JPH0622971B2 - Fireproof building material - Google Patents

Fireproof building material

Info

Publication number
JPH0622971B2
JPH0622971B2 JP6160188A JP6160188A JPH0622971B2 JP H0622971 B2 JPH0622971 B2 JP H0622971B2 JP 6160188 A JP6160188 A JP 6160188A JP 6160188 A JP6160188 A JP 6160188A JP H0622971 B2 JPH0622971 B2 JP H0622971B2
Authority
JP
Japan
Prior art keywords
carbon powder
protective layer
base material
powder particles
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6160188A
Other languages
Japanese (ja)
Other versions
JPH01234232A (en
Inventor
茂久 石原
秀一 川井
哲 ▲吉▼見
弥寿郎 ▲吉▼田
綏 ▲吉▼田
淳久 高松
勇 井出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIGUNAITO KK
Daikin Industries Ltd
Original Assignee
RIGUNAITO KK
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIGUNAITO KK, Daikin Industries Ltd filed Critical RIGUNAITO KK
Priority to JP6160188A priority Critical patent/JPH0622971B2/en
Publication of JPH01234232A publication Critical patent/JPH01234232A/en
Publication of JPH0622971B2 publication Critical patent/JPH0622971B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Building Environments (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は耐火性,遮音性に優れた建築用材に関する。TECHNICAL FIELD The present invention relates to a building material having excellent fire resistance and sound insulation.

従来技術と発明が解決しようとする課題 従来、一般に、間仕切り壁や天井等の下地材には、水硬
性物質をバインダーに用いた石膏板,木質セメント板等
や、合板,パーティクルボードからなる基材の表面に金
属板を貼着一体化したものが用いられている。
Conventional technology and problems to be solved by the invention Conventionally, as a base material for partition walls, ceilings, etc., a gypsum board using a hydraulic substance as a binder, a wood cement board, etc. The one in which a metal plate is attached and integrated on the surface of is used.

前者は不燃材料で構成されているので、一応の耐火性を
有しているが、火炎にさらされると、結晶に含まれる水
分が遊離し、その蒸気により爆裂したり、強度が急激に
低下するという欠点があった。
Since the former is composed of non-combustible material, it has tentative fire resistance, but when exposed to a flame, the moisture contained in the crystals is released, and the vapor explodes or the strength drops sharply. There was a drawback.

一方、後者は金属板の熱伝達率,熱膨張率が大きいの
で、高温にさらされると、基材と金属板との界面に熱応
力が発生し、剥離や反りが生じるという欠点があった。
On the other hand, since the latter has a large heat transfer coefficient and thermal expansion coefficient of the metal plate, when exposed to a high temperature, thermal stress is generated at the interface between the base material and the metal plate, resulting in peeling or warpage.

このため、前述の従来例にかかる建築用材を間仕切り壁
や天井に用いると、火災が発生した時に突然くずれ落ち
たり、避難口が変形して扉が開かない等の問題点が指摘
されていた。
Therefore, when the building material according to the above-mentioned conventional example is used for a partition wall or a ceiling, problems such as sudden collapse and fall of the fire and deformation of the evacuation opening and opening of the door have been pointed out.

これに対し、大きな断面積を有する木質材では、その表
面が炭化するにすぎず、火災にあっても火炎による損傷
が内部まで進行せず、熱応力も小さいので、耐火性に優
れているという報告がある。
On the other hand, a wood material with a large cross-sectional area is excellent in fire resistance because the surface is only carbonized, and even if there is a fire, the damage due to the flame does not progress to the inside and the thermal stress is small. There is a report.

また、間仕切り壁や天井等は遮音性を要求されるが、体
述の建築用材では重量や厚みを増大させないと遮音効果
が上がらず、切削加工性や施工性を維持したまま、遮音
性能を向上させることができないという問題点があっ
た。
In addition, partition walls, ceilings, etc. are required to have sound insulation properties, but the sound insulation effect does not improve unless the weight and thickness of the building materials described above are increased, and sound insulation performance is improved while maintaining machinability and workability. There was a problem that it could not be done.

