JP2003031409A - Sintered rare-earth magnet having superior corrosion resistance - Google Patents

Sintered rare-earth magnet having superior corrosion resistance

Info

Publication number
JP2003031409A
JP2003031409A JP2001218116A JP2001218116A JP2003031409A JP 2003031409 A JP2003031409 A JP 2003031409A JP 2001218116 A JP2001218116 A JP 2001218116A JP 2001218116 A JP2001218116 A JP 2001218116A JP 2003031409 A JP2003031409 A JP 2003031409A
Authority
JP
Japan
Prior art keywords
phase
alloy
rich
corrosion resistance
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001218116A
Other languages
Japanese (ja)
Other versions
JP2003031409A5 (en
Inventor
Tsunehiro Kawada
常宏 川田
Hisato Tokoro
久人 所
Nobuhiko Fujimori
信彦 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2001218116A priority Critical patent/JP2003031409A/en
Publication of JP2003031409A publication Critical patent/JP2003031409A/en
Publication of JP2003031409A5 publication Critical patent/JP2003031409A5/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a rare-earth magnet having superior corrosion resistance. SOLUTION: A sintered R-Fe-Co-Cu(-M)-B system rare-earth magnet (wherein R denotes at least one element of rare-earth elements including Y, and M denotes at least one element among Al, Ga, Nb, and Mn) contains 28 to 35 wt.% of R, 0.5 to 5 wt.% of Co, 0.01 to 0.3 wt.% of Cu, not higher than 0.3 wt.% of M if necessary, 0.8 to 1.2 wt.% of B and remaining Fe as the main components. In grain boundary where an R2 Fe14 B system main phase and an R-rich phase are adjacent to each other, an intermediate phase containing 30 to 60 wt.% of R, 30 to 60 wt.% of Co+Cu, and remaining Fe is formed in a region of 1 to 20 nm from the grain boundary of the main phase toward the center of the R-rich phase and, further, a composition ratio is terms of atomic % satisfies a formula: (Co+Cu)/R=0.5 to 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、R−Fe−Co−
Cu(−M)−B系(RはYを含む希土類元素、Bは硼
素)系の希土類焼結に関し、特に耐食性に優れたものに
関する。
TECHNICAL FIELD The present invention relates to R-Fe-Co-
The present invention relates to a Cu (-M) -B-based (R is a rare earth element containing Y, B is boron) -based rare earth sintered material, and particularly to one having excellent corrosion resistance.

【0002】[0002]

【従来の技術】エネルギー積の高い永久磁石としては、
Sm−Co系磁石、R−Fe−B系希土類磁石等が知ら
れている。このうち、Nd−Fe−Bで代表されるR−
Fe−B系希土類磁石は、資源的に豊富なNd及びFe
を主成分とするため、資源的に乏しいSmを使用するS
m−Co系磁石よりも低コストであり、また、最大エネ
ルギー積もSm−Co系磁石の約240kJ/mに比
較して、約80〜120kJ/m高く、種々の電子機
器用として広く用いられている。
2. Description of the Related Art As a permanent magnet having a high energy product,
Sm-Co type magnets, R-Fe-B type rare earth magnets and the like are known. Of these, R- represented by Nd-Fe-B
Fe-B rare earth magnets are a resource-rich Nd and Fe.
Since S is a main component, S that uses scarce Sm resources
The cost is lower than that of the m-Co magnet, and the maximum energy product is about 80 to 120 kJ / m 3 higher than the Sm-Co magnet, which is about 240 kJ / m 3 , and is widely used for various electronic devices. It is used.

【0003】しかしながら、希土類磁石は、活性度が高
く、酸化し易く、耐食性が劣ることが問題点となってい
る。耐食性を改善するため種々の試みがなされている。
一般的には、磁石の表面をめっきで覆う事が成されてい
るが、添加元素を変えることにより、耐食性を上げるこ
とも試みられている。磁石そのものの耐食性改善は、コ
ーテイング後の信頼性を高める上で極めて重要な技術で
ある。
However, the rare earth magnets have problems that they have high activity, are easily oxidized, and have poor corrosion resistance. Various attempts have been made to improve the corrosion resistance.
Generally, the surface of the magnet is covered with plating, but it has also been attempted to increase the corrosion resistance by changing the additive element. Improving the corrosion resistance of the magnet itself is a very important technique for improving the reliability after coating.

【0004】耐食性を上げるための元素としてはCoな
どの元素が一般的に用いられている。Coはキュリー温
度を上昇させ温度特性を改善し、またRリッチ相をR
Co金属間化合物とすることにより耐食性を改善する。
特開平8−296005号公報の4欄27行から29行
には、「Coは粒界相合金の酸化を抑制する元素であ
り、また焼結後の磁石の残留磁束密度の温度依存性を改
善する。」という記載がある。
Elements such as Co are generally used as elements for improving corrosion resistance. Co raises the Curie temperature to improve the temperature characteristic, and the R-rich phase into R 3
The corrosion resistance is improved by using a Co intermetallic compound.
Japanese Patent Laid-Open No. 8-296005, column 4, lines 27 to 29, states that "Co is an element that suppresses the oxidation of the grain boundary phase alloy, and that the temperature dependence of the residual magnetic flux density of the magnet after sintering is improved. Yes. ”

【0005】また、耐食性を上げるための他の元素とし
て、Cuがある。CuをCoと同時に添加することによ
り粒界相がR−Co−Cu金属間化合物になり、Co添
加のみの場合と比べ、更に耐食性が上がる。例えば、特
開平6−96928号公報の4欄29行から32行にか
け、「Cuの使用は、粉末化の際の耐酸化性を向上させ
るねらいもある。これにより、粉末化及び液相焼結が容
易となり、また、磁気特性も向上する。」という記載が
ある。
Cu is another element for improving the corrosion resistance. By adding Cu at the same time as Co, the grain boundary phase becomes an R-Co-Cu intermetallic compound, and the corrosion resistance is further increased as compared with the case where only Co is added. For example, in JP-A-6-96928, column 4, line 29 to line 32, "The use of Cu also has the purpose of improving the oxidation resistance during powdering. And the magnetic characteristics are improved. ”

