JPH01234232A - Fire resistant building material - Google Patents

Fire resistant building material

Info

Publication number
JPH01234232A
JPH01234232A JP6160188A JP6160188A JPH01234232A JP H01234232 A JPH01234232 A JP H01234232A JP 6160188 A JP6160188 A JP 6160188A JP 6160188 A JP6160188 A JP 6160188A JP H01234232 A JPH01234232 A JP H01234232A
Authority
JP
Japan
Prior art keywords
protective layer
base material
resin
synthetic resin
carbon powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6160188A
Other languages
Japanese (ja)
Other versions
JPH0622971B2 (en
Inventor
Shigehisa Ishihara
石原 茂久
Shuichi Kawai
川井 秀一
Satoru Yoshimi
吉見 哲
Yasurou Yoshida
吉田 弥寿郎
Yasushi Yoshida
吉田 綏
Atsuhisa Takamatsu
高松 淳久
Isamu Ide
勇 井出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIGUNAITO KK
Daiken Trade and Industry Co Ltd
Lignyte Co Ltd
Original Assignee
RIGUNAITO KK
Daiken Trade and Industry Co Ltd
Lignyte Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIGUNAITO KK, Daiken Trade and Industry Co Ltd, Lignyte Co Ltd filed Critical RIGUNAITO KK
Priority to JP6160188A priority Critical patent/JPH0622971B2/en
Publication of JPH01234232A publication Critical patent/JPH01234232A/en
Publication of JPH0622971B2 publication Critical patent/JPH0622971B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a lightweight fire resistant building material excellent in cutting processability and sound blocking properties and especially reduced in the lowering of strength under high temp. environment, by providing a protective layer consisting of a particulate material mainly composed of a carbon component and a thermosetting synthetic resin to the surface of a base material. CONSTITUTION:A protective layer consisting of a particulate material mainly composed of a carbon component and a thermosetting synthetic resin is provided to the surface of a base material. As the base material, a wooden material such as plywood or a particle board and a hydraulic inorg. material such as a gypsum board or a calcium silicate board are used. The particulate material composed of the carbon component is obtained by decomposing and baking grasses such as wheat, paddy or foxtail millet other than wood, for example, chaff and tar pitch under heating. As the thermosetting synthetic resin, a precondensate of a phenol or melamine resin is pref. The protective layer is formed by a method wherein alcohol is added to carbon particles and the solid thermosetting resin, for example, a precondensate of a resole type phenol resin to perform kneading and the resulting kneaded mixture is subjected to extrusion molding, dried and ground to obtain a self-curable carbon particulate material which is, in turn, scattered on the surface of the base material and compressed under heating.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は耐火性、遮音性に優れた建築用材に関する。[Detailed description of the invention] Industrial applications The present invention relates to a construction material with excellent fire resistance and sound insulation properties.

従来技術と発明が解決しようとする課題従来、一般に、
間仕切り壁や天井等の下地材には、水硬性物質をバイン
ダーに用いた石膏板、木質セメント板等や、合板、パー
ティクルボードからなる基材の表面に金属板を貼着一体
化したしのが用いられている。
Prior art and problems to be solved by the invention Conventionally, in general,
For base materials such as partition walls and ceilings, we use gypsum boards, wood cement boards, etc. that use a hydraulic substance as a binder, or metal plates that are integrated with the surface of base materials such as plywood or particle board. It is used.

前者は不燃材料で構成されているので、一応の耐火性を
有しているが、火炎にさらされろと、結晶に含まれる水
分が遊離し、その蒸気により爆裂したり、強度が急激に
低下するという欠点があっノこ。
The former is made of noncombustible material, so it has some degree of fire resistance, but when exposed to flame, the water contained in the crystals is liberated, and the resulting vapor causes the crystal to explode or its strength to drop rapidly. There is a drawback of doing so.

一方、後者は金属板の熱伝達率、熱膨張率が大きいので
、高温にさらされると、基材と金属板との界面に熱応力
か発生し、剥離や反りが生じるという欠点があった。
On the other hand, in the latter case, since the metal plate has a large coefficient of heat transfer and thermal expansion, when exposed to high temperatures, thermal stress is generated at the interface between the base material and the metal plate, resulting in peeling and warping.