本発明は、前記問題点に鑑み、軽量で優れた切断加工法
性を保持するとともに、優れた遮音性,耐火性を有し、
特に、高温環境下において強度の低下が少ない耐火性を
有する建築用材を提供することを目的とするものであ
る。
In view of the above problems, the present invention is lightweight and retains excellent cutting processability, and also has excellent sound insulation and fire resistance,
In particular, it is an object of the present invention to provide a building material having fire resistance with a small decrease in strength under a high temperature environment.

課題を解決するための手段 本発明の要旨は、前記目的を達するため、基材の表面
に、主として炭素成分からなる粉粒と熱硬化性合成樹脂
とからなる保護層を設けた耐火性を有する建築用材にあ
る。
Means for Solving the Problems The gist of the present invention is, in order to achieve the above object, have a fire resistance in which a protective layer mainly composed of powder particles mainly composed of a carbon component and a thermosetting synthetic resin is provided on the surface of a base material. It is found in construction materials.

また、本発明は、同様の目的を達成するため、基材の表
面に、主として炭素成分からなる粉粒と熱硬化性合成樹
脂とからなる保護層を設け、更に、その表面に化粧層を
設けた耐火性を有する建築用材であってもよい。
Further, in order to achieve the same object, the present invention provides a protective layer mainly comprising carbon particles and thermosetting synthetic resin on the surface of the base material, and further providing a decorative layer on the surface thereof. It may be a building material having fire resistance.

前記基材としては、合板,パーティクルボード,LV
L,木材薄板等の木質材の他、石膏板,ケイ酸カルシウ
ム板,木片セメント板,スラグ石膏板等の水硬化性無機
質材が挙げられるが、基材は必ずしも板状のものに限ら
ず、柱状,棒状のものであってもよい。
As the base material, plywood, particle board, LV
In addition to wood materials such as L and thin wood plates, water-curable inorganic materials such as gypsum board, calcium silicate board, wood chip cement board, and slag gypsum board can be mentioned, but the base material is not necessarily limited to a plate-like material, It may be columnar or rod-shaped.

基材が木質材である場合には、木質材それ自体が熱伝導
率が小さいとともに、後述する保護層と界面部に熱分解
によって炭化層が生成し、この炭化層が断熱材となるの
で、その内部の熱分解を効果的に防止する。また、前記
炭化層は基材と保護層との間に生ずる応力を緩和するの
で、表面剥離やクラックが生じにくいという利点があ
る。
When the base material is a wood material, the wood material itself has a small thermal conductivity, and a carbonized layer is generated by thermal decomposition at the interface with a protective layer described later, and this carbonized layer serves as a heat insulating material. Effectively prevent thermal decomposition inside. Further, since the carbonized layer relieves the stress generated between the base material and the protective layer, there is an advantage that surface peeling and cracks are less likely to occur.

一方、基材が無機質材である場合には、後述する保護層
によって基材が直接炎にさらされないので、結晶水の分
解が少なく、爆裂が生じにくくなり、基材の耐火性が一
段と向上するという利点がある。
On the other hand, when the base material is an inorganic material, since the base material is not directly exposed to the flame by the protective layer described later, the decomposition of crystal water is less, explosion is less likely to occur, and the fire resistance of the base material is further improved. There is an advantage.

主として炭素成分からなる前記粉粒は木材の他、コーリ
ャン、ムギ、サトウキビ、イネ、アワといった禾本科植
物の種子、外皮、幹、枝、葉等、例えば、モミガラを用
いたり、タールピッチ等の有機物を加熱分解,焼成する
ことによって得られ、処理温度が高いものほど好適であ
る。例えば、処理温度が300℃〜500℃であれば、
炭化は進行するが、1000℃以上の温度で焼成する
と、炭の収縮がおこるとともに、比表面積が小さくな
り、しかも、炭素リッチになるため、燃焼しにくくなる
ので、より一層好ましい。
In addition to wood, the powder grains mainly composed of carbon components are seeds of grassy plants such as kollyan, wheat, sugar cane, rice and millet, hulls, trunks, branches, leaves, etc. It is obtained by thermally decomposing and baking, and the higher the treatment temperature is, the more preferable. For example, if the processing temperature is 300 ° C to 500 ° C,
Carbonization proceeds, but firing at a temperature of 1000 ° C. or higher is more preferable because the carbon shrinks, the specific surface area becomes small, and the carbon becomes rich, which makes combustion difficult.