【0006】しかしながら、上記特開平6−96928
号公報の目的は、保磁力の低下を低く抑えて、その結
果、比較的高温域でも不可逆減磁を低く抑える事が出来
るための元素配合であり、また、特開平8−29600
5号公報においては、Co添加の目的は、希土類磁石合
金は粉砕性がよい微細組織であり、また粉砕し易いR
17相とR14B相が多いので、粉砕後の粒径を
小さくすることが出来、その粒度分布も良好であり、結
果として焼結磁石におけるRリッチ合金の分散性を良く
し、焼結性を良くして、磁石特性を高かめようとするも
のである。このうようにCo、Cu添加の希土類焼結磁
石としての記述は多々あるものの、CoとCuを複合添
加させた際の最適なミクロ組織状態は解っていなかっ
た。
However, the above-mentioned JP-A-6-96928 is used.
The purpose of the publication is to reduce the coercive force to a low level, so that the irreversible demagnetization can be suppressed to a low level even in a relatively high temperature range.
In Japanese Patent No. 5 publication, the purpose of adding Co is that the rare earth magnet alloy has a fine structure with good pulverizability, and R 2 is easily pulverized.
Since there are a large amount of T 17 phase and R 2 T 14 B phase, the particle size after pulverization can be made small, and the particle size distribution is also good, resulting in good dispersibility of the R-rich alloy in the sintered magnet, It is intended to improve the sinterability and improve the magnet characteristics. As described above, although there are many descriptions as a rare earth sintered magnet to which Co and Cu are added, the optimum microstructure state when Co and Cu are added together has not been known.

【0007】[0007]

【発明が解決しようとする課題】希土類磁石の腐食は、
粒界に存在する希土類元素(Rリッチ相)が活性なの
で、このRリッチ相から酸化が進行して、磁石全体に広
がって行く。従って、磁気特性を落とさず、しかも、こ
のRリッチ相の希土類元素をいかに酸化から守るかが重
要な課題である。本願発明者らは、希土類磁石で耐食性
に優れた磁石を得るためにはRリッチ相の成分構成、及
び分布をいかにすれば耐食性が上がるかを工夫して、本
願発明に想到したのである。
The corrosion of rare earth magnets is
Since the rare earth element (R-rich phase) existing at the grain boundaries is active, oxidation proceeds from this R-rich phase and spreads throughout the magnet. Therefore, how to protect the rare earth element in the R-rich phase from oxidation without deteriorating the magnetic properties is an important issue. The inventors of the present application devised the present invention by devising how the composition and distribution of the R-rich phase should increase the corrosion resistance in order to obtain a rare earth magnet having excellent corrosion resistance.

【0008】[0008]

【課題を解決するための手段】本願発明者等は、上記成
分構成を取り、特に粒界面の組成分布が耐食性を上げる
ために重要であることに気が付き、本願発明に想到した
ものである。具体的には、重量%でR(Yを含む希土類
元素の少なくとも1種以上):28〜35%、Co:
0.5〜5%、Cu:0.01〜0.3%、必要により
M(Al,Ga,Nb,Mnのうち少なくとも1種以
上):0.3%以下、B:0.8〜1.2%、残部Fe
を主要成分とするR−Fe−Co−Cu(−M)−B系
の希土類焼結磁石であって、RFe14B系の主相と
Rリッチ相が隣接する粒界部分において、主相の粒界面
からRリッチ相の中心部に向かって1〜20nmの領域
で主要成分がR:30〜60%、Co+Cu:30〜6
0%、残部Feの中間相を有し、かつ原子%に換算した
組成比が(Co+Cu)/R=0.5〜2であることを
特徴とする。この中間相における、R+(Co+Cu)
+Feのmass%はほぼ100%になる組み合わせで
ある。
Means for Solving the Problems The inventors of the present invention realized the present invention by taking the above-mentioned composition of components and finding that the compositional distribution at the grain boundary is particularly important for improving the corrosion resistance. Specifically, R (at least one kind of rare earth element including Y) in weight%: 28 to 35%, Co:
0.5 to 5%, Cu: 0.01 to 0.3%, and if necessary, M (at least one of Al, Ga, Nb, and Mn): 0.3% or less, B: 0.8 to 1 0.2%, balance Fe
The A R-Fe-Co-Cu ( -M) -B based rare-earth sintered magnet whose main component, the grain boundary of the main phase and the R-rich phase of R 2 Fe 14 B system adjacent the main In the region of 1 to 20 nm from the grain boundary of the phase toward the center of the R-rich phase, the main component is R: 30 to 60%, Co + Cu: 30 to 6
It is characterized by having an intermediate phase of 0% and the balance being Fe, and having a composition ratio converted to atomic% of (Co + Cu) /R=0.5 to 2. R + (Co + Cu) in this intermediate phase
The combination of + Fe has a mass% of almost 100%.

【0009】このようにCoとCuをRリッチ相の周囲
に偏析させて中間相を形成することによって周囲をCo
とCuにより被覆させる状態とし、個々のRリッチ相の
耐食性を改善させているものと思われる。特に希土類焼
結磁石中のDy添加量を重量%で5%以下とするとCo
とCuのRリッチ相での偏析量が増大し、耐食性に対す
る寄与を高めることができる。好ましくは3%以下、さ
らに好ましくは2%以下が偏析させるのによい。Dy量
が5%以下であれば全体の主相とRリッチ相との間で2
割ほどの部分に中間相が認められる。まだDy量が2%
以下であれば8割ほどのRリッチ相にCoとCu偏析の
中間相が認められる。
As described above, by segregating Co and Cu around the R-rich phase to form an intermediate phase, the surrounding Co
It is considered that the corrosion resistance of each R-rich phase is improved by coating with Cu and Cu. Particularly, if the amount of Dy added in the rare earth sintered magnet is 5% or less by weight, Co
The amount of segregation of Cu and R in the R-rich phase is increased, and the contribution to corrosion resistance can be enhanced. Preferably 3% or less, and more preferably 2% or less are good for segregating. If the Dy amount is 5% or less, 2 between the entire main phase and the R-rich phase
An intermediate phase is recognized in about a part. The amount of Dy is still 2%
If it is less than 80%, an intermediate phase of Co and Cu segregation is recognized in about 80% of the R-rich phase.