このため、前述の従来例にかかる建築用材を間仕切り壁
や天井に用いると、火災が発生した時に突然くずれ落ち
たり、1i難口が変形して扉が開かない等の問題点が指
摘されていた。
For this reason, when the above-mentioned conventional construction materials are used for partition walls and ceilings, problems have been pointed out, such as the materials suddenly collapsing in the event of a fire, or the door not being able to open due to deformation of the door. .

これに対し、大きな断面積を有する木質材ては、その表
面が炭化するにすぎず、火災にあっても火炎による損傷
が内部まで進行けず、熱応力も小さいので、耐火性に優
れているという報告がある。
On the other hand, wood materials with a large cross-sectional area only carbonize on the surface, and even in the event of a fire, the flame damage does not progress to the inside, and the thermal stress is small, so they have excellent fire resistance. There is a report.

また、間仕切り壁や天井等は遮音性を要求されるが、前
述の建築用材では重量や厚みを増大させないと遮音効果
が上がらず、切削加工性や施工性を維持したまま、遮音
性能を向上させることができないという問題点があった
In addition, partition walls and ceilings are required to have sound insulation properties, but the above-mentioned construction materials do not have a good sound insulation effect unless their weight and thickness are increased, so it is possible to improve sound insulation performance while maintaining machinability and workability. The problem was that it could not be done.

本発明は、nij記問題点に鑑み、軽量で優れた切断加
工性を保持するとともに、優れた遮音性、耐火性を何し
、特に、高温環境下において強度の低下が少ない耐火性
を有する建築用材を提供することを目的とする乙のであ
る。
In view of the problems mentioned above, the present invention has been developed to provide a structure that is lightweight and has excellent cutting workability, and also has excellent sound insulation and fire resistance, and in particular, has fire resistance with little loss of strength in high temperature environments. Party B's purpose is to provide materials.

課題を解決ケろための手段 本発明の要旨は、前記目的を達成するため、基材の表面
に、主として炭素成分からなる粉粒と熱W化性合成樹脂
とからなる保護層を設けた耐火性を有する建築用材にあ
る。
Means for Solving the Problems The gist of the present invention is, in order to achieve the above-mentioned objects, to provide a fire-resistant material having a protective layer on the surface of a base material consisting of powder grains mainly consisting of a carbon component and a thermosetting synthetic resin. It is a building material that has properties.

また、本発明は、同様の目的を逼成するため、基材の表
面に、主として炭素成分からなる粉粒と熱硬化性合成樹
脂とからなる保護層を設け、更に、その表面に化粧層を
設けた耐火性を有する建築用材であってもよい。
Furthermore, in order to achieve the same object, the present invention provides a protective layer on the surface of the base material consisting of powder grains mainly consisting of a carbon component and a thermosetting synthetic resin, and further provides a decorative layer on the surface. It may also be a construction material with fire resistance.

前記基材としては、合板、パーティクルボード。The base material is plywood or particle board.

LVL、木材薄板等の木質材の他、石膏板、ケイ酸カル
シウム板1木片セメント板、スラグ石膏板等の水硬化性
無機質材が挙げられろか、基材は必ずしも板状のものに
限らず、柱状、棒状の乙のであってもよい。
In addition to wood materials such as LVL and thin wood boards, there are also water-curable inorganic materials such as gypsum board, calcium silicate board 1 wood chip cement board, and slag gypsum board, but the base material is not necessarily in the form of a plate. It may be columnar or rod-shaped.

基材が木質材である場合には、木質材それ自体が熱伝導
率が小さいとと乙に、後述する保護層との界面部に熱分
解によって炭化層が生成し、この炭化層か断熱材となる
ので、その内部の熱分解を効果的に防止する。また、前
記炭化層は基材と保護層との間に生ずる応力を緩和する
ので、表層剥離やクラックが生じにくいという利点があ
る。
When the base material is wood, since the wood itself has low thermal conductivity, a carbonized layer is generated by thermal decomposition at the interface with the protective layer (described later), and this carbonized layer or the heat insulating material Therefore, internal thermal decomposition is effectively prevented. Further, since the carbonized layer relieves the stress generated between the base material and the protective layer, it has the advantage that surface layer peeling and cracking are less likely to occur.

一方、基材が無機質材である場合には、後述する保護層
によって基材が直接炎にさらされないので、結晶水の分
解か少なく、爆裂が生じにくくなり、基材の耐火性が一
段と向上するという利点がある。
On the other hand, when the base material is an inorganic material, the protective layer described below prevents the base material from being directly exposed to flames, so there is less decomposition of crystal water, which makes explosions less likely to occur, further improving the fire resistance of the base material. There is an advantage.