このようにして人工的につくった炭や黒鉛の他に、天然
に存在する黒鉛や各種の炭を炭素粉粒として使用でき
る。これらのうちの鱗片状の炭素粉粒を使用すれば、保
護層を形成する際に重なり合うので、緻密な保護層を形
成できるという利点がある。この炭素粉粒の粒径は30
〜2000ミクロンが好ましい。
In addition to the artificially produced charcoal and graphite, naturally occurring graphite and various charcoals can be used as carbon powder particles. If scale-like carbon powder particles are used among these, they overlap each other when forming the protective layer, so that there is an advantage that a dense protective layer can be formed. The particle size of this carbon powder is 30
~ 2000 microns is preferred.

リン片状の粉粒体として上記以外にマイカが挙げられ
る。又、上記粉粒にシリカ、アルミナ、マグネシア等を
混入してもよい。特に、禾本科植物等のモミガラはシリ
カ分を多く含み、焼成すると炭素粉粒との混合物が一度
にでてきて好適である。
Other than the above, mica can be used as the flaky powdery material. Further, silica, alumina, magnesia or the like may be mixed in the powder particles. In particular, rice husks such as grassy plants contain a large amount of silica, and when fired, a mixture with carbon powder particles appears at once, which is preferable.

又、補強材や増量剤として繊維状のものや軽量骨材等を
添加してもよい。
Further, a fibrous material, a lightweight aggregate, or the like may be added as a reinforcing material or an extender.

一方、熱硬化性合成樹脂としては、炭素粉粒との濡れ性
をよくするため、例えば、ノボラック型あるいはレゾー
ル型のフェノール樹脂、メラミン樹脂の初期縮合物が好
適である。特に、フェノール樹脂は固定炭素量が多いの
で、熱分解で炭化すると、耐化性がより一層向上すると
いう利点がある。
On the other hand, as the thermosetting synthetic resin, for example, a novolac type or resol type phenol resin or an initial condensate of a melamine resin is suitable in order to improve the wettability with carbon powder particles. In particular, since the phenolic resin has a large amount of fixed carbon, carbonization by thermal decomposition has the advantage of further improving resistance to oxidation.

保護層を形成する方法には各種の方法があるが、第1の
方法としては、炭素粉粒および熱硬化性低分子量材料か
らなる自硬化性炭素粉粒体を基材の表面に散布した後、
加熱圧締する方法がある。
There are various methods for forming the protective layer, but the first method is to spray the self-curing carbon powder particles composed of carbon powder particles and thermosetting low molecular weight material on the surface of the base material. ,
There is a method of heating and pressing.

すなわち、自硬化性炭素粉粒体を得る方法としては、炭
素粉粒および固形の熱硬化性合成樹脂、例えば、レゾー
ル型フェノール樹脂の初期縮合物をニーダーに投入し、
これをアルコール溶媒等で混練した後、混練物をニーダ
ーから取り出し、更に混合を良くするため、押し出して
成形した成形物を乾燥し、ついで、粉砕して自硬化性炭
素粉粒体を得る方法がある。
That is, as a method of obtaining a self-curing carbon powder, carbon powder and solid thermosetting synthetic resin, for example, the initial condensation product of a resole type phenol resin is charged into a kneader,
After kneading this with an alcohol solvent or the like, the kneaded product is taken out from the kneader, and in order to further improve the mixing, the molded product extruded and molded is dried, and then crushed to obtain a self-curing carbon powder. is there.

また、炭素粉粒の表面に均一に樹脂を付着させた自硬化
性炭素粉粒体を得る別の方法としては、フェノール樹脂
を合成する際に、これらの炭素粉粒を予め反応容器に入
れて反応させることにより、炭素粉粒の表面に樹脂を均
一に付着させ、これを別した後、乾燥させることによ
り自硬化性炭素粉粒体を得る方法がある。
Further, as another method of obtaining a self-curing carbon powder material in which a resin is uniformly attached to the surface of carbon powder particles, when synthesizing a phenol resin, these carbon powder particles are put in a reaction vessel in advance. There is a method in which a resin is uniformly attached to the surface of carbon powder particles by reaction, the resin is separated, and then dried to obtain a self-curing carbon powder material.

この自硬化性炭素粉粒体を基材の表面に散布した後、加
材圧締すことにより、保護層を形成する。
After spraying this self-curing carbon powder on the surface of the base material, the protective layer is formed by pressing the material.

前述の方法によれば、炭素粉粒等濡れにくいものでも、
熱硬化性合成樹脂が付着した自硬化性炭素粉粒体が得ら
れる。この結果、この自硬化性炭素粉粒体を基材の表面
に所定量散布して加熱圧締すれば、容易に保護層が得ら
れ、基材の耐火性にバラツキが生じないという利点があ
る。
According to the above method, even if it is hard to get wet such as carbon powder particles,
A self-curing carbon powder granule having a thermosetting synthetic resin attached can be obtained. As a result, if the self-curing carbon powder is sprayed on the surface of the base material in a predetermined amount and heated and pressed, a protective layer can be easily obtained, and there is an advantage that the fire resistance of the base material does not vary. .

尚、加熱圧締の締の際に、自硬化性炭素粉粒体の上に
紙,布,不織布または樹脂シートを配して化粧層を一体
化してもよい。
At the time of heating and pressing, a decorative layer may be integrated by disposing a paper, cloth, non-woven fabric or resin sheet on the self-curing carbon powder particles.

第2の方法としては、前記自硬化性炭素粉粒体を均一に
散布し、これを50℃〜100℃の温度でロール加圧し
て部分的に圧着し、所定厚さの自硬化性シート材を得、
この自硬化性シート材で基材の表面を被覆した後、加熱
圧締することにより、基材の表面に保護層を形成する方
法がある。
As a second method, the self-curing carbon powder particles are uniformly dispersed, and the self-curing sheet material having a predetermined thickness is partially pressed by roll pressing at a temperature of 50 ° C to 100 ° C. Got
There is a method of forming a protective layer on the surface of a base material by coating the surface of the base material with this self-curing sheet material and then heating and pressing.

この方法によれば、均一な自硬化性シート材を基材の表
面に加熱圧締するので、大版の建築用材でも保護層が均
一になり、耐火性にバラツキが生じないという利点があ
る。
According to this method, a uniform self-curing sheet material is heated and pressed onto the surface of the base material, so that there is an advantage that even in a large-sized building material, the protective layer becomes uniform and the fire resistance does not vary.

なお、この方法においては、自硬化性シート材を製造す
る際に、その片面に紙,布,不織布または樹脂シートを配
して一体化してもよく、化粧シートであれば、後述する
化粧層の貼着工程が省略できる。
In this method, when the self-curing sheet material is manufactured, paper, cloth, non-woven fabric or a resin sheet may be arranged on one side thereof to be integrated. The attaching step can be omitted.

また、接着剤を塗布した基材の表面に前記自硬化性シー
ト材を重ね合わせ、加熱圧締してもよい。
Alternatively, the self-curing sheet material may be superposed on the surface of the base material coated with the adhesive and heated and pressed.

第3の方法としては、木材小片と接着剤,セメント等の
バインダーとを混練してなるフォーミングマットの上面
又は下面に前記自硬化性粉粒体または自硬化性シート材
を配し、これを加熱圧締することにより、成板と同時に
保護層を形成する方法がある。
A third method is to dispose the self-curing powder or the self-curing sheet material on the upper surface or the lower surface of a forming mat formed by kneading a small piece of wood and a binder such as an adhesive or cement, and heat it. There is a method of forming a protective layer at the same time as a plate by pressing.

この方法によれば、基材と保護材との界面部に混在一体
化した層が形成されるので、強力に固着し、剥離やクラ
ックが生じにくいという利点がある。
According to this method, since a mixed and integrated layer is formed at the interface between the base material and the protective material, there is an advantage that it strongly adheres and peeling or cracking hardly occurs.

第4の方法としては、炭素粉粒体および熱硬化性低分子
量材料を各種の溶媒を介してペースト状に混練した後、
そのままロールで加圧してシート状に押し出し、これを
基材の表面に配した後、加熱圧締して保護層を形成する
方法であり、同時に紙,布,不織布または樹脂シートを
配してもよい。
A fourth method is to knead the carbon powder and the thermosetting low molecular weight material into paste form through various solvents,
It is a method of pressing it with a roll as it is and extruding it into a sheet shape, placing it on the surface of the base material, then heating and pressing to form a protective layer. Even if a paper, cloth, nonwoven fabric or resin sheet is placed at the same time Good.