【0010】図1及び図2は結晶の主相、R(Nd)リ
ッチ相および粒界相の拡大模式図である。図1は、本発
明のもの、図2は従来のもので、この2つの図により説
明する。1は主相、2はRリッチ相で、3は粒界、4は
(R+Co+Cu)系合金(中間相)、5は磁石の表
面、6は大気、7は酸素を示している。図2の従来型で
は、R(Nd)リッチ相2が、中間相に囲まれていない
ので大気6に含まれている酸素が、この粒界3から進入
して酸化を進行させる。一方、図1に示すR(Nd)リ
ッチ相2は、酸化されにくい厚さ約10nmの(R+C
o+Cu)系の中間相4に取り巻かれているので、大気
6に触れている粒界3から一部酸化される部分はあるも
のの、その酸化は中間相4で阻まれ、内部の粒界3aま
では酸化が進行しない。このために実施例1の磁石は耐
食性に優れているのである。
1 and 2 are enlarged schematic views of the main phase, R (Nd) rich phase and grain boundary phase of the crystal. FIG. 1 shows the present invention, and FIG. 2 shows the conventional one, which will be described with reference to these two figures. 1 is a main phase, 2 is an R-rich phase, 3 is a grain boundary, 4 is an (R + Co + Cu) -based alloy (intermediate phase), 5 is a magnet surface, 6 is air, and 7 is oxygen. In the conventional type shown in FIG. 2, since the R (Nd) -rich phase 2 is not surrounded by the intermediate phase, oxygen contained in the atmosphere 6 enters from the grain boundary 3 and progresses the oxidation. On the other hand, the R (Nd) -rich phase 2 shown in FIG.
Since it is surrounded by the intermediate phase 4 of (o + Cu) system, there is a part that is oxidized from the grain boundary 3 that is in contact with the atmosphere 6, but the oxidation is blocked by the intermediate phase 4 and the internal grain boundary 3a is reached. Oxidation does not proceed. Therefore, the magnet of Example 1 has excellent corrosion resistance.

【0011】耐食性を上げる合金の添加方法としては、
原料合金の溶解段階で添加するいわゆる1合金法と、所
定の合金を、粗粉砕後または微粉砕後に混合する2合金
法(ブレンド法)が用いられている。2合金法では粉末
の酸化防止を目的に、Co、Cuといった耐食性に寄与
する元素をRリッチな合金に添加し、特に、Rリッチ合
金を特定の結晶構造を持った金属間化合物とすることに
より、合金粉末の耐酸化性を増すことが知らされてい
る。また、保磁力の向上に寄与する、Al、Gaなどの
元素を粒界相に集中させることを意図し、これらの元素
をRリッチ合金側へ添加する。
As a method of adding an alloy for improving corrosion resistance,
A so-called 1-alloy method, which is added in the melting stage of the raw material alloy, and a 2-alloy method (blending method), in which a predetermined alloy is mixed after coarse pulverization or fine pulverization, are used. In the two-alloy method, elements such as Co and Cu that contribute to corrosion resistance are added to an R-rich alloy for the purpose of preventing powder oxidation, and in particular, the R-rich alloy is made into an intermetallic compound having a specific crystal structure. , It is known to increase the oxidation resistance of alloy powders. Further, with the intention of concentrating elements such as Al and Ga that contribute to the improvement of the coercive force in the grain boundary phase, these elements are added to the R-rich alloy side.

【0012】しかし、Rリッチ相にCoやCuを添加す
ると金属間化合物は出来ても、効果的な添加をした場合
に比べ、耐酸化性が劣る。そこで、添加するトータルの
(Co+Cu)量は同じにして、主相合金とRリッチ合
金への添加の割合を変えることにより、粒界近傍の領域
の組成比を所望の比率とすることが出来る。すなわち、
主相合金に添加する(Co+Cu)の量を、Rリッチ合
金に添加する量より多くすることである。特にCuは、
14B相(T:遷移金属)に固溶せずRリッチな
粒界相に偏析する傾向にある。Coの方は主相9割、R
リッチ相1割の割合で混入しているが、主相とRリッチ
相の体積比を考慮するとCuの方が偏析が大きい。Cu
は2〜3割程のみが主相に固溶し、残りはRリッチ相側
へ偏析する。主相からRリッチ相へ、(Co+Cu)が
拡散浸透し、粒界近傍の組成が、Rリッチ相の粒界相の
中心部より、より金属間化合物が多く含まれるようにな
り、耐食性を増すことになる。また、トータルのCoお
よびCuの量を増やせば、耐食性が向上することが考え
られるが、磁気特性が低下してしまい、高性能磁石とし
ての価値がなくなる。
However, if Co or Cu is added to the R-rich phase, even if an intermetallic compound is formed, the oxidation resistance is inferior to that in the case of effective addition. Therefore, by making the total amount of (Co + Cu) to be added the same and changing the ratio of addition to the main phase alloy and the R-rich alloy, the composition ratio in the region near the grain boundary can be made a desired ratio. That is,
The amount of (Co + Cu) added to the main phase alloy is larger than the amount added to the R-rich alloy. Especially Cu is
It does not form a solid solution in the R 2 T 14 B phase (T: transition metal) and tends to segregate into an R-rich grain boundary phase. Co is 90% main phase, R
Although the rich phase is mixed at a rate of 10%, segregation is larger in Cu when considering the volume ratio of the main phase and the R rich phase. Cu
Is dissolved in the main phase only in about 20 to 30%, and the rest is segregated to the R-rich phase side. (Co + Cu) diffuses and infiltrates from the main phase to the R-rich phase, and the composition near the grain boundary contains more intermetallic compounds than the central part of the grain-boundary phase of the R-rich phase, increasing corrosion resistance. It will be. Further, if the total amount of Co and Cu is increased, the corrosion resistance may be improved, but the magnetic properties are deteriorated, and the value as a high performance magnet is lost.

【0013】本発明において、RはYを含む希土類元素
の少なくとも1種以上で、Nd、Pr、Dyが好まし
い。Nd、DyのみでもよいがNd、Prの混合物をN
dの代わりに用いても良い。主体となる主相合金のRは
重量%で、28%未満では液相が不足するために焼結不
良となり、35%を超えると残留磁束密度が低下するた
め、添加量は28〜35%とする。主相合金のBは0.
8%未満ではR17相が出現するため保磁力が急減
し、1.2%を超えると非磁性相であるBリッチ相が多
くなりすぎてしまい残留磁束密度が低下するので0.8
〜1.2%とする。
In the present invention, R is at least one kind of rare earth element containing Y, and Nd, Pr and Dy are preferable. Nd and Dy may be used alone, but a mixture of Nd and Pr may be added to N
It may be used instead of d. R of the main phase alloy, which is the main component, is% by weight, and if it is less than 28%, the liquid phase becomes insufficient, resulting in poor sintering, and if it exceeds 35%, the residual magnetic flux density decreases, so the addition amount is 28-35%. To do. B of the main phase alloy is 0.
If it is less than 8%, the R 2 T 17 phase will appear, and the coercive force will decrease sharply.
~ 1.2%.

【0014】主相合金にAl、Ga、Nb、Mnの内少
なくとも1つ以上添加する場合、0.3%以下とする。
前記の元素を添加することにより保磁力が向上するが、
0.3%を超えると、残留磁束密度の低下が大きくな
り、好ましくないので、上限を0.3%とする。
When at least one of Al, Ga, Nb and Mn is added to the main phase alloy, the content is 0.3% or less.
Although the coercive force is improved by adding the above elements,
If it exceeds 0.3%, the decrease in the residual magnetic flux density becomes large, which is not preferable, so the upper limit is made 0.3%.

【0015】Rリッチ合金のCoの添加量は、主相合金
に添加する0.5〜5%の半分以下を添加するのが好ま
しい。また、Cuの添加量に関しても同様に主相合金に
添加する量0.01〜0.3%の半分以下の添加が好ま
しい。
The amount of Co added to the R-rich alloy is preferably half or less than 0.5 to 5% added to the main phase alloy. Similarly, regarding the amount of Cu added, it is preferable to add less than half of the amount of 0.01 to 0.3% added to the main phase alloy.

【0016】Rリッチ合金のRは基本的には主相合金と
同じで良いが、合金調達やロットばらつき等で多少ずれ
てもかまわない。組成範囲は主相合金と等しくR:28
〜35%とする。Rリッチ合金のB量は0.8%以上で
は、粗大粒の発生を抑制する効果が小さくなってしま
い、保磁力の減少、角型性の悪化を招く。従って、0.
8%未満とするが、好ましくはBを添加しない方が良
い。Rリッチ合金のGa、Al、Nb、Mnは、基本的
には主相合金と等しくするが、合金調達の都合やロット
ばらつき等で多少ずれても構わない。Ga、Al、N
b、Mnの少なくとも1つ以上を添加する場合、組成範
囲は、主相合金と同じく0〜0.3%とする。
The R of the R-rich alloy may be basically the same as that of the main phase alloy, but it may be slightly different due to alloy procurement, lot variation, and the like. Same composition range as main phase alloy R: 28
~ 35%. When the B content of the R-rich alloy is 0.8% or more, the effect of suppressing the generation of coarse particles becomes small, resulting in a decrease in coercive force and deterioration of squareness. Therefore, 0.
Although it is less than 8%, it is preferable not to add B. Ga, Al, Nb, and Mn of the R-rich alloy are basically the same as those of the main phase alloy, but may be slightly different due to convenience of alloy procurement, lot variation, and the like. Ga, Al, N
When at least one of b and Mn is added, the composition range is 0 to 0.3% like the main phase alloy.

【0017】[0017]

【発明の実施の形態】以下、発明の実施の形態を詳細に
説明する。 (実施例1)重量%で、Nd23.6%、Pr7.0
%、Dy1.6%、B1.2%、Ga0.07%、Co
2.5%、Cu0.2%、残部Feよりなる合金をスト
リップキャスト法で鋳造した。この合金を処理容器に装
入し、真空中で1000℃×2hの熱処理を施した後、
水素吸蔵法により解砕して主相合金の原料粗粉とした。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below. (Example 1) Weight%, Nd23.6%, Pr7.0
%, Dy1.6%, B1.2%, Ga0.07%, Co
An alloy consisting of 2.5%, Cu 0.2% and the balance Fe was cast by the strip casting method. After charging this alloy into a processing container and subjecting it to a heat treatment at 1000 ° C. for 2 hours in a vacuum,
It was crushed by the hydrogen storage method to obtain a raw material coarse powder for the main phase alloy.

【0018】次に、重量%で、Nd18.6%、Pr
5.2%、Dy8.5%、Co2.0%、Cu0.1
%、Al0.07%、残部Feからなる合金も同様にし
て、Rリッチ合金の原料粗粉とした。
Next, in% by weight, Nd 18.6%, Pr
5.2%, Dy8.5%, Co2.0%, Cu0.1
%, Al0.07%, and the balance Fe were similarly used as the raw material coarse powder of the R-rich alloy.

【0019】この2種類の合金粗粉を、主相合金粗粉8
0mass%、Rリッチ合金粗粉20mass%の割合
でV型混合機に投入して、15分間混合した。この混合
粗粉を窒素高圧ガスを用いたジェットミルにて、平均粒
径4.7μmとなるように粉砕した。得られた混合微粉
を0.6MA/mの磁場中で配向させながら、約100
MPaの圧力で成形した。得られた成形体は、真空中に
て1060℃、1080℃、または1100℃×2時間
の焼結を行った。次いで、これらの焼結体は、Ar雰囲
気中で900℃×1時間の熱処理を施した後、更に48
0℃×1時間の熱処理を施した。焼結体の外観を観察
後、磁気特性を測定した。いずれも平均値でBr1.3
6T、Hcj1.17Ma/mが得られていた。
Main phase alloy coarse powder 8
0 mass% and R-rich alloy coarse powder 20 mass% were put into a V-type mixer and mixed for 15 minutes. This mixed coarse powder was pulverized by a jet mill using nitrogen high pressure gas so that the average particle diameter was 4.7 μm. While orienting the obtained mixed fine powder in a magnetic field of 0.6 MA / m, about 100
It was molded at a pressure of MPa. The obtained compact was sintered in vacuum at 1060 ° C, 1080 ° C, or 1100 ° C for 2 hours. Next, these sintered bodies were further heat treated in an Ar atmosphere at 900 ° C. for 1 hour, and then further 48
Heat treatment was performed at 0 ° C. for 1 hour. After observing the appearance of the sintered body, the magnetic properties were measured. Both are Br1.3 on average
6T, Hcj 1.17 Ma / m was obtained.

【0020】(比較例1)重量%で、Nd23.6%、
Pr7.0%、Dy1.6%、B1.9%、Ga0.0
7%、Co1.5%、Cu0.2%、残部Feよりなる
合金をストリップキャスト法で鋳造した。この合金を処
理容器に装入し、真空中で1000℃×2hの熱処理を
施した後、水素吸蔵法により解砕して主相合金の原料粗
粉とした。
(Comparative Example 1) By weight%, Nd 23.6%,
Pr7.0%, Dy1.6%, B1.9%, Ga0.0
An alloy consisting of 7%, Co1.5%, Cu0.2% and the balance Fe was cast by the strip casting method. This alloy was placed in a processing container, heat-treated at 1000 ° C. for 2 hours in vacuum, and then crushed by a hydrogen storage method to obtain a raw material coarse powder for a main phase alloy.

【0021】次に、重量%で、Nd18.6%、Pr
5.2%、Dy8.5%、Co2.5%、Cu0.3
%、Al0.07%、残部Feからなる合金も同様にし
て、Rリッチ合金の原料粗粉とした。
Next, in% by weight, Nd 18.6%, Pr
5.2%, Dy8.5%, Co2.5%, Cu0.3
%, Al0.07%, and the balance Fe were similarly used as the raw material coarse powder of the R-rich alloy.

【0022】この2種類の合金粗粉を、主相合金粗粉5
0mass%、Rリッチ合金粗粉50massでV型混
合機に投入して、15分間混合した。この混合粗粉を窒
素高圧ガスを用いたジェットミルにて、平均粒径4.7
μmとなるように粉砕した。得られた混合微粉を0.6
MA/mの磁場中で配向させながら、約100MPaの
圧力で成形した。得られた成形体は、真空中にて106
0℃、1080℃、または1100℃×2時間の焼結を
行った。次いで、これらの焼結体は、Ar雰囲気中で9
00℃×1時間の熱処理を施した後、更に480℃×1
時間の熱処理を施した。焼結体の外観を観察後、磁気特
性を測定した。いずれも平均値でBr1.36T、Hc
j1.17Ma/mが得られていた。
These two types of alloy coarse powder are used as main phase alloy coarse powder 5
0 mass% and 50 mass of R-rich alloy coarse powder were put into a V-type mixer and mixed for 15 minutes. This mixed coarse powder was jet milled with nitrogen high pressure gas to give an average particle size of 4.7.
It was pulverized to have a size of μm. The obtained mixed fine powder is 0.6
Molding was performed at a pressure of about 100 MPa while orienting in a magnetic field of MA / m. The obtained molded body is 106 in vacuum.
Sintering was performed at 0 ° C., 1080 ° C., or 1100 ° C. for 2 hours. Then, these sintered bodies were subjected to 9
After heat treatment at 00 ℃ × 1 hour, 480 ℃ × 1
Heat treatment was applied for an hour. After observing the appearance of the sintered body, the magnetic properties were measured. Both average Br1.36T, Hc
j 1.17 Ma / m was obtained.

【0023】次に、実施例1と比較例1の焼結磁石をプ
レッシャークッカーテスト(PCT)試験機を用い39
3K、100%RH、203kPa(2気圧)の条件下
で腐食させ、表面の腐食生成物を除去後、重量を計測す
ることで単位面積当たりの質量減少量を求めてみた。実
施例1と比較例1とで、24時間後、48時間後、72
時間後、96時間後、120時間後を比較してみると、
実施例1では、重量減少量(mg/cm)は夫々、
0.4、0.7、1.2、1.6、1.9であったが、
比較例1では、夫々0.6、1.15、1.47、1.
8、2.05と何れも実施例1の50%から10%も多
く腐食されていることが分かった。
Next, the sintered magnets of Example 1 and Comparative Example 1 were tested with a pressure cooker test (PCT) tester 39.
Corrosion was performed under the conditions of 3K, 100% RH, and 203 kPa (2 atm), and after removing the corrosion product on the surface, the weight was measured to determine the amount of mass reduction per unit area. In Example 1 and Comparative Example 1, after 24 hours, 48 hours, 72
Comparing time, 96 hours, and 120 hours,
In Example 1, the weight reduction amount (mg / cm 2 ) was
It was 0.4, 0.7, 1.2, 1.6, 1.9,
In Comparative Example 1, 0.6, 1.15, 1.47, 1.
8 and 2.05 were found to be corroded as much as 50% to 10% of those in Example 1.

【0024】実施例1と比較例1の粒界面近傍を詳細に
調査をした結果、CoとCuの添加状況が、実施例と比
較例では異なるためであることが判明した。即ち主相合
金にRリッチ合金より少なく添加したために、粒界近傍
のNdリッチ相周辺が、Co及びCu系の合金が存在し
にくく、粒界面のNdを保護するに至らない。実施例1
では、主相合金にRリッチ合金より多く添加したため
に、粒界近傍のNdリッチ相周辺に、Co及びCu系の
合金が生成し易く、Ndリッチ相をR+Co+Cuの金
属間化合物が約10nmの厚さで、囲んでいる事が分か
った。
As a result of detailed examination of the vicinity of the grain boundary between Example 1 and Comparative Example 1, it was found that the addition states of Co and Cu were different between Example and Comparative Example. That is, since a smaller amount of R-rich alloy is added to the main phase alloy, Co and Cu-based alloys are less likely to exist around the Nd-rich phase near the grain boundaries, and Nd at the grain boundary cannot be protected. Example 1
In addition, since the main phase alloy was added more than the R-rich alloy, Co and Cu-based alloys were likely to be generated around the Nd-rich phase near the grain boundary, and the Nd-rich phase had an R + Co + Cu intermetallic compound thickness of about 10 nm. Well, I found out that it was surrounded.

【0025】図3は施例1で製造した焼結磁石のRリッ
チ相部分の組織観察写真である。また、図4(a)は図
3の組織観察写真に対応したCoの偏析状態を示す元素
マッピング写真、図4(b)は図3の組織観察写真に対
応したCuの偏析状態を示す元素マッピング写真であ
る。図中、白色の部分が偏析部分である。偏析状態を明
確にするため、明暗のコントラストを変えているが、R
リッチ相の界面に沿って偏析していることが確認でき
る。Rリッチ相内部はCoにも富むが、特にCuはRリ
ッチ相の界面に偏析し、R−Co−Cu系の金属間化合
物が形成されていることが確認された。これから本実施
例のものではRリッチ相を覆うようにNdCoCu合金
が形成され、これが保護層となり粒界からの酸化を防止
すると思われる。Nd,Fe,Oの元素ではこのような
Rリッチ相の界面に沿った偏析は見られなかった。
FIG. 3 is a microstructure observation photograph of the R-rich phase portion of the sintered magnet manufactured in Example 1. 4 (a) is an element mapping photograph showing the segregated state of Co corresponding to the microscopic observation photograph of FIG. 3, and FIG. 4 (b) is an element mapping photograph showing the segregated state of Cu corresponding to the microscopic observation photograph of FIG. It is a photograph. In the figure, the white part is the segregation part. To clarify the segregation state, the contrast of light and dark is changed, but R
It can be confirmed that segregation occurs along the interface of the rich phase. It was confirmed that although the inside of the R-rich phase is rich in Co, in particular, Cu segregates at the interface of the R-rich phase and an R-Co-Cu-based intermetallic compound is formed. From this, it is considered that in the present embodiment, the NdCoCu alloy is formed so as to cover the R-rich phase, which serves as a protective layer and prevents oxidation from the grain boundaries. With the elements of Nd, Fe, and O, such segregation along the interface of the R-rich phase was not seen.

【0026】図5、図6に図3の一部を拡大した組織写
真を示す。また表1に図5中に記載した1〜4,5〜8
の部分でEDX分析を行なった結果を示す。No.4,
8のRリッチ相の界面でCoとCuの高い偏析が見られ
た。No.3,7の中間相aようにRリッチ相の内部で
CoとCuの偏析が見られるが、内部ではCo量の方が
大きく、界面近傍の中間相bではCu偏析量の方がCo
に対して大きくなりやすい。本発明特有のこの中間相b
により粒界の酸化進行が抑制できる。
FIGS. 5 and 6 show enlarged photographs of the structure of FIG. Further, in Table 1, 1-4, 5-8 described in FIG.
The results of the EDX analysis performed in the part of are shown. No. 4,
A high segregation of Co and Cu was observed at the interface of the R-rich phase of No. 8. No. Segregation of Co and Cu is observed inside the R-rich phase like the intermediate phases a of Nos. 3 and 7, but the amount of Co is larger inside and the amount of Cu segregated is larger in the intermediate phase b near the interface.
Tends to be large. This mesophase b which is unique to the present invention
Thereby, the progress of oxidation at the grain boundaries can be suppressed.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【発明の効果】以上詳細に説明のとおり、本発明の希土
類磁石は、主相とRリッチ相が隣接する粒界部分におい
て、粒界面からRリッチ相の中心に向かって、1〜20
nmの領域でR:30〜60%、(Co+Cu):30
〜60%、残部Feの金属間化合物でRリッチ相が囲ま
れているので耐食性に優れた希土類焼結磁石である。
As described in detail above, in the rare earth magnet of the present invention, in the grain boundary portion where the main phase and the R-rich phase are adjacent to each other, 1 to 20 from the grain interface toward the center of the R-rich phase.
R: 30 to 60% in the region of nm, (Co + Cu): 30
Since the R-rich phase is surrounded by an intermetallic compound of ˜60% and the balance Fe, it is a rare earth sintered magnet excellent in corrosion resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願発明の主相/Rリッチ相/中間相の位置関
係を示す模式図である。
FIG. 1 is a schematic diagram showing a positional relationship of a main phase / R rich phase / intermediate phase of the present invention.

【図2】従来型の主相/Rリッチ相/中間相の位置関係
を示す模式図である。
FIG. 2 is a schematic diagram showing a positional relationship of a conventional main phase / R-rich phase / intermediate phase.

【図3】本実施例のRリッチ相近傍の組織観察TEM写
真である。
FIG. 3 is a structure observation TEM photograph in the vicinity of the R-rich phase of the present example.

【図4】図3の組織観察写真に対応したCoとCuの偏
析状態を示す元素マッピング図である。
FIG. 4 is an element mapping diagram showing the segregation state of Co and Cu corresponding to the structure observation photograph of FIG. 3.

【図5】図3の要部拡大TEM写真である。5 is an enlarged TEM photograph of a main part of FIG.

【図6】図3の要部拡大TEM写真である。FIG. 6 is an enlarged TEM photograph of a main part of FIG.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%でR(Yを含む希土類元素の少な
くとも1種以上):28〜35%、Co:0.5〜5
%、Cu:0.01〜0.3%、必要によりM(Al,
Ga,Nb,Mnのうち少なくとも1種以上):0.3
%以下、B:0.8〜1.2%、残部Feを主要成分と
するR−Fe−Co−Cu(−M)−B系の希土類焼結
磁石であって、 RFe14B系の主相とRリッチ相が隣接する粒界部
分において、主相の粒界面からRリッチ相の中心部に向
かって1〜20nmの領域で主要成分がR:30〜60
%、Co+Cu:30〜60%、残部Feの中間相を有
し、かつ原子%に換算した組成比が(Co+Cu)/R
=0.5〜2であることを特徴とする耐食性に優れた希
土類焼結磁石。
1. R (at least one kind of rare earth element including Y) in weight%: 28 to 35%, Co: 0.5 to 5
%, Cu: 0.01 to 0.3%, M (Al,
At least one or more of Ga, Nb, and Mn): 0.3
% Or less, B: 0.8 to 1.2%, a R-Fe-Co-Cu ( -M) -B based rare-earth sintered magnet of which the remainder Fe as a main component, R 2 Fe 14 B system In the grain boundary portion where the main phase and the R-rich phase are adjacent to each other, the main component is R: 30 to 60 in a region of 1 to 20 nm from the grain interface of the main phase toward the center of the R-rich phase.
%, Co + Cu: 30 to 60%, the balance Fe has an intermediate phase, and the composition ratio converted to atomic% is (Co + Cu) / R
= 0.5 to 2 is a rare earth sintered magnet having excellent corrosion resistance.
【請求項2】 前記R中のDyは重量%で5%以下であ
る請求項1に記載の耐食性に優れた希土類焼結磁石。
2. The rare earth sintered magnet having excellent corrosion resistance according to claim 1, wherein Dy in R is 5% or less by weight.
JP2001218116A 2001-07-18 2001-07-18 Sintered rare-earth magnet having superior corrosion resistance Pending JP2003031409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001218116A JP2003031409A (en) 2001-07-18 2001-07-18 Sintered rare-earth magnet having superior corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001218116A JP2003031409A (en) 2001-07-18 2001-07-18 Sintered rare-earth magnet having superior corrosion resistance

Publications (2)

Publication Number Publication Date
JP2003031409A true JP2003031409A (en) 2003-01-31
JP2003031409A5 JP2003031409A5 (en) 2006-01-05

Family

ID=19052345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001218116A Pending JP2003031409A (en) 2001-07-18 2001-07-18 Sintered rare-earth magnet having superior corrosion resistance

Country Status (1)

Country Link
JP (1) JP2003031409A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011014631A (en) * 2009-06-30 2011-01-20 Showa Denko Kk R-t-b-based rare-earth permanent magnet, and motor, automobile, generator and wind turbine generator
JP2011187734A (en) * 2010-03-09 2011-09-22 Tdk Corp Rare earth sintered magnet, and method for producing the same
US20110234348A1 (en) * 2010-03-23 2011-09-29 Tdk Corporation Rare-earth magnet, method of manufacturing rare-earth magnet, and rotator
JP2011199180A (en) * 2010-03-23 2011-10-06 Tdk Corp Rare earth magnet and rotating machine
JP2011199183A (en) * 2010-03-23 2011-10-06 Tdk Corp Rare earth magnet and rotary machine
JP2011210838A (en) * 2010-03-29 2011-10-20 Tdk Corp Rare-earth sintered magnet, method of manufacturing the same, and rotary machine
JP2012015168A (en) * 2010-06-29 2012-01-19 Showa Denko Kk R-t-b-based rare earth permanent magnet, motor, vehicle, generator and wind power generator
JP2012015169A (en) * 2010-06-29 2012-01-19 Showa Denko Kk R-t-b-based rare earth permanent magnet, motor, automobile, power generator and wind force power generator
EP2413332A1 (en) 2010-07-27 2012-02-01 TDK Corporation Rare earth sintered magnet
JP2012199270A (en) * 2011-03-18 2012-10-18 Tdk Corp R-t-b rare earth sintered magnet
JP2012204486A (en) * 2011-03-24 2012-10-22 Hitachi Metals Ltd SURFACE-MODIFIED R-Fe-B BASED SINTERED MAGNET AND PRODUCTION METHOD THEREFOR
CN103093913A (en) * 2011-11-21 2013-05-08 宁波市展发磁业科技有限公司 Highly-saturated magnetic material
JP2013191849A (en) * 2006-09-15 2013-09-26 Inter Metallics Kk Ndfeb sintered magnet
JP2014112624A (en) * 2012-10-31 2014-06-19 Hitachi Metals Ltd R-t-b-based sinter magnet and manufacturing method therefor
JP2014130888A (en) * 2012-12-28 2014-07-10 Hitachi Metals Ltd R-t-b-based sintered magnet and method for producing the same
CN103959404A (en) * 2011-11-29 2014-07-30 Tdk株式会社 Rare-earth sintered magnet
JP2014146788A (en) * 2013-01-07 2014-08-14 Showa Denko Kk R-t-b-based rare earth sintered magnet, alloy for r-t-b-based rare earth sintered magnet, and method for manufacturing the same
JP2014209546A (en) * 2013-03-28 2014-11-06 Tdk株式会社 Rare earth magnet
JP2014225623A (en) * 2013-04-22 2014-12-04 昭和電工株式会社 Rare earth-transition metal-boron based rare earth sintered magnet, and method for manufacturing the same
WO2015002280A1 (en) * 2013-07-03 2015-01-08 Tdk株式会社 R-t-b-based sintered magnet
JP2015119132A (en) * 2013-12-20 2015-06-25 Tdk株式会社 Rare earth magnet
JP2015119130A (en) * 2013-12-20 2015-06-25 Tdk株式会社 Rare earth magnet
JP2015119131A (en) * 2013-12-20 2015-06-25 Tdk株式会社 Rare earth magnet
JPWO2015020182A1 (en) * 2013-08-09 2017-03-02 Tdk株式会社 R-T-B system sintered magnet and motor
CN111326305A (en) * 2020-02-29 2020-06-23 厦门钨业股份有限公司 R-T-B series permanent magnetic material and preparation method and application thereof
CN112614641A (en) * 2019-10-04 2021-04-06 大同特殊钢株式会社 Sintered magnet and method for producing sintered magnet
JP7542293B2 (en) 2022-05-31 2024-08-30 煙台東星磁性材料株式有限公司 Rare earth magnetic material and its manufacturing method

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013191849A (en) * 2006-09-15 2013-09-26 Inter Metallics Kk Ndfeb sintered magnet
JP2011014631A (en) * 2009-06-30 2011-01-20 Showa Denko Kk R-t-b-based rare-earth permanent magnet, and motor, automobile, generator and wind turbine generator
JP2011187734A (en) * 2010-03-09 2011-09-22 Tdk Corp Rare earth sintered magnet, and method for producing the same
US20110234348A1 (en) * 2010-03-23 2011-09-29 Tdk Corporation Rare-earth magnet, method of manufacturing rare-earth magnet, and rotator
JP2011199180A (en) * 2010-03-23 2011-10-06 Tdk Corp Rare earth magnet and rotating machine
JP2011199183A (en) * 2010-03-23 2011-10-06 Tdk Corp Rare earth magnet and rotary machine
US10395822B2 (en) 2010-03-23 2019-08-27 Tdk Corporation Rare-earth magnet, method of manufacturing rare-earth magnet, and rotator
JP2011210838A (en) * 2010-03-29 2011-10-20 Tdk Corp Rare-earth sintered magnet, method of manufacturing the same, and rotary machine
JP2012015168A (en) * 2010-06-29 2012-01-19 Showa Denko Kk R-t-b-based rare earth permanent magnet, motor, vehicle, generator and wind power generator
JP2012015169A (en) * 2010-06-29 2012-01-19 Showa Denko Kk R-t-b-based rare earth permanent magnet, motor, automobile, power generator and wind force power generator
EP2590181A4 (en) * 2010-06-29 2015-12-02 Showa Denko Kk R-t-b based rare earth permanent magnet, motor, automobile, power generator and wind energy conversion system
EP2413332A1 (en) 2010-07-27 2012-02-01 TDK Corporation Rare earth sintered magnet
CN102376407A (en) * 2010-07-27 2012-03-14 Tdk株式会社 Rare earth sintered magnet
US8425695B2 (en) 2010-07-27 2013-04-23 Tdk Corporation Rare earth sintered magnet
JP2012028704A (en) * 2010-07-27 2012-02-09 Tdk Corp Rare earth sintered magnet
JP2012199270A (en) * 2011-03-18 2012-10-18 Tdk Corp R-t-b rare earth sintered magnet
JP2012204486A (en) * 2011-03-24 2012-10-22 Hitachi Metals Ltd SURFACE-MODIFIED R-Fe-B BASED SINTERED MAGNET AND PRODUCTION METHOD THEREFOR
CN103093913A (en) * 2011-11-21 2013-05-08 宁波市展发磁业科技有限公司 Highly-saturated magnetic material
CN103093913B (en) * 2011-11-21 2015-11-25 宁波市展发磁业科技有限公司 A kind of high saturation magnetization material
CN103959404A (en) * 2011-11-29 2014-07-30 Tdk株式会社 Rare-earth sintered magnet
CN103959404B (en) * 2011-11-29 2015-08-05 Tdk株式会社 Rare-earth sintered magnet
DE112012004991B4 (en) 2011-11-29 2022-03-24 Tdk Corporation Rare earth based sintered magnet
US8961712B2 (en) 2011-11-29 2015-02-24 Tdk Corporation Rare earth based sintered magnet
JP2014112624A (en) * 2012-10-31 2014-06-19 Hitachi Metals Ltd R-t-b-based sinter magnet and manufacturing method therefor
JP2014130888A (en) * 2012-12-28 2014-07-10 Hitachi Metals Ltd R-t-b-based sintered magnet and method for producing the same
JP2014146788A (en) * 2013-01-07 2014-08-14 Showa Denko Kk R-t-b-based rare earth sintered magnet, alloy for r-t-b-based rare earth sintered magnet, and method for manufacturing the same
JP2014209546A (en) * 2013-03-28 2014-11-06 Tdk株式会社 Rare earth magnet
JP2014225623A (en) * 2013-04-22 2014-12-04 昭和電工株式会社 Rare earth-transition metal-boron based rare earth sintered magnet, and method for manufacturing the same
US10020097B2 (en) 2013-04-22 2018-07-10 Showa Denko K.K. R-T-B rare earth sintered magnet and method of manufacturing the same
WO2015002280A1 (en) * 2013-07-03 2015-01-08 Tdk株式会社 R-t-b-based sintered magnet
US10096410B2 (en) 2013-07-03 2018-10-09 Tdk Corporation R-T-B based sintered magnet
CN105190792A (en) * 2013-07-03 2015-12-23 Tdk株式会社 R-T-B-based sintered magnet
US20160086701A1 (en) * 2013-07-03 2016-03-24 Tdk Corporation R-t-b based sintered magnet
JPWO2015002280A1 (en) * 2013-07-03 2017-02-23 Tdk株式会社 R-T-B sintered magnet
JPWO2015020182A1 (en) * 2013-08-09 2017-03-02 Tdk株式会社 R-T-B system sintered magnet and motor
JP2015119132A (en) * 2013-12-20 2015-06-25 Tdk株式会社 Rare earth magnet
US10090087B2 (en) 2013-12-20 2018-10-02 Tdk Corporation Rare earth based magnet
US10083783B2 (en) 2013-12-20 2018-09-25 Tdk Corporation Rare earth based magnet
JP2015119131A (en) * 2013-12-20 2015-06-25 Tdk株式会社 Rare earth magnet
JP2015119130A (en) * 2013-12-20 2015-06-25 Tdk株式会社 Rare earth magnet
CN112614641A (en) * 2019-10-04 2021-04-06 大同特殊钢株式会社 Sintered magnet and method for producing sintered magnet
US20210104341A1 (en) * 2019-10-04 2021-04-08 Daido Steel Co., Ltd. Sintered magnet and method for producing sintered magnet
JP2021061301A (en) * 2019-10-04 2021-04-15 大同特殊鋼株式会社 Sintered magnet and method for manufacturing the same
JP7400317B2 (en) 2019-10-04 2023-12-19 大同特殊鋼株式会社 Sintered magnet and method of manufacturing sintered magnet
CN112614641B (en) * 2019-10-04 2024-05-28 大同特殊钢株式会社 Sintered magnet and method for producing sintered magnet
CN111326305A (en) * 2020-02-29 2020-06-23 厦门钨业股份有限公司 R-T-B series permanent magnetic material and preparation method and application thereof
CN111326305B (en) * 2020-02-29 2022-03-01 厦门钨业股份有限公司 R-T-B series permanent magnetic material and preparation method and application thereof
JP7542293B2 (en) 2022-05-31 2024-08-30 煙台東星磁性材料株式有限公司 Rare earth magnetic material and its manufacturing method

Similar Documents

Publication Publication Date Title
JP2003031409A (en) Sintered rare-earth magnet having superior corrosion resistance
JP3846835B2 (en) R-T-B sintered permanent magnet
US6468365B1 (en) R-T-B sintered permanent magnet
TWI238422B (en) R-Fe-B sintered magnet
US8361242B2 (en) Powders for rare earth magnets, rare earth magnets and methods for manufacturing the same
JP2003031409A5 (en)
JP6504044B2 (en) Rare earth permanent magnet
JP6881338B2 (en) Rare earth magnet manufacturing method
EP1465213B1 (en) Method for producing r-t-b based rare earth element permanent magnet
US9818515B2 (en) Modified Nd—Fe—B permanent magnet with high corrosion resistance
JP7056488B2 (en) Magnetic particles and molded magnetic particles and their manufacturing methods
JP6044866B2 (en) Method for producing RTB-based sintered magnet
EP1365422A1 (en) Method for preparation of permanent magnet
US11087922B2 (en) Production method of rare earth magnet
CN105895287A (en) Rare Earth Based Permanent Magnet
WO2000012771A1 (en) Alloy for use in preparation of r-t-b-based sintered magnet and process for preparing r-t-b-based sintered magnet
JP2018018859A (en) R-T-B based sintered magnet
JP4900085B2 (en) Rare earth magnet manufacturing method
JP2002038245A (en) Rare earth alloy powder for rermanent magnet and method for manufacturing rare earth permanent magnet
EP1271568A2 (en) Rare earth permanent magnet
JPH0696928A (en) Rare-earth sintered magnet and its manufacture
CN108389674A (en) R-T-B systems sintered magnet
JPH10289813A (en) Rare-earth magnet
JP2020053440A (en) Method of manufacturing rare earth magnet
JP2747236B2 (en) Rare earth iron permanent magnet

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051115

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091204