主として炭素成分からなる前記粉粒は木材の他、コーリ
ャン、ムギ、サトウキビ、イネ、アワといった禾本科植
物の種子、外皮、幹、枝、葉等、例えば、モミガラを用
いたり、タールピッチ等のTT n物を加熱分解、焼成
することによって得られ、処理温度が高いものほど好適
である。例えば、処理温度が300℃〜500℃であれ
ば、炭化は進行ずろが、1000°C以上の温度で焼成
すると、炭の収縮がおこるとともに、比表面積が小さく
なり、しかし、炭素リッヂになるため、燃焼しにくくな
るので、より一層好ましい。
In addition to wood, the powder grains mainly composed of carbon components include seeds, rinds, trunks, branches, leaves, etc. of plants of the genus family such as kolyan, wheat, sugarcane, rice, and millet, for example, rice hulls, and TT such as tar pitch. It is obtained by thermally decomposing and sintering n-compounds, and the higher the processing temperature, the more suitable it is. For example, if the treatment temperature is 300°C to 500°C, carbonization will not progress, but if fired at a temperature of 1000°C or higher, the charcoal will shrink, the specific surface area will become smaller, and a carbon ridge will form. , which is even more preferable because it becomes difficult to burn.

このようにして人工的につくった炭や黒鉛の他に、天然
にr7−在する黒鉛や各種の炭を炭素粉粒として使用で
きろ。これらのうちの鱗片状の炭素粉粒を使用すれば、
保護層を形成する際に重なり合うので、緻密な保護層を
形成できるという利点がある。この炭素粉粒の粒径は3
0〜2000ミクロンが好ましい。
In addition to artificially produced charcoal and graphite, naturally occurring graphite and various types of charcoal can be used as carbon powder. If you use scaly carbon powder among these,
Since they overlap when forming the protective layer, there is an advantage that a dense protective layer can be formed. The particle size of this carbon powder is 3
0-2000 microns is preferred.

リン片状の粉粒体として上記以外にマイカが挙げられろ
。又、上記粉粒にシリカ、アルミナ、マグネシア等を混
入してもよい。特に、禾本科植物等のモミガラはソリ均
分を多く含み、焼成すると炭素粉粒との混合物が一度に
できて好適である。
In addition to the above, mica can be cited as a flake-like powder. Furthermore, silica, alumina, magnesia, etc. may be mixed into the powder particles. Particularly, rice husk, such as a plant belonging to the Phytophyllaceae family, contains a large amount of sorrel, and when fired, a mixture with carbon powder can be formed at once, making it suitable.

又、補強材や増単剤として’48 ;(e状のものや軽
量骨材等を添加してもよい。
In addition, '48; (e-shaped materials, lightweight aggregates, etc.) may be added as reinforcing materials and bulking agents.

一方、熱硬化性合成樹脂としては、炭素粉粒との濡れ性
をよくするため、例えば、ノボラック型あるいはレゾー
ル型のフェノール樹脂、メラミン樹脂の初期縮合物が好
適である。特に、ツボノール樹脂は固定炭素量が多いの
で、熱分解で炭化ずろと、耐火性がより一層向上すると
いう利点がある。
On the other hand, as the thermosetting synthetic resin, an initial condensate of, for example, a novolac type or resol type phenol resin or a melamine resin is suitable in order to improve wettability with carbon powder particles. In particular, since the Tubonol resin has a large amount of fixed carbon, it has the advantage of being carbonized through thermal decomposition and further improving its fire resistance.

保護層を形成する方法には各種の方法があるが、第1の
方法としては、炭素粉粒および熱硬化性低分子量材料か
らなる自硬化性炭素粉粒体をシ11.材の表面に散布し
た後、加熱圧締する方法がある。
There are various methods for forming the protective layer, but the first method is to form a self-hardening carbon powder made of carbon powder and a thermosetting low molecular weight material. There is a method of spraying it on the surface of the material and then pressing it under heat.

すなわち、自硬化性炭素粉粒体を得る方法としては、炭
素粉粒および固形の熱硬化性合成樹脂、例えば、レゾー
ル型フェノール樹脂の初期縮合物をニーグーに投入し、
これらをアルコール溶媒等で混練した後、混練物をニー
グーから取り出し、更に混合を良くするため、押し出し
て成形した成形物を乾燥し、ついで、粉砕して自硬化性
炭素粉粒体を得る方法がある。
That is, as a method for obtaining self-curing carbon powder, carbon powder and a solid thermosetting synthetic resin, for example, an initial condensate of a resol type phenol resin, are charged into a Nigu,
After kneading these with an alcohol solvent, etc., the kneaded material is taken out of the Nigu, and in order to further improve the mixing, the extruded and formed molded product is dried, and then pulverized to obtain self-hardening carbon powder. be.

また、炭素粉粒の表面に均一に樹脂を付着させた自硬化
性炭素粉粒体を得る別の方法としては、フェノール樹脂
を合成する際に、これらの炭素粉粒を予め反応容器に入
れて反応させることにより、炭素粉粒の表面に樹脂を均
一に付着させ、これを戸別した後、乾燥させることによ
り自硬化性炭素粉粒体を得る方法がある。
Another method for obtaining self-curing carbon powder in which resin is uniformly adhered to the surface of carbon powder is to place these carbon powder in a reaction vessel in advance when synthesizing phenolic resin. There is a method in which a resin is uniformly adhered to the surface of carbon powder by reaction, and the self-hardening carbon powder is obtained by drying the resin after being distributed from house to house.

この自硬化性炭素粉粒体を基材の表面に散布した後、加
熱圧締することにより、保護層を形成する。
A protective layer is formed by scattering this self-hardening carbon powder onto the surface of the base material and then heating and pressing it.

前述の方法によれば、炭素粉粒等の濡れにくいものでも
、熱硬化性合成樹脂が付着した自硬化性炭素粉粒体が得
られる。この結果、この自硬化性炭素粉粒体を基材の表
面に所定量散布して加熱圧締すれば、容易に保護層が得
られ、基材の耐火性にバラツキが生じないという利点が
ある。
According to the above-mentioned method, self-hardening carbon powder to which a thermosetting synthetic resin is attached can be obtained even from materials that are difficult to wet, such as carbon powder. As a result, by spraying a predetermined amount of this self-hardening carbon powder onto the surface of a base material and heat-pressing it, a protective layer can be easily obtained, which has the advantage that there will be no variation in the fire resistance of the base material. .

尚、加熱圧締の際に、自硬化性炭素粉粒体の上に紙、布
、不織布または樹脂シートを配して化粧層を一体化して
もよい。
Incidentally, during heat pressing, a decorative layer may be integrated by disposing paper, cloth, nonwoven fabric, or a resin sheet on the self-curing carbon powder.

第2の方法としては、前記自硬化性炭素粉粒体を均一に
散布し、これを50℃〜lOO℃の温度でロール加圧し
て部分的に圧着し、所定厚さの自硬化性シート材を得、
この自硬化性シート材で基材の表面を被覆した後、加熱
圧締することにより、基材の表面に保護層を形成する方
法がある。
The second method is to uniformly spread the self-hardening carbon powder, press it with a roll at a temperature of 50°C to 100°C, and partially press it to form a self-hardening sheet material of a predetermined thickness. obtained,
There is a method of forming a protective layer on the surface of the base material by coating the surface of the base material with this self-curing sheet material and then pressing under heat.

この方法によれば、均一な自硬化性シート材を基材の表
面に加熱圧締するので、大版の建築用材でも保護層が均
一になり、耐火性にバラツキか生じないという利点があ
る。
According to this method, since a uniform self-curing sheet material is heated and pressed onto the surface of the base material, the protective layer is uniform even in large-sized construction materials, and there is an advantage that there is no variation in fire resistance.

なお、この方法においては、自硬化性シート材を製造す
る際に、その片面に紙、布、不織布または樹脂シートを
配して一体化してもよく、化粧ンートであれば、後述す
る化粧層の貼着工程が省略できる。
In addition, in this method, when manufacturing the self-curing sheet material, paper, cloth, nonwoven fabric, or resin sheet may be placed on one side of the sheet material and integrated, and if it is a decorative material, the decorative layer described below may be used. The pasting process can be omitted.

また、接着剤を塗布した基材の表面に前記自硬化性シー
ト材を重ね合わせ、加熱圧締してもよい。
Alternatively, the self-curing sheet material may be superimposed on the surface of a base material coated with an adhesive and then heat-pressed.

第3の方法としては、木材小片と接着剤、セメント等の
バインダーとを混練してなるフォーミングマットの上面
又は下面に前記自硬化性粉粒体または自硬化性シート材
を配し、これを加熱圧締することにより、成板と同時に
保護層を形成する方法がある。
A third method is to place the self-curing powder or self-curing sheet material on the top or bottom surface of a forming mat made by kneading small pieces of wood with a binder such as adhesive or cement, and then heat it. There is a method of forming a protective layer at the same time as sheet forming by pressing.

この方法によれば、基材と保護材との界面部に混在一体
化した層が形成されるので、強力に固着し、剥離やクラ
ックが生じにくいという利点がある。
According to this method, a mixed and integrated layer is formed at the interface between the base material and the protective material, which has the advantage of being strongly adhered and less prone to peeling or cracking.

第4の方法としては、炭素粉粒体および熱硬化性低分子
蛍材料を各種の溶媒を介してペースト状に混練した後、
そのままロールで加圧してシート状に押し出し、これを
基材の表面に配した後、加熱圧締して保護層を形成する
方法であり、同時に紙、布、不織布または樹脂シートを
配してもよい。
The fourth method is to knead carbon powder and thermosetting low-molecular-weight fluorescent material into a paste through various solvents, and then
This is a method in which the sheet is extruded by applying pressure with a roll, placed on the surface of the base material, and then heated and pressed to form a protective layer. good.

第5の方法としては黒鉛に強酸を加えて層間化合物を生
成し、これを加熱して約10−100倍に膨張させた後
、常温下、ロールで加圧してシート状としたものに熱硬
化性低分子型材料を含浸させ、これを基材の表面に配し
て加熱圧締することにより、保護層を形成する方法があ
る。
The fifth method is to add a strong acid to graphite to form an intercalation compound, heat this to expand it approximately 10-100 times, and then heat-cure it into a sheet by pressing it with a roll at room temperature. There is a method of forming a protective layer by impregnating a base material with a low molecular weight material, placing it on the surface of a base material, and pressing it under heat.

なお、保護層における炭素粉粒の固定含有量は重量比で
50%以上、好ましくは60〜95%が良く、保護層の
比重は0.8以上、好ましくは1゜0〜1.4が良い。
The fixed content of carbon powder in the protective layer is preferably 50% or more, preferably 60 to 95% by weight, and the specific gravity of the protective layer is 0.8 or more, preferably 1°0 to 1.4. .

また、保護層の厚さは0.5〜5■、好ましくは1〜3
amが良い。
In addition, the thickness of the protective layer is 0.5 to 5 cm, preferably 1 to 3 cm.
Am is good.

さらに、基材の表裏面に保護層を設ければ、いわゆるサ
ンドイッチコンストラクションとなって材料の物理的、
力学的性質が安定するため、反りが生じにくくなり、し
かも、保護層が厚くなるので、火災時に火炎が貫通しに
くくなるとともに、遮音性が高まるという利点がある。
Furthermore, if a protective layer is provided on the front and back surfaces of the base material, it becomes a so-called sandwich construction, and the physical
Since the mechanical properties are stable, warping is less likely to occur, and the protective layer is thicker, which has the advantage of making it difficult for flames to penetrate in the event of a fire and improving sound insulation.

更に、予め形成した前記保護層の表面には、木材薄板1
合成樹脂シート、ガラスクロス等の化粧シート等による
化粧層を設けておくことが好ましい。
Further, on the surface of the protective layer formed in advance, a thin wood board 1 is provided.
It is preferable to provide a decorative layer such as a decorative sheet such as a synthetic resin sheet or glass cloth.

実施例1 双腕式ニーグーに鱗片状炭素粉粒およびレゾール型フェ
ノール樹脂を重量比で65:35の割合で投入し、30
分間撹拌混練した後、この、f2練物を連続混練押出機
で押し出し成形し、この成形物を風乾して溶剤を種数し
、ついで、これを粉砕機で粉砕して自硬化性炭素粉粒体
を得た。
Example 1 A scaly carbon powder and a resol type phenol resin were charged in a weight ratio of 65:35 into a double-arm type Nigu, and 30
After stirring and kneading for a minute, this f2 kneaded material is extruded and molded using a continuous kneading extruder, and the molded product is air-dried to remove the solvent.Then, this is crushed using a pulverizer to obtain self-hardening carbon powder. I got it.

次に、この自硬化性炭素粉粒体を厚さ17mm、比重0
.70のパーティクルボード(市販品)の表裏面に散布
し、160°Cて5分間加熱圧締して表裏面に厚さ1.
5mm、比重l 2の保護層を有する建築用材を得、こ
れをサンプルとした。
Next, this self-hardening carbon powder was made into a powder with a thickness of 17 mm and a specific gravity of 0.
.. 70 particle board (commercially available), and heated and pressed at 160°C for 5 minutes to give a thickness of 1.
A construction material having a protective layer of 5 mm and a specific gravity of l 2 was obtained and used as a sample.

実施例2 双腕式ニーグーに鱗片状炭素粉粒および粘度が200ポ
アズのレゾール型フェノール樹脂を重量比で100+6
5の割合で投入し、30分間撹拌。
Example 2 Scale-like carbon powder and resol type phenolic resin with a viscosity of 200 poise were added to a double-arm type Nigu at a weight ratio of 100+6.
Pour in at a ratio of 5:5 and stir for 30 minutes.

混紗して払い出した後、このペースト状の混練物をロー
ルで加圧してシート状自硬化性保護材を得、これを石膏
ボードの表裏面に配し、ワイヤーメツシュ、パンチング
メタルを介して脱気しながら160℃で10分間加熱圧
締することにより、表裏面に厚さI 、 5 mm、比
重1.0の保護層を有する全体厚さ15mmの建築用材
を得、これをサンプルとした。
After mixing and discharging, this paste-like kneaded material is pressurized with a roll to obtain a sheet-like self-hardening protective material, which is placed on the front and back surfaces of a gypsum board, and then passed through wire mesh and punched metal. By heating and pressing at 160°C for 10 minutes while degassing, a construction material with a total thickness of 15 mm and a protective layer with a thickness of 5 mm and a specific gravity of 1.0 on the front and back surfaces was obtained, and this was used as a sample. .

実施例3 512の四つロフラスコに、フェノール770g。Example 3 770 g of phenol in a 512 four-loop flask.

37%ホルマリン1328g、ヘキサメチレンテトラミ
ン80gを仕込み、さらに、平均粒径5μmのリン片状
黒鉛1100gを仕込んだ。
1,328 g of 37% formalin and 80 g of hexamethylenetetramine were charged, and further, 1,100 g of flaky graphite having an average particle size of 5 μm were charged.

約60分を要して90°Cまで昇温し、そのまま3時間
反応を行い、冷却後、1別した。これを風乾して、平均
粒径50μmの自硬化性炭素粉粒体を1830g得た。
The temperature was raised to 90°C over about 60 minutes, and the reaction was continued for 3 hours. After cooling, the mixture was separated. This was air-dried to obtain 1830 g of self-hardening carbon powder having an average particle size of 50 μm.

得られた粉粒体中のフェノール樹脂の含a量は、40%
であった。
The content of phenolic resin in the obtained powder was 40%.
Met.

この自硬化性炭素粉粒体を実施例1と同様に操作して得
た建築用材をサンプルとした。
A construction material obtained by operating this self-hardening carbon powder in the same manner as in Example 1 was used as a sample.

比較例! 市販の比重1.15の木片セメント板をサンプルとした
Comparative example! A commercially available wood cement board with a specific gravity of 1.15 was used as a sample.

比較例2 市販の石膏ボード(汎用品)をサンプルとした。Comparative example 2 The sample was commercially available gypsum board (general purpose product).

比較例3 比重0.70のパーティクルボート単体をサンプルとし
た。
Comparative Example 3 A single particle boat with a specific gravity of 0.70 was used as a sample.

そして、前記実施例1 、2.、3および比較例1゜2
.3について火炎下の曲げクリープ試験を行なった。
And the above-mentioned Examples 1 and 2. , 3 and comparative example 1゜2
.. 3 was subjected to a bending creep test under flame.

火炎下の曲げクリープ試験は高温環境下における耐火曲
げ性能を知るためのもので、JISA5908に準する
ボードの曲げ性能試験方法および装置を用いており、前
記装置は、中央集中荷重点の裏面側に111当する場所
に、一定流量になるように安定器を介して都市ガスを供
給されるブンゼンバーナーの火炎の先端をあてるように
配しである。
The bending creep test under flame is to find out the fireproof bending performance in a high temperature environment, and uses a board bending performance test method and equipment based on JISA5908. The tip of the flame of a Bunsen burner, which is supplied with city gas via a ballast to maintain a constant flow rate, is placed in the same place as 111.

この火炎の先端温度は約700℃であり、サンプルの曲
げ破壊強度の115に設定した荷重を加え、破壊に至る
までの所要時間と荷重点の変泣重とを測定した。
The temperature at the tip of this flame was about 700° C., and a load set to 115, which is the bending fracture strength of the sample, was applied, and the time required to reach fracture and the varying weight at the load point were measured.

測定結果を第1表に示す。The measurement results are shown in Table 1.

第1表 以上の測定結果から明らかなように、実施例1゜2.3
はいずれら、比較例!、2.3よりも6倍ないし10倍
の耐火性能があることかわかった。
As is clear from the measurement results in Table 1 and above, Example 1゜2.3
These are comparative examples! It was found that the fire resistance performance is 6 to 10 times higher than that of , 2.3.

また、5001−rzにおける遮音性能を測定し1−と
ころ、実施例!が20dB、実施例2が22dI3であ
ったのに対し、比較例2力月6dBであったことから、
実施例1.2は比較例2とほぼ同等の比重であるが、比
較例2よりも良好な遮音性を有することがわかった。
In addition, the sound insulation performance at 5001-rz was measured and 1-Example! was 20 dB and 22 dI3 in Example 2, whereas it was 6 dB in Comparative Example 2.
Although Example 1.2 had almost the same specific gravity as Comparative Example 2, it was found that it had better sound insulation properties than Comparative Example 2.

発明の効果 以上の説明から明らかなように、本発明によれば、基材
の表面が炭素粉粒および熱硬化性合成樹脂からなる保護
層で被覆されることになる。特に、炭素粉粒が鱗片状の
ものであれば、炭素粉粒が重なり合って保護層を形成す
るので、緻密な保護層で被覆されることになる。
Effects of the Invention As is clear from the above explanation, according to the present invention, the surface of the base material is coated with a protective layer made of carbon powder and a thermosetting synthetic resin. In particular, if the carbon powder is scaly, the carbon powder overlaps to form a protective layer, so that the carbon powder is covered with a dense protective layer.

そして、油脂保護層を形成する炭素粉粒は、それ自身が
熱硬化性合成樹脂を介して体質顔料的な機能を有するの
で、基材が多孔質であっても、基材の空孔に侵入して基
材と強力に一体化するとともに、炭素粉粒からなる保護
層は熱膨張が小さい。
The carbon powder that forms the oil and fat protective layer itself has an extender pigment function through the thermosetting synthetic resin, so even if the base material is porous, it can penetrate into the pores of the base material. In addition to being strongly integrated with the base material, the protective layer made of carbon powder has small thermal expansion.

特に、炭素粉粒が鱗片状のも省であれば、一定方向に配
向されるので、配向方向に応力の緩和作用がある。この
ため、高温の環境下で基材と保護層との間に生じる剪断
応力が小さく、反り、はく離。
Particularly, if the carbon powder particles have a scaly shape, they are oriented in a certain direction, so that there is a stress relieving effect in the oriented direction. Therefore, the shear stress generated between the base material and the protective layer in high-temperature environments is small, causing warping and peeling.

クラック等が生じにくく、火災時においても充分な強度
を長時間維持し得る。
Cracks are less likely to occur, and sufficient strength can be maintained for a long time even in the event of a fire.

また、炭素粉粒および合成樹脂からなる保護層で被覆さ
れた本願建築用材は、前記炭素粉粒の酸素指数が大きい
ため、空気中で着火、展炎しにく特に、炭素粉粒が鱗片
状のものであれば、鱗片状の炭素粉粒が重なりあって緻
密な保護層を形成するので、酸素が遮断される。このた
め、耐火性かより一層向上し、例えば、基材が木質材で
あっても内部か燃焼什ず、火炎が貫通したすせず、火災
時に突然くずれ落ちたりすることがなく、耐火上有用な
効果かある。
In addition, the construction material of the present application coated with a protective layer made of carbon powder and synthetic resin has a high oxygen index, so it is difficult to ignite and spread flame in the air. In this case, the scaly carbon particles overlap to form a dense protective layer, which blocks oxygen. For this reason, fire resistance is further improved, and for example, even if the base material is wood, the inside will not burn, the flame will not penetrate, and it will not suddenly collapse in the event of a fire, making it useful for fire resistance. There is a certain effect.

さらに、保護層は遮音性に優れており、特に、炭素粉粒
が鱗片状のらのであれば、重なり合って配向性を何する
保護層を形成するので、高い剛性を有する一方、その下
方に位置する基材との剛性の差により、保護層が音の伝
播エネルギーを効果的に吸収するので、遮音特性が良い
という効果がある。
Furthermore, the protective layer has excellent sound insulation properties, and especially if the carbon powder particles are scaly, they overlap to form a protective layer with some orientation, so while it has high rigidity, it also has high rigidity. Due to the difference in rigidity between the protective layer and the base material, the protective layer effectively absorbs sound propagation energy, resulting in good sound insulation properties.

特許出願人 大建工業株式会社 外1名代理人 弁理士
 前出 葆 外1名
Patent applicant: Daiken Kogyo Co., Ltd. (1 person) and patent attorney (1 person and 1 person)

Claims (2)

【特許請求の範囲】[Claims] (1)基材の表面に、主として炭素成分からなる粉粒と
熱硬化性合成樹脂とからなる保護層を設けたことを特徴
とする耐火性を有する建築用材。
(1) A fire-resistant construction material characterized by providing a protective layer on the surface of a base material consisting of powder grains mainly consisting of a carbon component and a thermosetting synthetic resin.
(2)基材の表面に、主として炭素成分からなる粉粒と
熱硬化性合成樹脂とからなる保護層を設け、更に、その
表面に化粧層を設けたことを特徴とする耐火性を有する
建築用材。
(2) A fire-resistant building characterized by providing a protective layer made of powder mainly composed of carbon components and a thermosetting synthetic resin on the surface of the base material, and further providing a decorative layer on the surface. lumber.
JP6160188A 1988-03-14 1988-03-14 Fireproof building material Expired - Fee Related JPH0622971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6160188A JPH0622971B2 (en) 1988-03-14 1988-03-14 Fireproof building material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6160188A JPH0622971B2 (en) 1988-03-14 1988-03-14 Fireproof building material

Publications (2)

Publication Number Publication Date
JPH01234232A true JPH01234232A (en) 1989-09-19
JPH0622971B2 JPH0622971B2 (en) 1994-03-30

Family

ID=13175849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6160188A Expired - Fee Related JPH0622971B2 (en) 1988-03-14 1988-03-14 Fireproof building material

Country Status (1)

Country Link
JP (1) JPH0622971B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5310784A (en) * 1990-07-31 1994-05-10 Lignyte Co., Ltd. Electromagnetic wave shielding material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5310784A (en) * 1990-07-31 1994-05-10 Lignyte Co., Ltd. Electromagnetic wave shielding material

Also Published As

Publication number Publication date
JPH0622971B2 (en) 1994-03-30

Similar Documents

Publication Publication Date Title
JPH07139691A (en) Vacuum heat insulation material and manufacture thereof
CN103626472A (en) Ultra-high-temperature heat-insulating material and preparation method thereof
JP2969216B2 (en) Manufacturing method of building materials
JPH01234232A (en) Fire resistant building material
JPH0757682B2 (en) Method for producing self-hardening rice husk charcoal granules
KR100468083B1 (en) Refractory liquid and method of manufacturing the same, and refractory material, refractory building material and refractory adhesive each manufactured from the refractory liquid
WO2019065226A1 (en) Mineral board and production method therefor
JP2966429B2 (en) Refractory material
US20060142155A1 (en) Gas absorbing material
JP3354504B2 (en) Wood wool cement board
JP3723821B1 (en) Non-combustible plywood and its manufacturing method
JPH01234233A (en) Preparation of building material
JP2005171466A (en) Lightweight heat insulating material formed by using artificial mineral fiber and method for manufacturing the same
JPH0622973B2 (en) Manufacturing method of building materials
US4093488A (en) Process for the production of building material elements, particularly building boards
JPS6030824B2 (en) Building materials and their manufacturing methods
JP2887601B2 (en) Fire resistant composite
JPH02136486A (en) Fireproof safe
JPH0574460B2 (en)
JP3987634B2 (en) Building materials, building boards, and building insulation structures
JP3388613B2 (en) Manufacturing method of carbonaceous material
KR100915193B1 (en) Interior and Exterior Environmental Board And Method For Manufacturing Thereof
TWM331011U (en) Bamboo charcoal board
JPH08230097A (en) Wooden carbon composite building material
JP2013159917A (en) Method of manufacturing non-inflammable decorative sheet

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees