JPH06251800A - Manufacture of sealed nickel-hydrogen secondary battery - Google Patents

Manufacture of sealed nickel-hydrogen secondary battery

Info

Publication number
JPH06251800A
JPH06251800A JP5036260A JP3626093A JPH06251800A JP H06251800 A JPH06251800 A JP H06251800A JP 5036260 A JP5036260 A JP 5036260A JP 3626093 A JP3626093 A JP 3626093A JP H06251800 A JPH06251800 A JP H06251800A
Authority
JP
Japan
Prior art keywords
battery
capacity
positive electrode
charging
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5036260A
Other languages
Japanese (ja)
Other versions
JP2568967B2 (en
Inventor
Atsushi Furukawa
淳 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP5036260A priority Critical patent/JP2568967B2/en
Publication of JPH06251800A publication Critical patent/JPH06251800A/en
Application granted granted Critical
Publication of JP2568967B2 publication Critical patent/JP2568967B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To take out high discharge capacity in a large electric current from the initial stage of actual use time by carrying out preliminary charging at a rated constant rate prior to charging and discharging processing of initial activation, and carrying out ageing processing for constant range time at a constant range temperature after charging and discharging are carried out. CONSTITUTION:A preliminary charging process of the second process is carried out until capacity becomes 5-100% of rated capacity in a temperature area of 15-30 deg.C, and in the next third process, charging and discharging are carried out on a battery obtained in the second process, and a positive electrode active material is activated, and battery capacity is increased up to rated capacity. The fourth process is an ageing process, and a battery obtained in the third process is left as it is in a temperature area of 30-60 deg.C for 6-48 hours. Thereby, viscosity of injected electrolyte is reduced, and this viscosity-reduced electrolyte infiltrates into a fine crack caused in the positive electrode active material or hydrogen storage alloy of a negative electrode, and as a result, an effective area of a positive electrode or the negative electrode contributive to battery reaction is increased. Thereby, activation of the positive electrode active material and the negative electrode is heightened, so that high discharge capacity can be taken out from the initial stage of discharge.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は密閉型ニッケル−水素二
次電池の製造方法に関し、更に詳しくは、実使用時の初
期段階から高い放電容量を取り出すことができる密閉型
ニッケル−水素二次電池を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a sealed nickel-hydrogen secondary battery, and more specifically, a sealed nickel-hydrogen secondary battery capable of taking out a high discharge capacity from the initial stage of actual use. To a method of manufacturing.

【0002】[0002]

【従来の技術】最近、高容量の二次電池としてニッケル
−水素二次電池が注目を集めている。このニッケル−水
素二次電池は、水素を負極活物質として作動するもので
あり、通常、可逆的に水素を吸蔵・放出する水素吸蔵合
金をシート状の導電基材に担持させて成る負極シート
と、正極活物質として動作する水酸化ニッケルをシート
状のニッケル多孔体のような導電基材に充填して成る正
極シートと、これら両極シートの間に介装される電気絶
縁性のセパレータとから成る発電要素を、
2. Description of the Related Art Recently, nickel-hydrogen secondary batteries have been attracting attention as high-capacity secondary batteries. This nickel-hydrogen secondary battery operates with hydrogen as a negative electrode active material, and usually has a negative electrode sheet formed by supporting a sheet-like conductive base material with a hydrogen storage alloy that reversibly stores and releases hydrogen. A positive electrode sheet formed by filling a conductive base material such as a sheet-like nickel porous body with nickel hydroxide that operates as a positive electrode active material, and an electrically insulating separator interposed between the both electrode sheets. Power generation element,

【0003】[0003]

【外1】 [Outer 1]

【0004】缶体内に例えば水酸化カリウム水溶液のよ
うなアルカリ電解液を注液し、
Injecting an alkaline electrolyte such as an aqueous potassium hydroxide solution into the can,

【0005】[0005]

【外2】 [Outside 2]

【0006】全体を密閉構造にして製造される。ところ
で、上記した電池に組込まれている正極の活物質は、水
酸化ニッケルが主体になっている。しかし、最近では、
更に、Co,CoO,Niなどが添加され、正極活物質
としての機能向上が図られている。
The entire structure is manufactured in a closed structure. By the way, the active material of the positive electrode incorporated in the above-mentioned battery is mainly composed of nickel hydroxide. But recently,
Furthermore, Co, CoO, Ni, etc. are added to improve the function as a positive electrode active material.

【0007】これらの添加物のうちCo,CoOなどの
コバルト成分は、正極活物質全体の導電性を高め、ま
た、Niは導電材として機能することにより、活物質で
ある水酸化ニッケルと導電基材との導通を高めて正極活
物質の利用率を向上させる働きをする。このようにして
製造された電池に対しては、次に、所定の電流値で充放
電を反復することにより、正極活物質を活性化させる処
置を施したのち、定格容量まで充電して出荷される。
Among these additives, cobalt components such as Co and CoO enhance the conductivity of the whole positive electrode active material, and Ni functions as a conductive material, so that nickel hydroxide as an active material and a conductive group are used. It works to increase the conductivity with the material and improve the utilization rate of the positive electrode active material. The battery manufactured in this manner is then charged and discharged repeatedly at a predetermined current value to activate the positive electrode active material, and then charged to the rated capacity before shipment. It

【0008】[0008]

【発明が解決しようとする課題】ところで、上記した活
物質の初期活性化の程度は、充放電時に採用する電流や
充放電の反復回数によって変動する。そのことは、電池
の実使用時における放電容量に影響を与える。例えば、
前記した構造の電池において、定格の150%の充電を
行い、ついで電池電圧が1Vになるまで放電を行うとい
う充放電サイクルを1〜3回程度反復した状態では、実
使用時における放電の初期段階で、0.2C程度の低放電
率では定格の放電容量を示すが、しかし1C以上の高放
電率になると放電容量が低くなるという問題がある。
The degree of initial activation of the above-mentioned active material varies depending on the current used during charging and discharging and the number of repetitions of charging and discharging. This affects the discharge capacity of the battery when it is actually used. For example,
In the battery having the above-described structure, the initial stage of discharge during actual use is repeated in a state where the charge / discharge cycle of charging 150% of the rated value and then discharging the battery voltage to 1 V is repeated about 1 to 3 times. At a discharge rate as low as about 0.2 C, the rated discharge capacity is shown, but at a high discharge rate of 1 C or higher, the discharge capacity becomes low.

【0009】したがって、実使用時の初期段階において
大電流でも定格の放電容量を安定した状態で実現させる
ためには、上記した条件の充放電サイクルを例えば10
回以上反復して、活物質を更に活性化することが必要に
なる。しかしながら、充放電サイクルを多数回反復する
ことは、作業の面で煩雑であり、しかも全体の製造コス
トを上昇させるという問題を引き起こす。
Therefore, in order to realize the rated discharge capacity in a stable state even at a large current in the initial stage of actual use, the charge / discharge cycle under the above-mentioned conditions is, for example, 10 times.
It is necessary to repeat the process more than once to further activate the active material. However, repeating the charge / discharge cycle a number of times is complicated in terms of work and causes a problem of increasing the overall manufacturing cost.

【0010】本発明は、密閉型ニッケル−水素二次電池
の初期活性化処理における上記した問題を解決し、充放
電サイクルの反復回数が1回であった場合でも、実使用
の初期段階において、大電流でも安定した定格の放電容
量を取出すことが可能な密閉型ニッケル−水素二次電池
を製造する方法の提供を目的とする。
The present invention solves the above-mentioned problems in the initial activation treatment of the sealed nickel-hydrogen secondary battery, and even when the number of repetitions of the charge / discharge cycle is one, in the initial stage of actual use, An object of the present invention is to provide a method for producing a sealed nickel-hydrogen secondary battery capable of obtaining a stable rated discharge capacity even with a large current.

【0011】[0011]

【課題を解決するための手段】上記した目的を達成する
ために、本発明においては、水酸化ニッケルを担持する
正極と水素吸蔵合金を担持する負極と前記両極間に配置
されているセパレータとから成る発電要素を缶体に収容
し、前記缶体にアルカリ電解液を注液したのち封口して
密閉電池にする工程(以下、第1工程という);15〜
30℃の温度域において、前記密閉電池にその定格容量
の5〜100%の容量になるまで予備充電する工程(以
下、第2工程という);15〜30℃の温度域において
充放電を反復して前記密閉電池の容量を定格容量にまで
高める工程(以下、第3工程という);得られた密閉電
池を30〜60℃の温度域に6〜48時間放置して熟成
する工程(以下、第4工程という);を必須工程として
備えていることを特徴とする密閉型ニッケル−水素二次
電池の製造方法が提供される。
In order to achieve the above object, in the present invention, a positive electrode carrying nickel hydroxide, a negative electrode carrying a hydrogen storage alloy and a separator arranged between the two electrodes are used. 15-
In the temperature range of 30 ° C., a step of precharging the sealed battery to a capacity of 5 to 100% of its rated capacity (hereinafter referred to as the second step); charging and discharging are repeated in the temperature range of 15 to 30 ° C. And increasing the capacity of the sealed battery to the rated capacity (hereinafter referred to as the third step); aging the obtained sealed battery in a temperature range of 30 to 60 ° C. for 6 to 48 hours (hereinafter, referred to as the third step). 4 steps); is provided as an essential step, and a method for manufacturing a sealed nickel-hydrogen secondary battery is provided.

【0012】本発明方法において、まず第1工程では、
所定構造の密閉電池が常法にしたがって製造される。正
極としては、例えば、水酸化ニッケル粉,Co粉または
CoO粉,Ni粉などを所定の割合で混合し、更にここ
に例えばカルボキシメチルセルロース水溶液などを添加
して調製した正極活物質のペーストを例えばスポンジ状
ニッケル多孔体に充填したものを好適例としてあげるこ
とができる。
In the method of the present invention, first, in the first step,
A sealed battery having a predetermined structure is manufactured according to a conventional method. As the positive electrode, for example, a positive electrode active material paste prepared by mixing nickel hydroxide powder, Co powder, CoO powder, Ni powder, or the like at a predetermined ratio, and further adding, for example, an aqueous solution of carboxymethyl cellulose to the sponge is used. A preferable example is one filled with a porous nickel porous body.

【0013】また、負極としては、所定の水素吸蔵合金
粉末とカルボキシメチルセルロース水溶液とから成るス
ラリーを例えばパンチングニッケルシートに塗着したも
のを好適例としてあげることができる。これら正極と負
極の間に、多孔質で電気絶縁性のセパレータを介装して
発電要素を形成し、この発電要素を缶体に収容し、更に
ここに所定のアルカリ電解液を注液したのち、缶体にふ
たをかぶせ、全体を密閉化することによって、目的とす
る構造の密閉電池が製造される。
As a preferable example of the negative electrode, there may be mentioned one prepared by applying a slurry containing a predetermined hydrogen storage alloy powder and a carboxymethylcellulose aqueous solution to a punching nickel sheet. A porous and electrically insulating separator is interposed between the positive electrode and the negative electrode to form a power generating element, the power generating element is housed in a can body, and then a predetermined alkaline electrolyte is poured therein. By covering the can with a lid and sealing the whole, a sealed battery having a target structure is manufactured.

【0014】第2工程は、第1工程で得られた密閉電池
に予備充電を行う工程である。この予備充電は、第1工
程の終了後14時間以内に行うことが好ましい。この予
備充電は、後述する第3工程の充放電時において、正極
活物質中のコバルト成分が過度に酸化されるという事
態、また負極を構成する水素吸蔵合金が過度に溶出する
事態を防止し、もって充電時における電池内圧の上昇の
抑制、また、電池の内部ショートの抑制を目的として行
われる。
The second step is a step of precharging the sealed battery obtained in the first step. This preliminary charging is preferably performed within 14 hours after the end of the first step. This precharging prevents a situation in which the cobalt component in the positive electrode active material is excessively oxidized and a hydrogen storage alloy forming the negative electrode is excessively eluted during charge / discharge in the third step described later, Therefore, it is carried out for the purpose of suppressing an increase in battery internal pressure during charging and suppressing an internal short circuit of the battery.

【0015】予備充電は15〜30℃の温度域で行われ
る。15℃より低い温度で行うと、上記した効果を達成
することが困難であり、また30℃より高い温度で行う
と、正極の充電効率が低下して所定の予備充電電気量を
確保できなくなるからである。また、この予備充電は、
定格容量の5〜100%になるまで行われる。5%より
少ない充電の場合は、第3工程の充放電を行っても得ら
れた電池の初期段階における放電容量を高めることがで
きず、逆に100%より多い充電を行うと、上記した予
備充電の目的が達成できなくなるからである。
Pre-charging is performed in the temperature range of 15 to 30 ° C. If the temperature is lower than 15 ° C., it is difficult to achieve the above effects, and if the temperature is higher than 30 ° C., the charging efficiency of the positive electrode decreases and it becomes impossible to secure a predetermined amount of pre-charging electricity. Is. Also, this preliminary charging
It is performed until it reaches 5 to 100% of the rated capacity. When the charge is less than 5%, the discharge capacity in the initial stage of the obtained battery cannot be increased even when the charge and discharge in the third step is performed, and conversely, when the charge is more than 100%, the above-mentioned preliminary This is because the purpose of charging cannot be achieved.

【0016】第3工程は、第2工程で得られた電池に充
放電を行なって、正極活物質を活性化し、あわせて電池
の容量を定格容量にまで高める工程である。本発明にお
いては、この充放電は少なくとも1回行えばよい。これ
は、前段の第2工程と、後段の第4工程とを組合せたこ
とがもたらす効果である。例えば、電流:0.2Cで7.5
時間充電(定格の150%)したのち、1Vになるまで
放電すればよい。
In the third step, the battery obtained in the second step is charged and discharged to activate the positive electrode active material, and at the same time, the capacity of the battery is increased to the rated capacity. In the present invention, this charging / discharging may be performed at least once. This is an effect brought about by combining the second step of the former stage and the fourth step of the latter stage. For example, current: 0.2C, 7.5
After being charged for 150 hours (150% of the rating), the battery may be discharged to 1V.

【0017】なお、上記した第3工程に先立ち、第2工
程終了後の電池を例えば15〜30℃の温度域におい
て、少なくとも1時間程度放置しておくと、電解液が充
分に浸潤して第3工程の効果を一層有効に発揮させるこ
とができる。第4工程は、第3工程で得られた定格容量
の電池を熟成する工程である。具体的には30〜60℃
の温度域に、6〜48時間放置する。
Prior to the above-mentioned third step, if the battery after the second step is left in the temperature range of, for example, 15 to 30 ° C. for at least 1 hour, the electrolytic solution is sufficiently infiltrated and the first step is performed. The effects of the three steps can be more effectively exhibited. The fourth step is a step of aging the battery having the rated capacity obtained in the third step. Specifically, 30-60 ℃
It is left in the temperature range of 6 to 48 hours.

【0018】この熟成工程を施すことにより正極活物質
の活性が高まり、また負極の活性も高まり、もって放電
の初期段階から高い放電容量を取出すことができるよう
になる。このことは、上記温度に曝されることにより、
注液されている電解液の粘度が低下し、この粘度低下し
た電解液が、第3工程の充放電時に正極活物質や負極の
水素吸蔵合金に発生した微細クラックに浸透し、その結
果、電池反応に寄与する正極や負極の有効面積が増加す
ることがもたらす効果であると考えられる。
By carrying out this aging step, the activity of the positive electrode active material is increased and the activity of the negative electrode is also increased, so that a high discharge capacity can be taken out from the initial stage of discharge. This means that when exposed to the above temperatures,
The viscosity of the injected electrolyte solution decreases, and the electrolyte solution with reduced viscosity penetrates into fine cracks generated in the positive electrode active material and the hydrogen storage alloy of the negative electrode during charge and discharge in the third step, and as a result, the battery It is considered that this is an effect brought about by increasing the effective areas of the positive electrode and the negative electrode that contribute to the reaction.

【0019】熟成温度が30℃より低い場合は、電解液
の粘度が充分に低下せず上記した効果が得られない。ま
た熟成温度を60℃より高くすると、セパレータや水素
吸蔵合金の劣化が生じて不都合である。熟成時間が6時
間より短い場合は、負極への電解液の浸透が充分とはい
えないため上記効果が得られず、また48時間より長く
しても効果は飽和に達して無意味である。
When the aging temperature is lower than 30 ° C., the viscosity of the electrolytic solution is not sufficiently lowered and the above effects cannot be obtained. If the aging temperature is higher than 60 ° C, the separator and the hydrogen storage alloy are deteriorated, which is inconvenient. When the aging time is shorter than 6 hours, the above effect cannot be obtained because the electrolyte solution is not sufficiently permeated into the negative electrode, and even when it is longer than 48 hours, the effect reaches saturation and is meaningless.

【0020】[0020]

【実施例】粒径1〜60μmのNi(OH)2 粉100
重量部に対し、粒径0.1〜10μmのCoO粉5重量
部,比表面積1〜3m2/gでフィラメント径1μm以下
のカーボニルニッケル粉10重量部を混合し、更に、こ
こに1.2%のカルボキシメチルセルロース水溶液40重
量部を添加して正極活物質のペーストを調製した。
Example: Ni (OH) 2 powder 100 having a particle size of 1 to 60 μm
5 parts by weight of CoO powder having a particle size of 0.1 to 10 μm and 10 parts by weight of carbonyl nickel powder having a specific surface area of 1 to 3 m 2 / g and a filament diameter of 1 μm or less are mixed with 1.2 parts by weight. % Aqueous solution of carboxymethyl cellulose was added to prepare a paste of the positive electrode active material.

【0021】平均孔径0.3mm,多孔度96%,縦72m
m,幅41mm,厚み1.6mmのスポンジ状ニッケル多孔体
を用意し、これに上記したペーストの一定量を充填した
のち、80℃で1時間乾燥し、更に500kg/cm2の圧を
印加して、Ni(OH)2 とCoOとNiの充填密度が
2.6g/mlである厚み0.62mmの正極シートを製造し
た。
Average pore diameter 0.3 mm, porosity 96%, length 72 m
A sponge-like nickel porous body with m, width 41 mm, and thickness 1.6 mm was prepared, filled with a certain amount of the above paste, dried at 80 ° C. for 1 hour, and further a pressure of 500 kg / cm 2 was applied. The packing density of Ni (OH) 2 , CoO and Ni
A positive electrode sheet having a thickness of 0.62 mm, which is 2.6 g / ml, was manufactured.

【0022】つぎに、アーク溶解法で組成:MmNi
3.3 Co1.0 Mn0.4 Al0.3 で示される水素吸蔵合金
を製造したのち、これを粉砕して150メッシュ(タイ
ラー篩)下の合金粉末とした。ついで、イオン交換水1
00重量部に対し、上記合金粉末400重量部,Ni粉
60重量部,カルボキシメチルセルロース水溶液1重量
部から成るスラリーを調製し、開孔率38%のパンチン
グニッケルシート(厚み0.07mm,穴の径1.5mm)を各
スラリー中に浸漬したのち引き上げ、ついで、大気中で
乾燥し、2ton/cm2 の圧力で圧延して全体の厚みが0.4
mmである負極シートにした。
Next, by the arc melting method, the composition: MmNi
After producing a hydrogen storage alloy represented by 3.3 Co 1.0 Mn 0.4 Al 0.3 , this was pulverized to obtain an alloy powder under 150 mesh (Tyler sieve). Then, deionized water 1
A slurry comprising 400 parts by weight of the alloy powder, 60 parts by weight of Ni powder, and 1 part by weight of an aqueous solution of carboxymethyl cellulose was prepared with respect to 00 parts by weight, and a punching nickel sheet having a porosity of 38% (thickness 0.07 mm, hole diameter) was prepared. (1.5 mm) is soaked in each slurry and then pulled up, then dried in air and rolled at a pressure of 2 ton / cm 2 to give a total thickness of 0.4
The negative electrode sheet is mm.

【0023】これら正極シートと負極シートの間に、厚
み0.18mmで気孔率65%のナイロンシートをセパレー
タとして挟み、全体を巻回して発電要素を製造したの
ち、これを円筒容器に収容し、比重1.36で水酸カリウ
ム,水酸化ナトリウム,水酸化リチウムから成る電解液
を注液し、全体をふたで密封し、AAサイズ1100m
Ahの電池にした。この密封型円筒電池において、群裕
度はいずれも94%,電解液が占有する空間体積は95
%になっている。
A nylon sheet having a thickness of 0.18 mm and a porosity of 65% was sandwiched between the positive electrode sheet and the negative electrode sheet as a separator, and the whole was wound to produce a power generating element, which was then housed in a cylindrical container. An electrolyte solution consisting of potassium hydroxide, sodium hydroxide and lithium hydroxide with a specific gravity of 1.36 was poured, and the whole was sealed with a lid, AA size 1100 m
I used Ah batteries. In this sealed cylindrical battery, the group tolerance is 94% and the space volume occupied by the electrolyte is 95%.
%It has become.

【0024】この電池に、20℃の温度下において、電
流0.2C,時間1時間の条件で予備充電を行い、定格の
20%まで充電した。ついで、20℃で16時間放置し
たのち、20℃の温度下において、0.2Cで7.5時間の
充電,0.2Cで1Vになるまでの放電を行った。その
後、電池を40℃の恒温槽に24時間放置して熟成し
た。
This battery was precharged at a temperature of 20 ° C. under a current of 0.2 C for 1 hour, and was charged to 20% of the rated value. Then, after leaving it at 20 ° C. for 16 hours, it was charged at 0.2 ° C. for 7.5 hours and discharged at 0.2 C to 1 V at a temperature of 20 ° C. Then, the battery was left to stand in a constant temperature bath at 40 ° C. for 24 hours for aging.

【0025】得られた電池につき、0.2Cで7.5時間充
電したのち、1Cで1.0Vにまで放電したところ、放電
容量は1045mAhであり、約95%の初期利用率が
得られた。比較のために、上記した予備充電を行わなか
ったことを除いては実施例と同様にして電池を製造し、
その電池の1C,4.5時間目における充電末期内圧を測
定したところ、22kgf/cm2 であり、内圧は12kgf/cm
2 に上昇した。なお、本発明はの電池の場合の充電末期
内圧は10kgf/cm2 であった。
The battery thus obtained was charged at 0.2 C for 7.5 hours and then discharged to 1.0 V at 1 C. The discharge capacity was 1045 mAh, and an initial utilization rate of about 95% was obtained. . For comparison, batteries were prepared in the same manner as in Example, except that the above-mentioned pre-charging was not performed,
The internal pressure of the battery at the end of charging at 4.5 hours after 1C was 22 kgf / cm 2 , and the internal pressure was 12 kgf / cm 2.
Rose to 2 . In the case of the battery of the present invention, the internal pressure at the end of charging was 10 kgf / cm 2 .

【0026】また、別の比較として、上記した熟成処理
を行わなかったことを除いては実施例と同様にして電池
を製造し、その電池の1Cにおける放電容量を測定した
ところ、880mAhであり、初期利用率は80%に低
下した。
As another comparison, a battery was manufactured in the same manner as in Example except that the aging treatment was not performed, and the discharge capacity at 1C of the battery was measured and found to be 880 mAh. The initial utilization rate dropped to 80%.

【0027】[0027]

【発明の効果】以上の説明で明らかなように、本発明方
法によれば、実使用時の初期段階から大電流で高い放電
容量を取出すことができ、また内圧を低く抑えることが
できる。これは、初期活性化の充放電処理に先立ち、定
格の5〜100%程度の予備充電を行い、また充放電後
に30〜60℃,6〜48時間の熟成処理を行うことが
もたらす効果である。
As is apparent from the above description, according to the method of the present invention, it is possible to take out a high discharge capacity with a large current from the initial stage of actual use and to keep the internal pressure low. This is an effect brought about by performing a pre-charge of about 5 to 100% of the rating prior to the charge / discharge treatment of the initial activation and performing an aging treatment at 30-60 ° C. for 6-48 hours after the charge / discharge. .

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水酸化ニッケルを担持する正極と水素吸
蔵合金を担持する負極と前記両極間に配置されているセ
パレータとから成る発電要素を缶体に収容し、前記缶体
にアルカリ電解液を注液したのち封口して密閉電池にす
る工程;15〜30℃の温度域において、前記密閉電池
にその定格容量の5〜100%の容量になるまで予備充
電する工程;15〜30℃の温度域において充放電を反
復して前記密閉電池の容量を定格容量にまで高める工
程;得られた密閉電池を30〜60℃の温度域に6〜4
8時間放置して熟成する工程;を必須工程として備えて
いることを特徴とする密閉型ニッケル−水素二次電池の
製造方法。
1. A power generating element comprising a positive electrode supporting nickel hydroxide, a negative electrode supporting a hydrogen storage alloy, and a separator arranged between the two electrodes is housed in a can body, and an alkaline electrolyte is placed in the can body. Step of injecting and then sealing to make a sealed battery; step of precharging the sealed battery to a capacity of 5 to 100% of its rated capacity in a temperature range of 15 to 30 ° C; temperature of 15 to 30 ° C Step of repeating charge and discharge in the temperature range to increase the capacity of the sealed battery to the rated capacity; the obtained sealed battery in a temperature range of 30 to 60 ° C. for 6 to 4
A method of manufacturing a sealed nickel-hydrogen secondary battery, which comprises, as an essential step, a step of aging for 8 hours.
JP5036260A 1993-02-25 1993-02-25 Manufacturing method of sealed nickel-hydrogen secondary battery Expired - Lifetime JP2568967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5036260A JP2568967B2 (en) 1993-02-25 1993-02-25 Manufacturing method of sealed nickel-hydrogen secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5036260A JP2568967B2 (en) 1993-02-25 1993-02-25 Manufacturing method of sealed nickel-hydrogen secondary battery

Publications (2)

Publication Number Publication Date
JPH06251800A true JPH06251800A (en) 1994-09-09
JP2568967B2 JP2568967B2 (en) 1997-01-08

Family

ID=12464804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5036260A Expired - Lifetime JP2568967B2 (en) 1993-02-25 1993-02-25 Manufacturing method of sealed nickel-hydrogen secondary battery

Country Status (1)

Country Link
JP (1) JP2568967B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6421869A (en) * 1987-07-16 1989-01-25 Matsushita Electric Ind Co Ltd Formation of sealed-type alkaline storage battery
JPH01267966A (en) * 1988-04-19 1989-10-25 Matsushita Electric Ind Co Ltd Manufacture of sealed nickel-hydrogen battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6421869A (en) * 1987-07-16 1989-01-25 Matsushita Electric Ind Co Ltd Formation of sealed-type alkaline storage battery
JPH01267966A (en) * 1988-04-19 1989-10-25 Matsushita Electric Ind Co Ltd Manufacture of sealed nickel-hydrogen battery

Also Published As

Publication number Publication date
JP2568967B2 (en) 1997-01-08

Similar Documents

Publication Publication Date Title
JP3433033B2 (en) Hydrogen storage alloy electrode and method of manufacturing hydrogen storage alloy electrode
JP3788484B2 (en) Nickel electrode for alkaline storage battery
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery
JP2603188B2 (en) Hydrogen storage alloy electrode
JPS5983347A (en) Sealed nickel-cadmium storage battery
JP2733231B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH08138658A (en) Hydrogen storage alloy-based electrode
JPH1167264A (en) Manufacture of nickel-hydrogen storage battery
JPH05101821A (en) Manufacture of hydrogen storage alloy electrode
JP2629807B2 (en) Hydrogen storage alloy electrode and its manufacturing method
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH097591A (en) Hydrogen absorbing alloy, its manufacture and hydrogen absorbing alloy electrode using this hydrogen absorbing alloy
JPH06283196A (en) Sealed nickel-hydrogen secondary battery
JP2994704B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH04328252A (en) Hydrogen storage alloy electrode
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JP2631191B2 (en) Method for producing active material slurry for hydrogen storage alloy electrode
JPH09199163A (en) Nickel-hydrogen secondary battery
JP4441191B2 (en) Alkaline storage battery and method for manufacturing the same
JPH0629040A (en) Nickel-hydrogen battery
JPH03133059A (en) Manufacture of paste type cadmium negative electrode
JP2003068291A (en) Formation method for gas tight nickel - hydrogen storage battery
JPH09320576A (en) Hydrogen absorbing alloy electrode and sealed nickelhydrogen storage battery
JPH04237951A (en) Manufacture of nickel electrode for alkaline storage battery
JPH05335015A (en) Hydrogen storage electrode