第5の方法としては黒鉛に強酸を加えて層間化合物を生
成し、これを加熱して約10〜100倍に膨張させた
後、常温下、ロールで加圧してシート状としたものに熱
硬化性低分子量材料を含浸させ、これを基材の表面に配
して加熱圧締することにより、保護層を形成する方法が
ある。
As a fifth method, a strong acid is added to graphite to form an intercalation compound, which is heated and expanded about 10 to 100 times, and then thermosetting into a sheet-like product by pressing with a roll at room temperature. There is a method in which a protective low molecular weight material is impregnated, and this is placed on the surface of a base material and heated and pressed to form a protective layer.

なお、保護層における炭素粉粒の固定含有量は重量比で
50%以上、好ましくは60〜95%が良く、保護層の
比重は0.8以上、好ましくは1.0〜1.4が良い。
また、保護層の厚さは0.5〜5mm、好ましくは1〜3
mmが良い。
The fixed content of carbon powder particles in the protective layer is 50% by weight or more, preferably 60 to 95% by weight, and the specific gravity of the protective layer is 0.8 or more, preferably 1.0 to 1.4. .
The thickness of the protective layer is 0.5 to 5 mm, preferably 1 to 3
mm is good.

さらに、基材の表裏面に保護層を設ければ、いわゆるサ
ンドイッチコンストラクションとなって材料の物理的、
力学的性質が安定するため、反りが生じにくくなり、し
かも、保護層が厚くなるので、火災時に火炎が貫通しに
くくなるとともに、遮音性が高まるという利点がある。
Furthermore, if protective layers are provided on the front and back surfaces of the base material, the material becomes a so-called sandwich construction,
Since the mechanical properties are stable, warpage is less likely to occur, and since the protective layer is thicker, the flame is less likely to penetrate during a fire and the sound insulation is improved.

更に、予め形成した前記保護層の表面には、木材薄板,
合成樹脂シート,ガラスクロス等の化粧シート等による
化粧層を設けておくことが好ましい。
Furthermore, a wood thin plate, a
It is preferable to provide a decorative layer such as a synthetic resin sheet or a decorative sheet such as glass cloth.

実施例1 双腕式ニーダーに鱗片状炭素粉粒およびレゾール型フェ
ノール樹脂を重量比で65:35の割合で投入し、30
分間攪拌混練した後、この混練物を連続混練押出機で押
し出し成形し、この成形物を風乾して溶剤を揮散し、つ
いで、これを粉砕機で粉砕して自硬化性炭素粉粒体を得
た。
Example 1 Scale-like carbon powder particles and a resole-type phenol resin were added to a double-arm kneader at a weight ratio of 65:35,
After stirring and kneading for a minute, this kneaded product was extruded and molded by a continuous kneading extruder, the molded product was air-dried to volatilize the solvent, and then this was crushed by a crusher to obtain a self-curing carbon powder granule. It was

次に、この自硬化性炭素粉粒体を厚さ17mm、比重0.
70のパーティクルボード(市販品)の表裏面に散布
し、160℃で5分間加熱圧締して表裏面に厚さ1.5
mm、比重1.2の保護層を有する建築用材を得、これを
サンプルとした。
Next, this self-curing carbon powder was used to make the thickness 17 mm and the specific gravity 0.
70 particle boards (commercially available) are sprinkled on the front and back surfaces, and heated and compressed at 160 ° C for 5 minutes to give a thickness of 1.5 on the front and back surfaces.
A building material having a protective layer of mm and a specific gravity of 1.2 was obtained and used as a sample.

実施例2 双腕式ニーダーに鱗片状炭素粉粒および粘度が200ポ
アズのレゾール型フェノール樹脂を重量比で100:6
5の割合で投入し、30分間攪拌,混練して払い出した
後、このペースト状の混練物をロールで加圧してシート
状自硬化性保護材を得、これを石膏ボードの表裏面に配
し、ワイヤーメッシュ、パンチングメダルを介して脱気
しながら160℃で10分間加熱圧締することにより、
表裏面に厚さ1.5mm、比重1.0の保護層を有する全
体厚さ15mmの建築用材を得、これをサンプルとした。
Example 2 Scale-like carbon powder particles and a resole-type phenol resin having a viscosity of 200 poise were added to a double-arm kneader at a weight ratio of 100: 6.
The mixture was charged at a ratio of 5, stirred for 30 minutes, kneaded, and discharged, and then the paste-like kneaded material was pressed by a roll to obtain a sheet-like self-curing protective material, which was placed on the front and back surfaces of the gypsum board. By depressurizing through a wire mesh, punching medal and heating and pressing at 160 ° C for 10 minutes,
A building material having a thickness of 1.5 mm and a protective layer having a specific gravity of 1.0 and a total thickness of 15 mm was obtained on each of the front and back surfaces and used as a sample.

実施例3 5の四つ口フラスコに、フェノール770g、37%
ホルマリン1328g、ヘキサメチレンテトラミン80
gを仕込み、さらに、平均粒径5μmのリン片状黒鉛1
100gを仕込んだ。
Example 35 In a four necked flask of 5, 770 g of phenol, 37%
Formalin 1328g, Hexamethylenetetramine 80
g, and flake graphite 1 having an average particle size of 5 μm
100g was charged.

約60分を要して90℃まで昇温し、そのまま3時間反
応を行い、冷却後、別した。これを風乾して、平均粒
径50μmの自硬化性炭素粉粒体を1830g得た。得
られた粉粒体中のフェノール樹脂の含有量は、40%で
あった。
The temperature was raised to 90 ° C. in about 60 minutes, the reaction was continued for 3 hours, cooled, and then separated. This was air dried to obtain 1830 g of self-curing carbon powder particles having an average particle diameter of 50 μm. The content of the phenol resin in the obtained powder and granular material was 40%.

この自硬化性炭素粉粒体を実施例1と同様に操作して得
た建築用材をサンブルとした。
The building material obtained by operating this self-curing carbon powder in the same manner as in Example 1 was used as a sample.

比較例1 市販の比重1.15の木片セメント板をサンブルとし
た。
Comparative Example 1 A commercially available wood chip cement board with a specific gravity of 1.15 was used as a sample.

比較例2 市販の石膏ボード(汎用品)をサンプルとした。Comparative Example 2 A commercially available gypsum board (general-purpose product) was used as a sample.

比較例3 比重0.70のパーティクルボード単体をサンブルとし
た。
Comparative Example 3 A particle board having a specific gravity of 0.70 was used as a sample.

そして、前記実施例1,2,3および比較例1,2,3につ
いて火炎下の曲げクリープ試験を行なった。
A bending creep test under a flame was conducted on the above-mentioned Examples 1, 2 and 3 and Comparative Examples 1, 2 and 3.

火炎下の曲げクリープ試験は高温環境下における耐火曲
げ性能を知るためのもので、JISA5908に準ずる
ボードの曲げ性能試験方法および装置を用いており、前
記装置は、中央集中荷重点の裏面側に相当する場所に、
一定流量になるように安定器を介して都市ガスを供給さ
れるブンゼンバーナーの火炎の先端をあてるように配し
てある。
The bending creep test under flame is for knowing the fire resistance bending performance in a high temperature environment, and uses the board bending performance test method and device according to JIS A5908. The device corresponds to the back side of the central concentrated load point. Where you want to
It is arranged so that the tip of the flame of the Bunsen burner, which is supplied with city gas via a stabilizer so that the flow rate is constant, is applied.

この火炎の先端温度は約700℃であり、サンプルの曲
げ破壊強度の1/5に設定した荷重を加え、破壊に至る
までの所要時間と荷重点の変位量とを測定した。
The tip temperature of this flame was about 700 ° C., a load set to ⅕ of the bending fracture strength of the sample was applied, and the time required until the fracture and the amount of displacement at the load point were measured.

測定結果を第1表に示す。The measurement results are shown in Table 1.

以上の測定結果から明らかなように、実施例1,2,3は
いずれも、比較例1,2,3よりも6倍ないし10倍の耐
火性能があることがわかった。
As is clear from the above measurement results, it was found that each of Examples 1, 2, and 3 had a fire resistance performance 6 to 10 times that of Comparative Examples 1, 2, and 3.

また、500Hzにおける遮音性能を測定したところ、
実施例1が20dB、実施例2が22dBであったのに対
し、比較例2が16dBであったことから、実施例1,2
は比較例2とほぼ同等の比重であるが、比較例2よりも
良好な遮音性を有することがわかった。
Also, when the sound insulation performance at 500 Hz was measured,
Example 1 was 20 dB and Example 2 was 22 dB, whereas Comparative Example 2 was 16 dB.
It has been found that has a specific gravity almost equal to that of Comparative Example 2, but has better sound insulation than Comparative Example 2.

発明の効果 以上の説明から明らかなように、本発明によれば、基材
の表面が炭素粉粒および熱硬化性合成樹脂からなる保護
層で被覆されることになる。特に、炭素粉粒が鱗片状の
ものであれば、炭素粉粒が重なり合って保護層を形成す
るので、緻密な保護層で被覆されることになる。
EFFECTS OF THE INVENTION As is clear from the above description, according to the present invention, the surface of the base material is covered with the protective layer made of carbon powder particles and thermosetting synthetic resin. In particular, if the carbon powder particles are flaky, the carbon powder particles overlap with each other to form a protective layer, so that the carbon powder particles are covered with a dense protective layer.

そして、前記保護層を形成する炭素粉粒は、それ自身が
熱硬化性合成樹脂を介して体質顔料的な機能を有するの
で、基材が多孔質であっても、基材の空孔に侵入して基
材と強力に一体化するとともに、炭素粉粒からなる保護
層は熱膨張が小さい。特に、炭素粉粒が鱗片状のもので
あれば、一定方向に配向されるので、配向方向に応力の
緩和作用がある。このため、高温の環境下で基材と保護
層との間に生じる剪断応力が小さく、反り,はく離,クラ
ック等が生じにくく、火災時においても充分な強度を長
時間維持し得る。
Since the carbon powder particles forming the protective layer have a function as an extender pigment through the thermosetting synthetic resin, even if the base material is porous, it penetrates into the pores of the base material. Then, while being strongly integrated with the base material, the thermal expansion of the protective layer made of carbon powder particles is small. In particular, if the carbon powder particles are scaly, they are oriented in a fixed direction, so that there is a stress relaxation action in the orientation direction. Therefore, the shear stress generated between the base material and the protective layer in a high temperature environment is small, warpage, peeling, cracking, etc. are unlikely to occur, and sufficient strength can be maintained for a long time even in a fire.

また、炭素粉粒および合成樹脂からなる保護層で被覆さ
れた本願建築用材は、前記炭素粉粒の酸素指数が大きい
ため、空気中で着火,展炎しにくい。
Further, the building material of the present application coated with the protective layer made of carbon powder particles and synthetic resin has a large oxygen index of the carbon powder particles, and thus is unlikely to ignite or spread in the air.

特に、炭素粉粒が鱗片状のものであれば、鱗片状の炭素
粉粒が重なりあって緻密な保護層を形成するので、酸素
が遮断される。このため、耐火性がより一層向上し、例
えば、基材が木質材であっても内部が燃焼せず、火炎が
貫通したりせず、火災時に突然くずれ落ちたりすること
がなく、耐火上有用な効果がある。
In particular, if the carbon powder particles are scale-like, the scale-like carbon powder particles are overlapped with each other to form a dense protective layer, so that oxygen is blocked. Therefore, the fire resistance is further improved, for example, even if the base material is a wood material, the inside does not burn, the flame does not penetrate, and it does not suddenly fall off during a fire, which is useful for fire resistance. It has a great effect.

さらに、保護層は遮音性に優れており、特に、炭素粉粒
が鱗片状のものであれば、重なり合って配向性を有する
保護層を形成するので、高い剛性を有する一方、その下
方に位置する基材との剛性に差により、保護層が音の伝
播エネルギーを効果的に吸収するので、遮音性が良いと
いう効果がある。
Further, the protective layer is excellent in sound insulation, and particularly, when the carbon powder particles are scale-like, they form a protective layer having an orientation by being overlapped with each other, so that the protective layer has a high rigidity and is located below it. Since the protective layer effectively absorbs sound propagation energy due to the difference in rigidity with the base material, there is an effect of good sound insulation.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ▲吉▼田 弥寿郎 富山県東礪波郡井波町井波1番地ノ1 大 建工業株式会社内 (72)発明者 ▲吉▼田 綏 兵庫県川西市多田院字小寺前4―21 (72)発明者 高松 淳久 大阪府大阪市都島区内代町2―14―5 (72)発明者 井出 勇 大阪府堺市金岡町1648―15 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor ▲ Yashiro Yoshida, Inami No. 1 Inami, Inami-cho, Higashibura-gun, Toyama Prefecture Within Daiken Kogyo Co., Ltd. (72) Inventor ▲ Yoshida Tada Tada, Kawanishi-shi, Hyogo Prefecture Koujimae 4-21 (72) Inventor Atsuhisa Takamatsu 2-14-5 Uchishiro-cho, Miyakojima-ku, Osaka-shi, Osaka (72) Inventor Isamu Ide 1648-15 Kanaoka-cho, Sakai-shi, Osaka

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】基材の表面に、主として炭素成分からなる
粉粒と熱硬化性合成樹脂とからなる保護層を設けたこと
を特徴とする耐火性を有する建築用材。
1. A building material having fire resistance, characterized in that a protective layer mainly composed of powder particles of a carbon component and a thermosetting synthetic resin is provided on the surface of a base material.
【請求項2】基材の表面に、主として炭素成分からなる
粉粒と熱硬化性合成樹脂とからなる保護層を設け、更
に、その表面に化粧層を設けたことを特徴とする耐火性
を有する建築用材。
2. A fire-resistant material, characterized in that a protective layer mainly comprising carbon particles and thermosetting synthetic resin is provided on the surface of a base material, and a decorative layer is further provided on the surface thereof. Building materials that have.
JP6160188A 1988-03-14 1988-03-14 Fireproof building material Expired - Fee Related JPH0622971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6160188A JPH0622971B2 (en) 1988-03-14 1988-03-14 Fireproof building material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6160188A JPH0622971B2 (en) 1988-03-14 1988-03-14 Fireproof building material

Publications (2)

Publication Number Publication Date
JPH01234232A JPH01234232A (en) 1989-09-19
JPH0622971B2 true JPH0622971B2 (en) 1994-03-30

Family

ID=13175849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6160188A Expired - Fee Related JPH0622971B2 (en) 1988-03-14 1988-03-14 Fireproof building material

Country Status (1)

Country Link
JP (1) JPH0622971B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0469166B1 (en) * 1990-07-31 1994-09-28 Lignyte Co., Ltd. A method for preparing an electromagnetic wave shielding material

Also Published As

Publication number Publication date
JPH01234232A (en) 1989-09-19

Similar Documents

Publication Publication Date Title
EP0656923B1 (en) A fire resistant and high temperature insulating composition
JPS6025395B2 (en) Rigid inorganic foam products and their manufacturing method
CN104692758A (en) Smoke-suppressing type outdoor flame retardant steel structure fireproof coating
JP2969216B2 (en) Manufacturing method of building materials
JPH0622971B2 (en) Fireproof building material
CN103626472A (en) Ultra-high-temperature heat-insulating material and preparation method thereof
WO2003078350A1 (en) Composite plate of plaster and inorganic fiber, and method of producing the same
JPH0757682B2 (en) Method for producing self-hardening rice husk charcoal granules
JPH0622973B2 (en) Manufacturing method of building materials
JPH0622972B2 (en) Manufacturing method of building materials
KR100468083B1 (en) Refractory liquid and method of manufacturing the same, and refractory material, refractory building material and refractory adhesive each manufactured from the refractory liquid
JP2966429B2 (en) Refractory material
JPH0574460B2 (en)
JPH02136486A (en) Fireproof safe
JP4220704B2 (en) Gypsum and inorganic fiber composite plate and method for producing the same
JPS6030824B2 (en) Building materials and their manufacturing methods
JP3987634B2 (en) Building materials, building boards, and building insulation structures
JP2005171466A (en) Lightweight heat insulating material formed by using artificial mineral fiber and method for manufacturing the same
JP2825696B2 (en) Manufacturing method of inorganic building board
JP3865897B2 (en) Fireproof ground plate
JPS6117783B2 (en)
JPH02197661A (en) Non-charged floor panel
SU666772A1 (en) Raw mixture for making heat-insulating articles
JP2003089584A (en) Humidity-controlled deodorant and method for manufacturing the same
TW593137B (en) Method for producing flame retardant material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees