.0%とされる。より望ましくはR27.0〜31.0%とする。Bの量は質量百分率で0.5〜2.0%とされる。Bの量が0.5%未満の場合、主相であるRFe14B相の形成に必要なBが不足し、軟磁性的な性質を有するRFe17相が生成して保持力iHcが低下する。一方、Bの量が2.0%を越えると、非磁性相であるBに富む相が増加して、残留磁束密度Brが低下する。Oの量は質量百分率で0.05〜0.25%とされる。 When the amount of O in the sintered body is 0.10% or less, if the amount of R, which is a rare earth element, exceeds 34.0%, the amount of the rare earth-rich phase inside the sintered body increases and the form becomes coarse. Corrosion resistance begins to decline. On the other hand, if the amount of the rare earth element is less than 27.0%, the liquid phase amount necessary for densification of the sintered body is insufficient and the density of the sintered body is lowered. The holding force iHc decreases. Therefore, the amount of rare earth element R is 27.0 to 34.0% by mass percentage. More desirably, the content is R27.0 to 31.0%. The amount of B is 0.5 to 2.0% by mass percentage. When the amount of B is less than 0.5%, B necessary for the formation of the main phase R 2 Fe 14 B phase is insufficient, and an R 2 Fe 17 phase having soft magnetic properties is generated and holding power is increased. iHc decreases. On the other hand, if the amount of B exceeds 2.0%, the phase rich in B which is a nonmagnetic phase increases and the residual magnetic flux density Br decreases. The amount of O is 0.05 to 0.25% by mass percentage.

Oの量が0.10%を超える場合には、窒素による効果が抑えられて保持力iHcが低下する。一方、融解によって作製するインゴットのO量の水準は最大0.04%であるが、窒素による酸化抑制の効果により、最終の焼結体O量を0.03%に抑えることができる。したがって、O量は0.03〜0.10%とすることが好ましい。C量は質量百分率で0.15%以下、より好ましくは0.01〜0.15%とされる。Cの値が0.15%より多い場合には、希土類元素の一部が炭化物を形成し、磁気的に有効な希土類元素が減少して保持力iHcが低下する。C量は0.12%以下とすることが好ましく、0.10%以下とすることがさらに好ましい。一方、溶解によって作製するインゴットのC量の水準は最大0.008%であり、最終の焼結体のC量をこの値以下とすることが難しい場合には、焼結体のC量は0.002〜0.15%とされる。   When the amount of O exceeds 0.10%, the effect of nitrogen is suppressed and the holding force iHc is reduced. On the other hand, the level of O amount of the ingot produced by melting is 0.04% at the maximum, but the final sintered body O amount can be suppressed to 0.03% due to the effect of suppressing oxidation by nitrogen. Therefore, the O content is preferably 0.03 to 0.10%. The amount of C is 0.15% or less, more preferably 0.01 to 0.15% by mass percentage. When the value of C is more than 0.15%, a part of the rare earth element forms a carbide, the magnetically effective rare earth element is reduced, and the holding power iHc is reduced. The C content is preferably 0.12% or less, and more preferably 0.10% or less. On the other hand, the level of C amount of the ingot produced by melting is 0.008% at the maximum, and when it is difficult to make the C amount of the final sintered body below this value, the C amount of the sintered body is 0. 0.002 to 0.15%.

製造工程で積極的に窒素を含有させるため、粗粉のN量は質量百分率で0.05〜0.25%となる。この粗粉を酸素の含有量が実質的に0%のNガス又はArガスあるいはこれらの混合ガスの中でジェットミル粉砕する。ここで言う酸素の含有量が実質的に0%とは、酸素の含有量が0.001%以下、より好ましくは0.0005%以下、さらに好ましくは0.0002%以下の酸素濃度雰囲気を意味する。 In order to positively contain nitrogen in the production process, the N amount of the coarse powder is 0.05 to 0.25% by mass percentage. This coarse powder is pulverized by jet mill in N 2 gas or Ar gas having a substantially 0% oxygen content or a mixed gas thereof. Here, the oxygen content of substantially 0% means an oxygen concentration atmosphere in which the oxygen content is 0.001% or less, more preferably 0.0005% or less, and even more preferably 0.0002% or less. To do.

Pの含有量は質量百分率で0.05%以下とする。スラリーの流動性を改善するため、鉱物油又は合成油あるいはこれらの混合油には、次亜リン酸ナトリウムの純分が0.01%以上になる様に、次亜リン酸ナトリウムグリセリン溶液又は次亜リン酸ナトリウムエタノール溶液を添加、混合することが望ましい。この結果、最終的に得られる焼結体には、質量百分率で0.001%のPが含有される。焼結体へのPの含有は、耐蝕性と保持力iHcの向上につながるため好ましいものであるが、焼結体のPの含有量が0.05%を超えると、焼結体の強度が低下する。このため、スラリーとなる油に対して次亜リン酸ナトリウムの純分が質量百分率で0.5%を超えないように、次亜リン酸ナトリウムグリセリン溶液又は次亜リン酸ナトリウムエタノール溶液の添加混合量は制御される。この様な場合には、焼結体のP量は質量百分率で0.001〜0.05%とする。   The P content is 0.05% or less in terms of mass percentage. In order to improve the fluidity of the slurry, the mineral oil or synthetic oil or a mixed oil thereof should contain sodium hypophosphite glycerin solution or the following so that the pure content of sodium hypophosphite is 0.01% or more. It is desirable to add and mix sodium phosphite ethanol solution. As a result, the sintered body finally obtained contains 0.001% of P in mass percentage. The inclusion of P in the sintered body is preferable because it leads to improvement in corrosion resistance and holding power iHc. However, if the content of P in the sintered body exceeds 0.05%, the strength of the sintered body is increased. descend. For this reason, addition and mixing of sodium hypophosphite glycerin solution or sodium hypophosphite ethanol solution so that the pure content of sodium hypophosphite does not exceed 0.5% in mass percentage with respect to the oil as slurry The amount is controlled. In such a case, the amount of P in the sintered body is set to 0.001 to 0.05% by mass percentage.

本発明の永久磁石焼結体では、Feの一部をCo、Nb、Al、Ga、Cuのうちの1種又は2種以上で置換することができる。以下に各元素の置換量(ここでは置換後の永久磁石焼結体の全組成に対する質量百分率)の限定理由を説明する。Coの置換量は、0.3〜5.0%とされる。Coの添加はキュリー点の向上、即ち、飽和磁化の温度係数の改善をもたらす。Coの置換量が0.3%より少ない場合には、温度係数の改善効果は小さい。Coの置換量が5.0%を超えると、残留磁束密度Br、保持力iHcが共に急激に低下する。   In the permanent magnet sintered body of the present invention, a part of Fe can be replaced with one or more of Co, Nb, Al, Ga, and Cu. The reason for limiting the amount of substitution of each element (mass percentage with respect to the total composition of the permanent magnet sintered body after substitution) will be described below. The substitution amount of Co is set to 0.3 to 5.0%. The addition of Co results in an improvement in the Curie point, that is, an improvement in the temperature coefficient of saturation magnetization. When the substitution amount of Co is less than 0.3%, the effect of improving the temperature coefficient is small. If the amount of substitution of Co exceeds 5.0%, both the residual magnetic flux density Br and the coercive force iHc are rapidly reduced.

Nbの置換量が0.05〜1.0%とされる。Nbの添加によって焼結過程でNbのホウ化物が生成し、これが結晶粒の異常粒成長を抑制する。Nbの置換量が0.05%より少ない場合には、結晶粒の異常粒成長の抑制効果が十分でなくなる。一方、Nbの置換量が1.0%を越えると、Nbのホウ化物の生成量が多くなるため、残留磁束密度Brが低下する。Alの置換量は0.01〜1.0%とされる。Alの添加は保持力iHcを高める効果がある。Alの置換量が0.01%より少ない場合には、保持力iHcの向上効果が少ない。置換量が1.0%を超えると、残留磁束密度Brが急激に低下する。   The amount of Nb substitution is 0.05 to 1.0%. The addition of Nb produces a boride of Nb during the sintering process, which suppresses abnormal grain growth. When the Nb substitution amount is less than 0.05%, the effect of suppressing the abnormal grain growth of crystal grains is not sufficient. On the other hand, if the amount of Nb substitution exceeds 1.0%, the amount of Nb boride produced increases, and the residual magnetic flux density Br decreases. The substitution amount of Al is set to 0.01 to 1.0%. The addition of Al has the effect of increasing the holding power iHc. When the substitution amount of Al is less than 0.01%, the effect of improving the holding force iHc is small. When the replacement amount exceeds 1.0%, the residual magnetic flux density Br is rapidly decreased.

Gaの置換量は0.01〜0.5%とされる。Gaの微量添加は保持力iHcの向上をもたらすが、置換量が0.01%より少ない場合には、添加効果は少ない。一方、Gaの置換量が0.5%を超えると、残留磁束密度Brの低下が顕著になるとともに、保持力iHcも低下する。Cuの置換量は0.01〜1.0%とされる。Cuの微量添加は保持力iHcの向上をもたらすが、添加量が1.0%を超えるとその添加効果は飽和する。添加量が0.01%より少ない場合には、保持力iHcの向上効果は小さい。   The substitution amount of Ga is set to 0.01 to 0.5%. The addition of a small amount of Ga brings about an improvement in holding power iHc, but the effect of addition is small when the substitution amount is less than 0.01%. On the other hand, when the Ga substitution amount exceeds 0.5%, the residual magnetic flux density Br is significantly decreased and the holding force iHc is also decreased. The substitution amount of Cu is set to 0.01 to 1.0%. The addition of a small amount of Cu brings about an improvement in holding power iHc, but the addition effect is saturated when the addition amount exceeds 1.0%. When the addition amount is less than 0.01%, the effect of improving the holding power iHc is small.

(実施例1)
STC合金を基にして質量百分率でNd19.85%、Pr8.95%、Dy1.00%、B1.02%、Al0.10%、Co2.00%、Cu0.10%、O0.01%、C0.01%、N0.01%、残部Feの組成の原料を準備した。この原料を処理炉内に入れて雰囲気として水素ガスを導入し、水素吸蔵処理を行って原料の合金を微細に崩壊させた。一度炉内を真空排気した後、雰囲気を窒素ガスに置換し、480℃の温度で4時間加熱して窒化処理を行った。その後、炉内を真空排気しならが550℃で2時間の脱水素処理を行った。処理後の合金をアルゴンガス雰囲気中で粗粉砕し、平均粒径が100μmの粗粉とした。粗粉は、質量百分率でNd19.85%、Pr8.95%、Dy1.00%、B1.02%、Al0.10%、Co2.00%、Cu0.10%、O0.06%、C0.02%、N0.13%、H0.15%、残部Feの組成となった。ついで、この粗粉をジェットミルに装入し、ジェットミルの内部をNガスで置換してNガス中の酸素濃度を実質的に0%(体積%で0.0002%以下)とし、このNガスの雰囲気下で粉砕圧力6.9×10Pa(即ち、7.0kgf/cm)、粗粉の供給量15kg/hの条件で微粉砕した。微粉砕粉をジェットミルの排出口に設置された鉱物油(スーパーゾルPA30、出光興産製)中に、大気に触れさせずに直接回収してスラリー状の原料とした。
(Example 1)
Based on STC alloy, Nd 19.85%, Pr 8.95%, Dy 1.00%, B 1.02%, Al 0.10%, Co 2.00%, Cu 0.10%, O 0.01%, C0 A raw material having a composition of 0.01%, N 0.01%, and the balance Fe was prepared. This raw material was placed in a processing furnace, hydrogen gas was introduced as an atmosphere, and hydrogen storage treatment was performed to finely collapse the raw material alloy. Once the inside of the furnace was evacuated, the atmosphere was replaced with nitrogen gas, and nitriding was performed by heating at a temperature of 480 ° C. for 4 hours. Then, if the inside of the furnace was evacuated, dehydrogenation treatment was performed at 550 ° C. for 2 hours. The treated alloy was coarsely pulverized in an argon gas atmosphere to obtain a coarse powder having an average particle size of 100 μm. Coarse powder is Nd 19.85%, Pr 8.95%, Dy 1.00%, B 1.02%, Al 0.10%, Co 2.00%, Cu 0.10%, O 0.06%, C 0.02 by mass percentage. %, N 0.13%, H 0.15%, and the balance Fe. Then, the coarse powder was charged into a jet mill, and the interior of the jet mill N substantially 0% of oxygen concentration in the N 2 gas was replaced with 2 gas (hereinafter 0.0002% by volume%), Under this N 2 gas atmosphere, the powder was finely pulverized under the conditions of a pulverization pressure of 6.9 × 10 5 Pa (that is, 7.0 kgf / cm 2 ) and a supply amount of coarse powder of 15 kg / h. The finely pulverized powder was directly collected in mineral oil (Supersol PA30, manufactured by Idemitsu Kosan Co., Ltd.) installed at the discharge port of the jet mill without being exposed to the atmosphere, and used as a slurry raw material.

鉱物油には、鉱物油に対する次亜リン酸ナトリウムの純分が、質量百分率で0.1%になるように5%次亜リン酸ナトリウムグリセリン溶液をあらかじめ添加混合しておいた。鉱物油と回収微粉砕粉の質量比率は1:3となるようにして行った。微粉砕粉の平均粒径は4.5μmであった。このようにして作製したスラリー状の原料を成形装置の金型内に加圧注入して成形した。加圧注入の際には磁界発生コイルからスラリー状原料に磁界を印加して磁気的に配向させた。   To the mineral oil, a 5% sodium hypophosphite glycerin solution was previously added and mixed so that the pure content of sodium hypophosphite relative to the mineral oil was 0.1% by mass. The mass ratio of the mineral oil and the recovered finely pulverized powder was 1: 3. The average particle size of the finely pulverized powder was 4.5 μm. The slurry-like raw material thus produced was pressure-injected into a mold of a molding apparatus and molded. During the pressure injection, a magnetic field was applied from the magnetic field generating coil to the slurry-like raw material to cause magnetic orientation.

配向磁界強度は239kA/m(即ち、3kOe)、スラリー状の原料の加圧注入圧力は3.9×10Pa(即ち、4kgf/cm)であった。スラリー状の原料を注入後、印加した配向磁界強度を239kA/mに維持したまま、7.8×10Pa(即ち、0.8ton/cm)の成形圧力をもって磁界中で湿式成形して成形体を得た。成形体の密度は4.30Mg/m(即ち、4.30g/cc)であった。 The orientation magnetic field strength was 239 kA / m (ie, 3 kOe), and the pressure injection pressure of the slurry-like raw material was 3.9 × 10 5 Pa (ie, 4 kgf / cm 2 ). After injecting the slurry-like raw material, it was wet-molded in a magnetic field with a molding pressure of 7.8 × 10 7 Pa (ie 0.8 ton / cm 2 ) while maintaining the applied orientation magnetic field strength at 239 kA / m. A molded body was obtained. The density of the molded body was 4.30 Mg / m 3 (that is, 4.30 g / cc).

この成形体を6.7Pa(即ち、5×10−2Torr)の減圧下で200℃の温度で2時間の脱油処理を行い、引き続き2.7×10−2Pa(2×10−4Torr)の減圧下で1050℃×3hの焼結を行った。焼結体の密度は7.58Mg/m(即ち、7.58g/cc)となった。ついで、焼結体には500℃×2hの熱処理を施した。焼結体の組成を分析したところ、質量百分率でNd19.85%、Pr8.95%、Dy1.00%、B1.02%、Al0.10%、Co2.00%、Cu0.10%、O0.08%、C0.06%、N0.14%、H0.001%、P0.01%、残部Feという分析結果を得た。 This molded body was deoiled for 2 hours at a temperature of 200 ° C. under a reduced pressure of 6.7 Pa (that is, 5 × 10 −2 Torr), and subsequently 2.7 × 10 −2 Pa (2 × 10 −4). Sintering was performed at 1050 ° C. for 3 hours under a reduced pressure of Torr). The density of the sintered body was 7.58 Mg / m 3 (that is, 7.58 g / cc). Subsequently, the sintered body was heat-treated at 500 ° C. for 2 hours. When the composition of the sintered body was analyzed, Nd 19.85%, Pr 8.95%, Dy 1.00%, B 1.02%, Al 0.10%, Co 2.00%, Cu 0.10%, O0. The analysis results of 08%, C0.06%, N0.14%, H0.001%, P0.01% and the balance Fe were obtained.

さらに、焼結体から縦5.0mm×横7.0mm×厚さ5.0mmの測定用の試料を切り出し、室温20℃で磁気特性を測定した。飽和磁束密度Brが1.43T(すなわち、14.3kG)、保磁力iHcが1272kA/m(すなわち、16.0kOe)、BHmaxが395kJ/m(すなわち、49.3MGOe)となった。表1に示すように本発明実施例の磁気特性は比較例に比べて保磁力が高くなった。試料の厚さの向きは試料の磁化方向に相当する。この焼結体に厚さ10μmのNiメッキ被膜を施して焼結型希土類永久磁石としてPCT試験を行った。条件は2気圧、温度120℃、湿度100%とした。同様の条件でPCT試験した比較例のメッキ被膜が1000〜1500時間の耐蝕性を示したのに比べて、本実施例のメッキ被膜は1750時間を超えてもメッキ被膜の剥離は発生せず格別に高い耐蝕性を示した。この実施例1の焼結型希土類永久磁石は、磁気特性と耐蝕性を改善しており、風力発電機用の永久磁石として用いることができる。 Furthermore, a sample for measurement measuring 5.0 mm in length, 7.0 mm in width, and 5.0 mm in thickness was cut out from the sintered body, and the magnetic characteristics were measured at room temperature of 20 ° C. The saturation magnetic flux density Br was 1.43 T (that is, 14.3 kG), the coercive force iHc was 1272 kA / m (that is, 16.0 kOe), and BHmax was 395 kJ / m 3 (that is, 49.3 MGOe). As shown in Table 1, the magnetic characteristics of the examples of the present invention were higher in coercive force than the comparative examples. The direction of the thickness of the sample corresponds to the magnetization direction of the sample. A 10 μm thick Ni plating film was applied to the sintered body, and a PCT test was performed as a sintered rare earth permanent magnet. The conditions were 2 atm, temperature 120 ° C., and humidity 100%. Compared to the case where the plating film of the comparative example subjected to the PCT test under the same conditions showed corrosion resistance of 1,000 to 1,500 hours, the plating film of this example did not peel off even if it exceeded 1750 hours. It showed high corrosion resistance. The sintered rare earth permanent magnet of Example 1 has improved magnetic properties and corrosion resistance, and can be used as a permanent magnet for a wind power generator.

Figure 2005268538
Figure 2005268538

(実施例2)
STC合金を基にして質量百分率でNd22.00%、Pr5.50%、Dy5.00%、B1.03%、Al0.08%、Co1.00%、Cu0.12%、Ga0.10%、O0.01%、C0.01%、N0.015%、残部Feの組成の原料を準備した。この原料を処理炉内に入れて雰囲気として水素ガスを導入し、水素吸蔵処理を行って原料の合金結晶を微細に崩壊させた。一度炉内を真空排気した後、雰囲気を窒素ガスに置換し、500℃の温度で3時間加熱して窒化処理を行った。窒化処理後の粗粉は、質量百分率で、Nd22.00%、Pr5.50%、Dy5.00%、B1.03%、Al0.08%、Co1.00%、Cu0.12%、Ga0.10%、O0.07%、C0.02%、N0.14%、H0.18%、残部Feの組成となった。ついで、この粗粉をジェットミルに装入し、ジェットミルの内部をNガスで置換してNガス中の酸素濃度を実質的に0%(体積%で0.0002%以下)とし、このNガスの雰囲気下で粉砕圧力6.9×10Pa(即ち、7.0kgf/cm)、粗粉の供給量15kg/hの条件で微粉砕した。微粉砕粉をジェットミルの排出口に設置された鉱物油(スーパーゾルPA30、出光興産製)中に、大気に触れさせずに直接回収してスラリー状の原料とした。
(Example 2)
Based on STC alloy, Nd 22.00%, Pr 5.50%, Dy 5.00%, B 1.03%, Al 0.08%, Co 1.00%, Cu 0.12%, Ga 0.10%, O 0 A raw material having a composition of 0.01%, C 0.01%, N 0.015%, and the balance Fe was prepared. This raw material was put in a processing furnace, hydrogen gas was introduced as an atmosphere, and hydrogen storage treatment was performed to finely collapse the alloy crystal of the raw material. Once the inside of the furnace was evacuated, the atmosphere was replaced with nitrogen gas, and nitriding was performed by heating at 500 ° C. for 3 hours. The coarse powder after the nitriding treatment is Nd 22.00%, Pr 5.50%, Dy 5.00%, B 1.03%, Al 0.08%, Co 1.00%, Cu 0.12%, Ga 0.10 in mass percentage. %, O 0.07%, C 0.02%, N 0.14%, H 0.18%, and the balance Fe. Then, the coarse powder was charged into a jet mill, and the interior of the jet mill N substantially 0% of oxygen concentration in the N 2 gas was replaced with 2 gas (hereinafter 0.0002% by volume%), Under this N 2 gas atmosphere, the powder was finely pulverized under the conditions of a pulverization pressure of 6.9 × 10 5 Pa (that is, 7.0 kgf / cm 2 ) and a supply amount of coarse powder of 15 kg / h. The finely pulverized powder was directly collected in mineral oil (Supersol PA30, manufactured by Idemitsu Kosan Co., Ltd.) installed at the discharge port of the jet mill without being exposed to the atmosphere, and used as a slurry raw material.

このスラリー状の原料を、実施例1と同様の条件(添加剤・成形)により成形して成形体を作製した。この成形体を6.7Pa(即ち、5×10−2Torr)の減圧下で200℃の温度で2時間の脱油処理を行い、引き続き2.7×10−2Pa(2×10−4Torr)の減圧下で1050℃×3hの焼結を行った。焼結体の密度は7.65Mg/m(即ち、7.65g/cc)となった。ついで、焼結体には500℃×2hの熱処理を施した。焼結体の組成を分析したところ、質量百分率でNd22.00%、Pr5.50%、Dy5.00%、B1.03%、Al0.08%、Co1.00%、Cu0.12%、Ga0.10%、O0.09%、C0.07%、N0.15%、H0.0015%、P0.01%、残部Feという分析結果を得た。 This slurry raw material was molded under the same conditions (additives and molding) as in Example 1 to produce a molded body. This molded body was deoiled for 2 hours at a temperature of 200 ° C. under a reduced pressure of 6.7 Pa (that is, 5 × 10 −2 Torr), and subsequently 2.7 × 10 −2 Pa (2 × 10 −4). Sintering was performed at 1050 ° C. for 3 hours under a reduced pressure of Torr). The density of the sintered body was 7.65 Mg / m 3 (that is, 7.65 g / cc). Subsequently, the sintered body was heat-treated at 500 ° C. for 2 hours. When the composition of the sintered body was analyzed, Nd 22.00%, Pr 5.50%, Dy 5.00%, B 1.03%, Al 0.08%, Co 1.00%, Cu 0.12%, Ga 0. Analysis results of 10%, O 0.09%, C 0.07%, N 0.15%, H 0.0015%, P 0.01% and the balance Fe were obtained.

さらに、焼結体から縦5.0mm×横7.0mm×厚さ5.0mmの測定用の試料を切り出し、室温20℃で磁気特性を測定した。飽和磁束密度Brが1.30T(すなわち、13.0kG)、保磁力iHcが1949kA/m(すなわち、24.5kOe)、BHmaxが324kJ/m(すなわち、40.8MGOe)となった。試料の厚さの向きは試料の磁化方向に相当する。この焼結体に厚さ10μmのNiメッキ被膜を施して焼結型希土類永久磁石としてPCT試験を行った。条件は2気圧、温度120℃、湿度100%とした。同様の条件でPCT試験した比較例のメッキ被膜が1000〜1500時間の耐蝕性を示したのに比べて、本実施例のメッキ被膜は1800時間を超えてもメッキ被膜の剥離は発生せず高い耐蝕性を示した。 Furthermore, a sample for measurement measuring 5.0 mm in length, 7.0 mm in width, and 5.0 mm in thickness was cut out from the sintered body, and the magnetic characteristics were measured at room temperature of 20 ° C. The saturation magnetic flux density Br was 1.30 T (ie, 13.0 kG), the coercive force iHc was 1949 kA / m (ie, 24.5 kOe), and BHmax was 324 kJ / m 3 (ie, 40.8 MGOe). The direction of the thickness of the sample corresponds to the magnetization direction of the sample. A 10 μm thick Ni plating film was applied to the sintered body, and a PCT test was performed as a sintered rare earth permanent magnet. The conditions were 2 atm, temperature 120 ° C., and humidity 100%. Compared to the case where the plating film of the comparative example subjected to the PCT test under the same conditions showed corrosion resistance of 1000 to 1500 hours, the plating film of this example did not peel off even if it exceeded 1800 hours, and was high. Corrosion resistance was shown.

(実施例3)
STC合金を基にして質量百分率でNd19.85%、Pr8.95%、Dy0.50%、B1.00%、Al0.10%、Co2.00%、Cu0.10%、Ga0.10%、O0.01%、C0.01%、N0.01%、残部Feの組成の原料を準備した。この原料を処理炉内に入れて雰囲気として水素ガスと窒素ガスの混合ガス(混合比1:1vol%)を導入し、混合ガスを攪拌して、水素吸蔵処理を行って原料の合金を微細に崩壊させた。ついで、炉内を加熱し、530℃の温度で2時間の窒化処理を行った。その後、炉内を真空排気しながら、550℃で2時間の脱水素処理を行った。処理後の合金をアルゴンガス雰囲気中で粗粉砕し、平均粒径が80μmの粗粉とした。粗粉は、質量百分率で、Nd19.85%、Pr8.95%、Dy0.50%、B1.00%、Al0.10%、Co2.00%、Cu0.10%、Ga0.10%、O0.04%、C0.02%、N0.05%、H0.16%、残部Feの組成となった。ついで、この粗粉をジェットミルに装入し、ジェットミルの内部をNガスで置換してNガス中の酸素濃度を実質的に0%(体積%で0.0002%以下)とし、このNガスの雰囲気下で粉砕圧力6.9×10Pa(即ち、7.0kgf/cm)、粗粉の供給量15kg/hの条件で微粉砕した。微粉砕粉をジェットミルの排出口に設置された鉱物油(スーパーゾルPA30、出光興産製)中に、大気に触れさせずに直接回収してスラリー状の原料とした。
(Example 3)
Nd 19.85%, Pr 8.95%, Dy 0.50%, B 1.00%, Al 0.10%, Co 2.00%, Cu 0.10%, Ga 0.10%, O 0 by mass percentage based on STC alloy A raw material having a composition of 0.01%, 0.01% C, 0.01% N, and the balance Fe was prepared. This raw material is put in a processing furnace, a mixed gas of hydrogen gas and nitrogen gas (mixing ratio: 1: 1 vol%) is introduced as an atmosphere, the mixed gas is stirred, and hydrogen storage treatment is performed to make the alloy of the raw material fine. Collapsed. Next, the inside of the furnace was heated and nitriding was performed at a temperature of 530 ° C. for 2 hours. Thereafter, dehydrogenation treatment was performed at 550 ° C. for 2 hours while evacuating the inside of the furnace. The treated alloy was coarsely pulverized in an argon gas atmosphere to obtain a coarse powder having an average particle size of 80 μm. The coarse powder is Nd 19.85%, Pr 8.95%, Dy 0.50%, B 1.00%, Al 0.10%, Co 2.00%, Cu 0.10%, Ga 0.10%, O0. The composition was 04%, C0.02%, N0.05%, H0.16%, and the balance Fe. Then, the coarse powder was charged into a jet mill, and the interior of the jet mill N substantially 0% of oxygen concentration in the N 2 gas was replaced with 2 gas (hereinafter 0.0002% by volume%), Under this N 2 gas atmosphere, the powder was finely pulverized under the conditions of a pulverization pressure of 6.9 × 10 5 Pa (that is, 7.0 kgf / cm 2 ) and a supply amount of coarse powder of 15 kg / h. The finely pulverized powder was directly collected in mineral oil (Supersol PA30, manufactured by Idemitsu Kosan Co., Ltd.) installed at the discharge port of the jet mill without being exposed to the atmosphere, and used as a slurry raw material.

このスラリー状の原料を、実施例1と同様の条件(添加剤・成形)により成形して成形体を作製した。この成形体を6.7Pa(即ち、5×10−2Torr)の減圧下で200℃の温度で2時間の脱油処理を行い、引き続き2.7×10−2Pa(2×10−4Torr)の減圧下で1050℃×3hの焼結を行った。焼結体の密度は7.58Mg/m(即ち、7.58g/cc)であった。焼結体には、500℃×2hの熱処理を施した。焼結体の組成を分析したところ、質量百分率でNd19.85%、Pr8.95%、Dy0.50%、B1.00%、Al0.10%、Co2.00%、Cu0.10%、Ga0.10%、O0.06%、C0.06%、N0.09%、H0.0007%、P0.01%残部Feという分析結果を得た。 This slurry raw material was molded under the same conditions (additives and molding) as in Example 1 to produce a molded body. This molded body was deoiled for 2 hours at a temperature of 200 ° C. under a reduced pressure of 6.7 Pa (that is, 5 × 10 −2 Torr), and subsequently 2.7 × 10 −2 Pa (2 × 10 −4). Sintering was performed at 1050 ° C. for 3 hours under a reduced pressure of Torr). The density of the sintered body was 7.58 Mg / m 3 (that is, 7.58 g / cc). The sintered body was subjected to a heat treatment of 500 ° C. × 2 h. When the composition of the sintered body was analyzed, Nd 19.85%, Pr 8.95%, Dy 0.50%, B 1.00%, Al 0.10%, Co 2.00%, Cu 0.10%, Ga 0. Analysis results of 10%, O0.06%, C0.06%, N0.09%, H0.0007%, and P0.01% balance Fe were obtained.

さらに、焼結体から縦5.0mm×横7.0mm×厚さ5.0mmの測定用の試料を切り出し、室温20℃で磁気特性を測定した。飽和磁束密度Brが1.51T(すなわち、15.1kG)、保磁力iHcが1241kA/m(すなわち、15.6kOe)、BHmaxが441kJ/m(すなわち、55.0MGOe)となった。試料の厚さの向きは試料の磁化方向に相当する。この焼結体に厚さ10μmのNiメッキ被膜を施して焼結型希土類永久磁石としてPCT試験を行った。条件は2気圧、温度120℃、湿度100%とした。本実施例のメッキ被膜は2000時間の高い耐蝕性を示した。 Furthermore, a sample for measurement measuring 5.0 mm in length, 7.0 mm in width, and 5.0 mm in thickness was cut out from the sintered body, and the magnetic characteristics were measured at room temperature of 20 ° C. The saturation magnetic flux density Br was 1.51 T (ie, 15.1 kG), the coercive force iHc was 1241 kA / m (ie, 15.6 kOe), and BHmax was 441 kJ / m 3 (ie, 55.0 MGOe). The direction of the thickness of the sample corresponds to the magnetization direction of the sample. A 10 μm thick Ni plating film was applied to the sintered body, and a PCT test was performed as a sintered rare earth permanent magnet. The conditions were 2 atm, temperature 120 ° C., and humidity 100%. The plated coating of this example showed a high corrosion resistance of 2000 hours.

(比較例1)
STC合金を基にして質量百分率でNd19.85%、Pr8.95%、Dy1.00%、B1.02%、Al0.10%、Co2.00%、Cu0.10%、O0.01%、C0.01%、N0.01%、残部Feの組成の原料を準備した。この原料をH/D処理炉内に入れて雰囲気として水素ガスを導入し、水素吸蔵処理を行って原料の合金結晶を微細に崩壊させた。処理後の粗粉は、質量百分率でNd19.85%、Pr8.95%、Dy1.00%、B1.02%、Al0.10%、Co2.00%、Cu0.10%、O0.14%、C0.02%、N0.02%、H0.16%、残部Feの組成となった。ついで、この粗粉をジェットミルに装入し、ジェットミルの内部をNガスで置換してNガス中の酸素濃度を実質的に0%(体積%で0.0002%以下)とし、このNガスの雰囲気下で粉砕圧力6.9×10Pa(即ち、7.0kgf/cm)、粗粉の供給量15kg/hの条件で微粉砕した。微粉砕粉をジェットミルの排出口に設置された鉱物油(スーパーゾルPA30、出光興産製)中に、大気に触れさせずに直接回収してスラリー状の原料とした。
(Comparative Example 1)
Based on STC alloy, Nd 19.85%, Pr 8.95%, Dy 1.00%, B 1.02%, Al 0.10%, Co 2.00%, Cu 0.10%, O 0.01%, C0 A raw material having a composition of 0.01%, N 0.01%, and the balance Fe was prepared. This raw material was placed in an H / D processing furnace, hydrogen gas was introduced as an atmosphere, and hydrogen storage treatment was performed to finely collapse the alloy crystal of the raw material. The coarse powder after the treatment was Nd 19.85%, Pr 8.95%, Dy 1.00%, B 1.02%, Al 0.10%, Co 2.00%, Cu 0.10%, O 0.14% by mass percentage. The composition was 0.02% C, 0.02% N, 0.16% H, and the balance Fe. Then, the coarse powder was charged into a jet mill, and the interior of the jet mill N substantially 0% of oxygen concentration in the N 2 gas was replaced with 2 gas (hereinafter 0.0002% by volume%), Under this N 2 gas atmosphere, the powder was finely pulverized under the conditions of a pulverization pressure of 6.9 × 10 5 Pa (that is, 7.0 kgf / cm 2 ) and a supply amount of coarse powder of 15 kg / h. The finely pulverized powder was directly collected in mineral oil (Supersol PA30, manufactured by Idemitsu Kosan Co., Ltd.) installed at the discharge port of the jet mill without being exposed to the atmosphere, and used as a slurry raw material.

このスラリー状の原料を、実施例1と同様の条件(添加剤・成形)により成形して成形体を作製した。この成形体を6.7Pa(即ち、5×10−2Torr)の減圧下で200℃の温度で2時間の脱油処理を行い、引き続き2.7×10−2Pa(2×10−4Torr)の減圧下で1050℃×3hの焼結を行った。焼結体の密度は7.57Mg/m(即ち、7.57g/cc)であった。焼結体には、500℃×2hの熱処理を施した。焼結体の組成を分析したところ、質量百分率でNd19.85%、Pr8.95%、Dy1.00%、B1.02%、Al0.10%、Co2.00%、Cu0.10%、O0.16%、C0.06%、N0.04%、H0.001%、P0.01%残部Feという分析結果を得た。 This slurry raw material was molded under the same conditions (additives and molding) as in Example 1 to produce a molded body. This molded body was deoiled for 2 hours at a temperature of 200 ° C. under a reduced pressure of 6.7 Pa (that is, 5 × 10 −2 Torr), and subsequently 2.7 × 10 −2 Pa (2 × 10 −4). Sintering was performed at 1050 ° C. for 3 hours under a reduced pressure of Torr). The density of the sintered body was 7.57 Mg / m 3 (that is, 7.57 g / cc). The sintered body was subjected to a heat treatment of 500 ° C. × 2 h. When the composition of the sintered body was analyzed, Nd 19.85%, Pr 8.95%, Dy 1.00%, B 1.02%, Al 0.10%, Co 2.00%, Cu 0.10%, O0. The analysis results of 16%, C0.06%, N0.04%, H0.001%, and P0.01% balance Fe were obtained.

さらに、焼結体から縦5.0mm×横7.0mm×厚さ5.0mmの測定用の試料を切り出し、室温20℃で磁気特性を測定した。飽和磁束密度Brが1.43T(すなわち、14.3kG)、保磁力iHcが1153kA/m(すなわち、14.5kOe)、BHmaxが386kJ/m(すなわち、48.5MGOe)となった。試料の厚さの向きは試料の磁化方向に相当する。この焼結体に厚さ10μmのNiメッキ被膜を施して焼結型希土類永久磁石としてPCT試験を行った。条件は2気圧、温度120℃、湿度100%とした。本実施例のメッキ被膜は1000時間の耐蝕性を示した。 Furthermore, a sample for measurement measuring 5.0 mm in length, 7.0 mm in width, and 5.0 mm in thickness was cut out from the sintered body, and the magnetic characteristics were measured at room temperature of 20 ° C. The saturation magnetic flux density Br was 1.43 T (ie 14.3 kG), the coercive force iHc was 1153 kA / m (ie 14.5 kOe), and BHmax was 386 kJ / m 3 (ie 48.5 MGOe). The direction of the thickness of the sample corresponds to the magnetization direction of the sample. A 10 μm thick Ni plating film was applied to the sintered body, and a PCT test was performed as a sintered rare earth permanent magnet. The conditions were 2 atm, temperature 120 ° C., and humidity 100%. The plating film of this example exhibited a corrosion resistance of 1000 hours.

(比較例2)
インゴット合金を基にして質量百分率でNd19.85%、Pr8.95%、Dy0.50%、B1.00%、Al0.10%、Co2.00%、Cu0.10%、Ga0.10%、O0.01%、C0.01%、N0.01%、残部Feの組成の原料を準備した。この原料を処理炉内に入れて雰囲気として水素ガスを導入し、水素吸蔵処理を行って原料の合金を微細に崩壊させて粗粉を得た。粗粉の組成は、質量百分率でNd19.85%、Pr8.95%、Dy0.50%、B1.00%、Al0.10%、Co2.00%、Cu0.10%、Ga0.10%、O0.15%、C0.02%、N0.01%、H0.13%、残部Feの組成となった。ついで、この粗粉をジェットミルに装入し、ジェットミルの内部をNガスで置換してNガス中の酸素濃度を実質的に0%(体積%で0.0002%以下)とし、このNガスの雰囲気下で粉砕圧力6.9×10Pa(即ち、7.0kgf/cm)、粗粉の供給量15kg/hの条件で微粉砕した。微粉砕粉をジェットミルの排出口に設置された鉱物油(スーパーゾルPA30、出光興産製)中に、大気に触れさせずに直接回収してスラリー状の原料とした。
(Comparative Example 2)
Nd 19.85%, Pr 8.95%, Dy 0.50%, B 1.00%, Al 0.10%, Co 2.00%, Cu 0.10%, Ga 0.10%, O 0 by mass percentage based on ingot alloy A raw material having a composition of 0.01%, 0.01% C, 0.01% N, and the balance Fe was prepared. This raw material was put in a processing furnace, hydrogen gas was introduced as an atmosphere, and hydrogen storage treatment was performed to finely collapse the raw material alloy to obtain coarse powder. The composition of the coarse powder was Nd 19.85%, Pr 8.95%, Dy 0.50%, B 1.00%, Al 0.10%, Co 2.00%, Cu 0.10%, Ga 0.10%, O 0 by mass percentage. .15%, C0.02%, N0.01%, H0.13% and the balance Fe. Then, the coarse powder was charged into a jet mill, and the interior of the jet mill N substantially 0% of oxygen concentration in the N 2 gas was replaced with 2 gas (hereinafter 0.0002% by volume%), Under this N 2 gas atmosphere, the powder was finely pulverized under the conditions of a pulverization pressure of 6.9 × 10 5 Pa (that is, 7.0 kgf / cm 2 ) and a supply amount of coarse powder of 15 kg / h. The finely pulverized powder was directly collected in mineral oil (Supersol PA30, manufactured by Idemitsu Kosan Co., Ltd.) installed at the discharge port of the jet mill without being exposed to the atmosphere, and used as a slurry raw material.

このスラリー状の原料を、実施例1と同様の条件(添加剤、成形)により成形して成形体を作製した。この成形体を6.7Pa(即ち、5×10−2Torr)の減圧下で200℃の温度で2時間の脱油処理を行い、引き続き2.7×10−2Pa(2×10−4Torr)の減圧下で1050℃×3hの焼結を行った。焼結体の密度は7.61Mg/m(即ち、7.61g/cc)であった。焼結体には、500℃×2hの熱処理を施した。焼結体の組成を分析したところ、質量百分率でNd19.85%、Pr8.95%、Dy0.50%、B1.00%、Al0.10%、Co2.00%、Cu0.10%、Ga0.10%、O0.17%、C0.07%、N0.06%、H0.002%、P0.01%、残部Feという分析結果を得た。 This slurry-like raw material was molded under the same conditions (additive, molding) as in Example 1 to produce a molded body. This molded body was deoiled for 2 hours at a temperature of 200 ° C. under a reduced pressure of 6.7 Pa (that is, 5 × 10 −2 Torr), and subsequently 2.7 × 10 −2 Pa (2 × 10 −4). Sintering was performed at 1050 ° C. for 3 hours under a reduced pressure of Torr). The density of the sintered body was 7.61 Mg / m 3 (that is, 7.61 g / cc). The sintered body was subjected to a heat treatment of 500 ° C. × 2 h. When the composition of the sintered body was analyzed, Nd 19.85%, Pr 8.95%, Dy 0.50%, B 1.00%, Al 0.10%, Co 2.00%, Cu 0.10%, Ga 0. Analysis results of 10%, 0.17% O, 0.07% C, 0.06% N, 0.002% H, 0.01% P, and the balance Fe were obtained.

さらに、この焼結体から5.0mm×7.0mm×5.0mmの測定用の試料を切り出し、磁気特性を測定した。飽和磁束密度Brが1.51T(すなわち、15.1kG)、保磁力iHcが1114kA/m(すなわち、14.0kOe)、BHmaxが438kJ/m(すなわち、54.6MGOe)となった。試料の厚さの向きは試料の磁化方向に相当する。この焼結体に厚さ10μmのNiメッキ被膜を施して焼結型希土類永久磁石としてPCT試験を行った。条件は2気圧、温度120℃、湿度100%とした。同様の条件でPCT試験した比較例のメッキ被膜が1000時間の耐蝕性を示した。 Further, a sample for measurement of 5.0 mm × 7.0 mm × 5.0 mm was cut out from the sintered body, and the magnetic properties were measured. The saturation magnetic flux density Br was 1.51 T (ie, 15.1 kG), the coercive force iHc was 1114 kA / m (ie, 14.0 kOe), and BHmax was 438 kJ / m 3 (ie, 54.6 MGOe). The direction of the thickness of the sample corresponds to the magnetization direction of the sample. A 10 μm thick Ni plating film was applied to the sintered body, and a PCT test was performed as a sintered rare earth permanent magnet. The conditions were 2 atm, temperature 120 ° C., and humidity 100%. The plating film of the comparative example subjected to the PCT test under the same conditions showed a corrosion resistance of 1,000 hours.

本発明は、高耐食性を有し、低酸素量で飽和磁束密度および保磁力を高めた焼結型R−Fe−B系希土類永久磁石として利用することができる。さらに風力発電機やモーター等の回転機、リニアモータ等に搭載して利用することができる。




INDUSTRIAL APPLICABILITY The present invention can be used as a sintered R—Fe—B rare earth permanent magnet having high corrosion resistance and having a low oxygen content and increased saturation magnetic flux density and coercive force. Furthermore, it can be used by being mounted on a rotating machine such as a wind power generator or a motor, a linear motor, or the like.




Claims (3)

質量百分率でR(RはYを含む希土類元素の内の少なくとも1種以上)27.0〜34.0%、B0.5〜2.0%、O0.03〜0.10%、N0.05〜0.25%、C0.15%以下、残部Feの組成を有し、N量がO量より多く含有されることを特徴とする焼結型希土類永久磁石。   R in mass percentage (R is at least one of rare earth elements including Y) 27.0-34.0%, B0.5-2.0%, O0.03-0.10%, N0.05 A sintered rare earth permanent magnet having a composition of ˜0.25%, C0.15% or less, and the balance Fe, and containing an N amount greater than an O amount. 質量百分率でR(RはYを含む希土類元素の内の少なくとも1種以上)27.0〜34.0%、B0.5〜2.0%、O0.03〜0.10%、N0.05〜0.25%、C0.15%以下、H0.003%以下、残部Feの組成を有し、N量がO量より多く含有されることを特徴とする焼結型希土類永久磁石。   R in mass percentage (R is at least one of rare earth elements including Y) 27.0-34.0%, B0.5-2.0%, O0.03-0.10%, N0.05 A sintered rare earth permanent magnet having a composition of ˜0.25%, C0.15% or less, H0.003% or less, and the balance Fe, and containing an N content greater than an O content. 質量百分率で0.2〜5.0%のCo、0.05〜0.5%のNb、0.01〜0.5%のAl、0.01〜0.3%のGa、0.01〜0.5%のCu、0.005〜0.05%のPのうちの1種又は2種以上を含有していることを特徴とする請求項1又は2に記載の焼結型希土類永久磁石。






















0.2 to 5.0% Co, 0.05 to 0.5% Nb, 0.01 to 0.5% Al, 0.01 to 0.3% Ga, 0.01 by mass percentage Sintered rare earth permanent according to claim 1 or 2, characterized in that it contains one or more of -0.5% Cu and 0.005-0.05% P. magnet.






















JP2004078851A 2004-03-18 2004-03-18 Sintered rare earth permanent magnet and manufacturing method thereof Pending JP2005268538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004078851A JP2005268538A (en) 2004-03-18 2004-03-18 Sintered rare earth permanent magnet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004078851A JP2005268538A (en) 2004-03-18 2004-03-18 Sintered rare earth permanent magnet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005268538A true JP2005268538A (en) 2005-09-29
JP2005268538A5 JP2005268538A5 (en) 2007-03-01

Family

ID=35092767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004078851A Pending JP2005268538A (en) 2004-03-18 2004-03-18 Sintered rare earth permanent magnet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2005268538A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210377A (en) * 2005-01-25 2006-08-10 Tdk Corp Rtb-based sintered magnet and manufacturing method thereof
JP2006228992A (en) * 2005-02-17 2006-08-31 Tdk Corp Rare earth permanent magnet
JP2007294917A (en) * 2006-03-27 2007-11-08 Tdk Corp R-t-b-based sintered magnet and manufacturing method therefor
JPWO2005040047A1 (en) * 2003-10-27 2007-11-22 アクア・エナジー株式会社 Method for producing reduced hydrogen water and apparatus for producing the same
JP2009224413A (en) * 2008-03-13 2009-10-01 Inter Metallics Kk MANUFACTURING METHOD OF NdFeB SINTERED MAGNET
JP2009302256A (en) * 2008-06-12 2009-12-24 Tdk Corp Method of manufacturing rare earth magnet
CN102214508A (en) * 2010-04-02 2011-10-12 烟台首钢磁性材料股份有限公司 R-T-B-M-A rare earth permanent magnet and manufacturing method thereof
JP2014116551A (en) * 2012-12-12 2014-06-26 Mitsubishi Electric Corp Recycling method of rare-earth magnet, manufacturing method and manufacturing apparatus for recycle material
KR20140145632A (en) * 2012-07-24 2014-12-23 인터메탈릭스 가부시키가이샤 PROCESS FOR PRODUCING NdFeB-BASED SINTERED MAGNET
JP2017188661A (en) * 2016-04-08 2017-10-12 沈陽中北通磁科技股▲ふん▼有限公司Shenyang General Magnetic Co.,Ltd. Neodymium iron boron permanent magnet manufactured from neodymium iron boron waste, and method for manufacturing the same
JP2022535482A (en) * 2019-12-24 2022-08-09 フージャン チャンティン ゴールデン ドラゴン レア-アース カンパニー リミテッド RTB Permanent Magnet Material, Manufacturing Method, and Application

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005040047A1 (en) * 2003-10-27 2007-11-22 アクア・エナジー株式会社 Method for producing reduced hydrogen water and apparatus for producing the same
JP2006210377A (en) * 2005-01-25 2006-08-10 Tdk Corp Rtb-based sintered magnet and manufacturing method thereof
JP4543940B2 (en) * 2005-01-25 2010-09-15 Tdk株式会社 Method for producing RTB-based sintered magnet
JP2006228992A (en) * 2005-02-17 2006-08-31 Tdk Corp Rare earth permanent magnet
JP4706900B2 (en) * 2005-02-17 2011-06-22 Tdk株式会社 Rare earth permanent magnet manufacturing method
JP2007294917A (en) * 2006-03-27 2007-11-08 Tdk Corp R-t-b-based sintered magnet and manufacturing method therefor
JP2009224413A (en) * 2008-03-13 2009-10-01 Inter Metallics Kk MANUFACTURING METHOD OF NdFeB SINTERED MAGNET
JP2009302256A (en) * 2008-06-12 2009-12-24 Tdk Corp Method of manufacturing rare earth magnet
CN102214508A (en) * 2010-04-02 2011-10-12 烟台首钢磁性材料股份有限公司 R-T-B-M-A rare earth permanent magnet and manufacturing method thereof
WO2011125262A1 (en) * 2010-04-02 2011-10-13 株式会社 安川電機 R-t-b-m-a system rare earth permanent magnet and method for producing same
CN102214508B (en) * 2010-04-02 2014-03-12 烟台首钢磁性材料股份有限公司 R-T-B-M-A rare earth permanent magnet and manufacturing method thereof
KR20140145632A (en) * 2012-07-24 2014-12-23 인터메탈릭스 가부시키가이샤 PROCESS FOR PRODUCING NdFeB-BASED SINTERED MAGNET
KR101599663B1 (en) 2012-07-24 2016-03-03 인터메탈릭스 가부시키가이샤 METHOD FOR PRODUCING NdFeB SYSTEM SINTERED MAGNET
JP2014116551A (en) * 2012-12-12 2014-06-26 Mitsubishi Electric Corp Recycling method of rare-earth magnet, manufacturing method and manufacturing apparatus for recycle material
JP2017188661A (en) * 2016-04-08 2017-10-12 沈陽中北通磁科技股▲ふん▼有限公司Shenyang General Magnetic Co.,Ltd. Neodymium iron boron permanent magnet manufactured from neodymium iron boron waste, and method for manufacturing the same
JP2022535482A (en) * 2019-12-24 2022-08-09 フージャン チャンティン ゴールデン ドラゴン レア-アース カンパニー リミテッド RTB Permanent Magnet Material, Manufacturing Method, and Application
JP7253071B2 (en) 2019-12-24 2023-04-05 フージャン チャンティン ゴールデン ドラゴン レア-アース カンパニー リミテッド RTB Permanent Magnet Material, Manufacturing Method, and Application

Similar Documents

Publication Publication Date Title
EP3196896B1 (en) Heavy rare earth free sintered nd-fe-b magnets and manufacturing process thereof
EP2590181B1 (en) Process of manufacturing an r-t-b based rare earth permanent magnet
EP2797086B1 (en) R-T-B Rare earth sintered magnet and method of manufacturing the same
JP5218869B2 (en) Rare earth-iron-nitrogen alloy material, method for producing rare earth-iron-nitrogen alloy material, rare earth-iron alloy material, and method for producing rare earth-iron alloy material
JP6037128B2 (en) R-T-B rare earth magnet powder, method for producing R-T-B rare earth magnet powder, and bonded magnet
JP5464289B1 (en) R-T-B sintered magnet
JP2011199180A (en) Rare earth magnet and rotating machine
JP2005268538A (en) Sintered rare earth permanent magnet and manufacturing method thereof
JP2006210377A (en) Rtb-based sintered magnet and manufacturing method thereof
JP2005268538A5 (en)
JP6578916B2 (en) Method for manufacturing alloy for RTB-based rare earth sintered magnet and method for manufacturing RTB-based rare earth sintered magnet
JP2004250781A (en) Sintered type permanent magnet, and production method therefor
JP2004250781A5 (en)
US11569012B2 (en) Method for improving performance of sintered NdFeB magnets
US10192661B2 (en) R—T—B based sintered magnet
JP2008163466A (en) Method for producing sintered permanent magnet, and die
JP2007294917A (en) R-t-b-based sintered magnet and manufacturing method therefor
US10428408B2 (en) R-T-B-based rare earth sintered magnet and alloy for R-T-B-based rare earth sintered magnet
JP6468435B2 (en) R-T-B sintered magnet
JP2007266026A (en) Manufacturing method of rare-earth sintered magnet
JP2006237168A (en) R-t-b-based sintered magnet and manufacturing method thereof
JP2014192460A (en) Method of manufacturing r-t-x based powder-compacted magnet, and r-t-x based powder-compacted magnet
JP2006093501A (en) Rare earth sintered magnet and manufacturing method thereof
CN101423902B (en) Processing method of R-T-B series alloy powder for radiation magnetic loop
JP4305922B2 (en) Rare earth sintered magnet and method for improving mechanical strength and corrosion resistance of rare earth sintered magnet

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070115

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090612

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091204