JPH0622973B2 - Manufacturing method of building materials - Google Patents

Manufacturing method of building materials

Info

Publication number
JPH0622973B2
JPH0622973B2 JP6160388A JP6160388A JPH0622973B2 JP H0622973 B2 JPH0622973 B2 JP H0622973B2 JP 6160388 A JP6160388 A JP 6160388A JP 6160388 A JP6160388 A JP 6160388A JP H0622973 B2 JPH0622973 B2 JP H0622973B2
Authority
JP
Japan
Prior art keywords
base material
carbon powder
self
protective layer
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6160388A
Other languages
Japanese (ja)
Other versions
JPH01234234A (en
Inventor
茂久 石原
秀一 川井
哲 ▲吉▼見
弥寿郎 ▲吉▼田
綏 吉田
淳久 高松
勇 井出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIGUNAITO KK
Daikin Industries Ltd
Original Assignee
RIGUNAITO KK
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIGUNAITO KK, Daikin Industries Ltd filed Critical RIGUNAITO KK
Priority to JP6160388A priority Critical patent/JPH0622973B2/en
Publication of JPH01234234A publication Critical patent/JPH01234234A/en
Publication of JPH0622973B2 publication Critical patent/JPH0622973B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は耐火性,遮音性に優れた建築用材の製造方法に
関する。
TECHNICAL FIELD The present invention relates to a method for manufacturing a building material having excellent fire resistance and sound insulation.

従来技術と発明が解決しようとする課題 従来、一般に、間仕切り壁や天井等の下地材には、水硬
性物質をバインダーに用いた石膏板,木質セメント板等
や、合板,パーティクルボードからなる基材の表面に金
属板を貼着一体化したものが用いられている。
Conventional technology and problems to be solved by the invention Conventionally, as a base material for partition walls, ceilings, etc., generally, a gypsum board using a hydraulic substance as a binder, a wood cement board, or a base material made of plywood or particle board. The one in which a metal plate is attached and integrated on the surface of is used.

前者は不燃材料で構成されているので、一応の耐火性を
有しているが、火炎にさらされると、結晶に含まれる水
分が遊離し、その蒸気により爆裂したり、強度が急激に
低下するという欠点があった。
Since the former is composed of non-combustible material, it has tentative fire resistance, but when exposed to a flame, the moisture contained in the crystals is released, and the vapor explodes or the strength drops sharply. There was a drawback.

一方、後者は金属板の熱伝達率,熱膨張率が大きいの
で、高温にさらされると、基材と金属板との界面に応力
が集中し、剥離や反りが生じるという欠点があった。
On the other hand, in the latter case, the heat transfer coefficient and the thermal expansion coefficient of the metal plate are large, and therefore, when exposed to a high temperature, stress concentrates on the interface between the base material and the metal plate, and there is a drawback that peeling or warpage occurs.

このため、前述の従来例にかかる建築用材を間仕切り壁
や天井に用いると、火災が発生した時に突然くずれ落ち
たり、避難口が変形して扉が開かない等の問題点が指摘
されていた。
Therefore, when the building material according to the above-mentioned conventional example is used for a partition wall or a ceiling, problems such as sudden collapse and fall of the fire and deformation of the evacuation opening and opening of the door have been pointed out.

これに対し、大きな断面積を有する木質材では、火災に
あっても、その表面が炭化するにすぎず、火炎による損
傷が内部に進行せず、熱応力も小さいので、耐火性に優
れているという報告がある。このため、建築用材の表面
を、例えば、バーナーで予め炭化させて炭化層を形成す
ることが提案されている。
On the other hand, a wood material having a large cross-sectional area is excellent in fire resistance because even if it is in a fire, its surface is only carbonized, damage due to flame does not progress inside, and thermal stress is small. There is a report. Therefore, it has been proposed to carbonize the surface of the building material in advance with, for example, a burner to form a carbonized layer.

しかし、この方法では前記炭化層が多孔質であるので、
酸素が炭化層を容易に通過して基材に到達する。このた
め、基材が薄いと、容易に着火,燃焼して火炎が貫通す
るという問題点があった。
However, since the carbonized layer is porous in this method,
Oxygen easily passes through the carbonized layer to reach the substrate. Therefore, if the base material is thin, there is a problem in that the base material is easily ignited and burned to penetrate the flame.

そこで、基材の表面に緻密な保護層を設けるため、熱硬
化性合成樹脂をバインダーとして炭素粉粒を基材の表面
に固着することが考えられている。
Therefore, in order to provide a dense protective layer on the surface of the base material, it has been considered to fix the carbon powder particles to the surface of the base material using a thermosetting synthetic resin as a binder.

しかし、炭素粉粒は熱硬化性合成樹脂に濡れにくく、混
練して塗布しただけでは均一に分散しにくいので、保護
層の密度が不均一になり、耐火性にバラツキが生じやす
い。
However, the carbon powder particles are difficult to wet with the thermosetting synthetic resin, and are difficult to be uniformly dispersed only by kneading and coating, so that the density of the protective layer becomes non-uniform and the fire resistance tends to vary.

本発明は、前記問題点に鑑み、基材の表面に緻密で均一
な厚さの保護層を形成することにより、耐火性を向上さ
せる目的とするものである。
In view of the above problems, the present invention aims to improve fire resistance by forming a protective layer having a dense and uniform thickness on the surface of a base material.

課題を解決するための手段 本発明は、前記目的を達成するため、主に炭素成分から
なる粉粒と熱硬化性樹脂とからなる自硬化性シート状物
を基材の表面に配した後、加熱圧締して基材の表面に一
体な保護層を形成することを特徴とする建築用材の製造
方法である。
Means for Solving the Problems The present invention, in order to achieve the above object, after arranging a self-curing sheet-like material mainly composed of powder particles consisting of a carbon component and a thermosetting resin on the surface of a substrate, A method for manufacturing a building material, comprising heating and pressing to form an integral protective layer on the surface of a base material.

主に炭素成分からなる前記粉粒は木材の他、コーリャ
ン、ムギ、サトウキビ、イネ、アワといった禾本科植物
の種子、外皮、幹、枝、葉等、例えばモミガラを用いた
り、タールピッチ等の有機物を加熱分解,焼成すること
によって得られ、処理温度が高いものほど好適である。
例えば、処理温度が300℃〜500℃であれば、炭化
は進行するが、1000℃以上の温度で焼成すると、炭
の収縮がおこるとともに、比表面積が小さくなり、しか
も、炭素リッチになるため、燃焼しにくくなるので、よ
り一層好しい。
In addition to wood, the powder grains mainly composed of carbon components are seeds of grassy plants such as kollyan, wheat, sugar cane, rice and millet, hulls, trunks, branches, leaves, etc. It is obtained by thermally decomposing and baking, and the higher the treatment temperature is, the more preferable.
For example, if the treatment temperature is 300 ° C. to 500 ° C., carbonization proceeds, but if calcined at a temperature of 1000 ° C. or higher, the carbon shrinks, the specific surface area becomes small, and the carbon becomes rich. It is more preferable because it becomes difficult to burn.

このようにして、人工的につくった炭や黒鉛の他に、天
然に存在する黒鉛や各種の炭が炭素粉粒として使用でき
る。これらのうちの鱗片状の炭素粉粒を使用すれば、保
護層を形成する際に重なり合うので、緻密な保護層を形
成できるという利点がある。この炭素粉粒の粒径は30
〜2000ミクロンが好ましい。
Thus, in addition to the artificially made charcoal and graphite, naturally occurring graphite and various charcoals can be used as carbon powder particles. If scale-like carbon powder particles are used among these, they overlap each other when forming the protective layer, so that there is an advantage that a dense protective layer can be formed. The particle size of this carbon powder is 30
~ 2000 microns is preferred.

前記粉粒にシリカ、アルミナ、マグネシア等の無機粉体
を混合してもよい。又、モミガラ等のシリカ分を多く含
むものを焼成すると、炭素粉粒との混合物が得られ、好
適である。
An inorganic powder such as silica, alumina, magnesia may be mixed with the powder particles. Further, it is preferable to calcine a material having a large amount of silica such as chaff, because a mixture with carbon powder is obtained.

一方、熱硬化性樹脂としては、炭素粉粒との濡れ性をよ
くするため、例えば、ノボラック型あるいはレゾール型
のフェノール樹脂、メラミン樹脂の初期縮合物が好適で
ある。特に、フェノール樹脂は固定炭素量が多いので、
熱分解で炭化すると、断熱性が高まり、耐火性がより一
層向上するという利点がある。
On the other hand, as the thermosetting resin, for example, a novolac-type or resol-type phenol resin or an initial condensate of a melamine resin is suitable in order to improve wettability with carbon powder particles. Especially, since phenolic resin has a large amount of fixed carbon,
Carbonization by pyrolysis has the advantage that the heat insulating property is enhanced and the fire resistance is further improved.

自硬化性シート状物の製造方法には各種の方法がある
が、第1の製造方法のうち、自硬化性炭素粉粒体を得る
方法としては、炭素粉粒および固形の熱硬化性低分子量
材料、例えば、レゾール型フェノール樹脂の初期縮合物
をニーダーに投入し、これらをアルコール溶媒等で混練
した後、混練物をニーダーから取り出し、押し出して成
形した成形物を乾燥し、ついで、粉砕して自硬化性炭素
粉粒体の得る方法がある。
There are various methods for producing the self-curing sheet material, and among the first production methods, the method for obtaining the self-curing carbon powder is as follows: carbon powder and solid thermosetting low molecular weight. A material, for example, an initial condensate of a resol type phenolic resin is put into a kneader, and these are kneaded with an alcohol solvent or the like, then the kneaded product is taken out of the kneader, the molded product extruded and dried, and then ground There is a method of obtaining a self-curing carbon powder.

また、炭素粉粒の表面に均一に樹脂を付着させた自硬化
性炭素粉粒体を得る別の方法としては、フェノール樹脂
を合成する際に、これらの炭素粉粒を予め反応容器に入
れて反応させることにより、炭素粉粒の表面に樹脂を均
一に付着させ、これを過した後、乾燥させて自硬化性
炭素粉粒体を得る方法がある。
Further, as another method of obtaining a self-curing carbon powder material in which a resin is uniformly attached to the surface of carbon powder particles, when synthesizing a phenol resin, these carbon powder particles are put in a reaction vessel in advance. There is a method in which a resin is uniformly attached to the surface of the carbon powder particles by reacting, and the resin is allowed to pass and then dried to obtain a self-curing carbon powder material.

そして、この自硬化性炭素粉粒体を50℃〜100℃で
ロールで加圧して部分的に圧着することにより、所定厚
さのシート状物を得る。
Then, the self-curing carbon powder is pressed with a roll at 50 ° C. to 100 ° C. and partially pressure-bonded to obtain a sheet material having a predetermined thickness.

なお、この製造方法においては、片面に紙,不織布,繊
維材または樹脂シート等を配して一体化し、これを化粧
層とすると、後述する化粧工程が省略できる。
In this manufacturing method, if a paper, a non-woven fabric, a fibrous material, a resin sheet, or the like is arranged on one side and integrated, and this is used as a decorative layer, a cosmetic process described later can be omitted.

第2の製造方法としては、炭素粉粒体および熱硬化性樹
脂を各種の溶媒を介してペースト状に混練した後、その
ままロールで加圧してシート状に押し出し、離型紙とと
もに巻き取る方法がある。
A second manufacturing method is a method in which carbon powder and thermosetting resin are kneaded in a paste form through various solvents, then pressed by a roll as it is, extruded into a sheet form, and wound with release paper. .

第3の製造方法としては黒鉛に強酸を加えて層間化合物
を生成し、これを加熱して約10〜100倍に膨張させ
た後、常温下、ロールで加圧してシート状としたものに
熱硬化性樹脂を含浸させる方法がある。
As a third production method, a strong acid is added to graphite to generate an intercalation compound, which is heated to expand it by about 10 to 100 times, and then heated at room temperature by pressing with a roll to obtain a sheet-like material. There is a method of impregnating a curable resin.

自硬化性シート状物における炭素粉粒の含有量は重量比
で50%以上、好ましくは60〜80%が良く、比重は
0.8以上、好ましくは1.0〜1.2が良い。
The content of carbon powder particles in the self-curing sheet material is 50% or more, preferably 60 to 80% by weight ratio, and the specific gravity is 0.8 or more, preferably 1.0 to 1.2.

また、必要に応じ増量材や補強材として繊維状のものや
軽量骨材等を添加してもよい。
Further, if necessary, a fibrous material, a lightweight aggregate or the like may be added as an extender or a reinforcing material.

基材としては、合板,パーティクルボード,LVL,木
材単板等の木質材の他、石膏材,ケイ酸カルシウム板,
木片セメント板,スラグ石膏板等の水硬化性無機質材が
挙げられるが、基材は必ずしも板状のものに限らず、柱
状,棒状のものであってもよい。
As the base material, plywood, particle board, LVL, wood veneer such as wood veneer, gypsum material, calcium silicate board,
Examples of the water-curable inorganic material include a wood chip cement board and a slag gypsum board, but the base material is not necessarily limited to a plate shape, and may be a columnar shape or a rod shape.

基材が木質材である場合には、木質材それ自体が熱伝導
率が小さいとともに、後述する保護層との界面部に熱分
解によって炭化層が生成し、この炭化層が断熱材となる
ので、その内部の熱分解を効果的に防止する。また、前
記炭化層は基材と保護層との間に生ずる応力を緩和する
ので、層間剥離やクラックが生じにくいという利点があ
る。
When the base material is a wood material, the wood material itself has low thermal conductivity, and a carbonized layer is generated by thermal decomposition at the interface with the protective layer described below, and this carbonized layer serves as a heat insulating material. , Effectively prevent thermal decomposition inside. Further, since the carbonized layer relieves the stress generated between the base material and the protective layer, there is an advantage that delamination and cracks are unlikely to occur.

一方、基材が無機質材である場合には、緻密で均一な保
護層の存在によって基材が直接炎にさらされないので、
結晶に含まれる水の遊離が少なく、爆裂が生じにくくな
り、基材の耐火性が向上するという利点がある。
On the other hand, when the base material is an inorganic material, the base material is not directly exposed to the flame due to the presence of the dense and uniform protective layer,
The water contained in the crystals is less liberated, explosion is less likely to occur, and the fire resistance of the base material is improved.

前記基材の表面に保護層を形成する方法としては、例え
ば、前記基材の表面に自硬化性シート状物で被覆した
後、加熱圧締することにより、積層一体化する方法があ
る。
As a method of forming the protective layer on the surface of the base material, for example, there is a method of coating the surface of the base material with a self-curing sheet-like material, and then heating and pressing to laminate and integrate them.

また、他の方法としては、木材小片と接着剤,セメント
等のバインダーとを混練してなるフォーミングマットの
上面又は下面に自硬化シート状物を配し、これを加熱圧
締することにより、成板と同時に保護層を形成する方法
がある。
As another method, a self-curing sheet material is placed on the upper surface or the lower surface of a forming mat formed by kneading a small piece of wood and a binder such as an adhesive or cement, and heat-pressing the formed material. There is a method of forming a protective layer at the same time as the plate.

この方法によれば、基材と保護材との界面部に混在一体
化した層が形成されるので、強力に固着し、剥離やクラ
ックが生じにくいという利点がある。
According to this method, since a mixed and integrated layer is formed at the interface between the base material and the protective material, there is an advantage that it strongly adheres and peeling or cracking hardly occurs.

形成する保護層の厚さは0.5〜5mm、好ましくは1〜
3mmが良い。
The thickness of the protective layer to be formed is 0.5 to 5 mm, preferably 1 to
3mm is good.

また、片面に限らず、板状基材の両面に保護層を設けれ
ば、いわゆるサンドイッチコンストラクションとなって
材料の物理的,力学的性質が安定するため、反りが生じ
にくい。しかも、保護層が厚くなるので、火災時に火炎
が貫通しにくくなるとともに、遮音性が高まるという利
点がある。
If protective layers are provided on both sides of the plate-shaped substrate, not only on one side, a so-called sandwich construction is formed and the physical and mechanical properties of the material are stabilized, so that warpage is unlikely to occur. Moreover, since the protective layer becomes thicker, the flame is less likely to penetrate during a fire, and the sound insulation is improved.

なお、前記保護層の表面には木材薄板,合成樹脂シー
ト,ガラスクロス等の化粧シート等による化粧層を設け
ておくことが好ましい。
It is preferable that a decorative layer made of a decorative sheet such as a thin wooden plate, a synthetic resin sheet, or a glass cloth is provided on the surface of the protective layer.

実施例1 双腕式ニーダーに黒鉛10kgを入れ、さらに、軟化点8
0℃の固形のレゾール型フェノール樹脂の60%メタノ
ールワニス11kgを加えて30分間攪拌混練した後、こ
の混練物を連続混練押出機で押し出して直径3mmの丸棒
とし、この丸棒を風乾して溶剤のメタノールを揮散し、
ついで、これを粉砕機で粉砕して粒径0.5mm以下の自
硬化性炭素粉粒体を得た。
Example 1 10 kg of graphite was put into a double-arm kneader and the softening point was set to 8
After adding 11 kg of 60% methanol varnish of solid resol type phenol resin at 0 ° C. and stirring and kneading for 30 minutes, this kneaded product was extruded by a continuous kneading extruder to make a round bar having a diameter of 3 mm, and the round bar was air-dried. Evaporate the solvent methanol,
Then, this was crushed by a crusher to obtain a self-curing carbon powder having a particle diameter of 0.5 mm or less.

次に、この自硬化性炭素粉粒体を均一に散布して80℃
でロールで加圧し、厚さ0.5mmの自硬化性シート状物
とした。
Next, this self-curing carbon powder is evenly sprayed at 80 ° C.
Then, it was pressed with a roll to form a self-curing sheet having a thickness of 0.5 mm.

そして、この自硬化性シート状物を厚さ12mmのパーテ
ィクルボード(市販品)の表面に重ね合わせ、160℃で
5分間加熱圧締して得た板状の建築用材をサンプルとし
た。
Then, this self-curing sheet-like material was superposed on the surface of a particle board (commercially available) having a thickness of 12 mm, and heat-pressed at 160 ° C. for 5 minutes to obtain a plate-like construction material as a sample.

実施例2 実施例1の自硬化性シート状物の代わりに、双腕式ニー
ダーにバーク炭10kgを入れ、さらに、25℃における
粘度が200ポアズのレゾール型フェノール樹脂6.5
kgを加え、30分間攪拌,混練して払い出した後、この
混練物をロールで加圧して得た厚さ1mmの自硬化性シー
ト状物を用いた。
Example 2 Instead of the self-curing sheet material of Example 1, 10 kg of bark charcoal was put in a double-arm kneader, and further, a resole-type phenol resin 6.5 having a viscosity of 200 poise at 25 ° C.
After adding kg, stirring and kneading for 30 minutes and discharging, the kneaded material was pressed with a roll to obtain a self-curing sheet material having a thickness of 1 mm.

そして、他は実施例1と同様に操作して得た建築用材を
サンプルとした。
Then, other than that, the building material obtained by operating in the same manner as in Example 1 was used as a sample.

実施例3 実施例1の自硬化性シート状物の代わりに、天然黒鉛に
硫酸および硝酸の混合液を加えて層間化合物を生成させ
た後、これを800℃の炉中で30分間加熱処理して膨
張黒鉛を得、これをロールで加圧して厚さ1mmのシート
状とし、ついで、これにレゾール型フェノール樹脂を重
量比で40%含浸させてなる自硬化性シート状物を用い
た。
Example 3 Instead of the self-curing sheet material of Example 1, a mixed solution of sulfuric acid and nitric acid was added to natural graphite to form an intercalation compound, which was then heat treated in an oven at 800 ° C. for 30 minutes. Expanded graphite was obtained by pressing it with a roll to form a sheet having a thickness of 1 mm, and then a self-curing sheet was obtained by impregnating this with a resole-type phenol resin in a weight ratio of 40%.

そして、他の実施例1と同様に操作して得た建築用材を
サンプルとした。
Then, a building material obtained by operating in the same manner as in Example 1 was used as a sample.

実施例4 5の四つ口フラスコに、フェノール770g、37%
ホルマリン1328g、ヘキサメチンテトラミン80g
を仕込み、さらに、平均粒径5μmの鱗片状黒鉛110
0gを仕込んだ。
Example 45 In a four-necked flask of 5, 770 g of phenol, 37%
1328g formalin, 80g hexamethine tetramine
Was further charged, and then flake graphite 110 having an average particle size of 5 μm
0g was charged.

約60分を要して90℃まで昇温し、そのまま3時間反
応を行い、冷却後、別した。これを風乾して平均粒径
50μmの自硬化性炭素粉粒体を1830g得た。得ら
れた粉粒体中のフェノール樹脂の含有量は、40%であ
った。
The temperature was raised to 90 ° C. in about 60 minutes, the reaction was continued for 3 hours, cooled, and then separated. This was air-dried to obtain 1830 g of self-curing carbon powder particles having an average particle size of 50 μm. The content of the phenol resin in the obtained powder and granular material was 40%.

この自硬化性炭素粉粒体を、実施例1と同様に操作して
得た建築用材をサンプルとした。
The building material obtained by operating this self-curing carbon powder in the same manner as in Example 1 was used as a sample.

比較例1 市販の比重1.15の木片セメント板をサンプルとし
た。
Comparative Example 1 A commercially available wood chip cement board having a specific gravity of 1.15 was used as a sample.

比較例2 市販の石膏ボード(汎用品)をサンプルとした。Comparative Example 2 A commercially available gypsum board (general-purpose product) was used as a sample.

そして、前記実施例1,2,3および比較例1,2につ
いて火炎下の曲げクリープ試験を行なった。
Then, a bending creep test under flame was carried out for Examples 1, 2, 3 and Comparative Examples 1, 2.

火炎下の曲げクリープ試験は高温環境下における耐火曲
げ性能を知るためのもので、JISA5908に準ずる
ボードの曲げ性能試験方法および装置を用いており、前
記装置は、中央集中荷重点の裏面側に相当する場所に、
一定流量になるように安定器を介して都市ガスが供給さ
れるブンゼンバーナの火炎の先端をあてるように配して
ある。
The bending creep test under flame is for knowing the fire resistance bending performance in a high temperature environment, and uses the board bending performance test method and device according to JIS A5908. The device corresponds to the back side of the central concentrated load point. Where you want to
It is arranged so that the tip of the flame of the Bunsen burner, which is supplied with city gas through a stabilizer so as to maintain a constant flow rate, is applied.

この火炎先端温度は約700℃であり、サンプルの曲げ
破壊強度の1/5に設定した荷重を加え、破壊に至るま
での所要時間と荷重点の変位量とを測定した。
The flame tip temperature was about 700 ° C., a load set to ⅕ of the bending fracture strength of the sample was applied, and the time required until the fracture and the displacement amount at the load point were measured.

測定結果を第1表に示す。The measurement results are shown in Table 1.

以上の測定結果から明らかなように、実施例1,2,
3,4はいずれも、比較例1,2よりも3倍ないし9倍
の耐火性能があることがわかった。
As is clear from the above measurement results, Examples 1, 2,
It was found that all of 3 and 4 had a fire resistance performance 3 to 9 times that of Comparative Examples 1 and 2.

発明の効果 以上の説明から明らかなように、シート状物を基材の表
面に配した後、加熱圧締して保護層を形成すれば、基材
の表面に均一で緻密な保護層を形成することができ、耐
火性にバラツキのない建築用材を得ることができる。
EFFECTS OF THE INVENTION As is clear from the above description, if a sheet-shaped material is placed on the surface of a substrate and then heat-pressed to form a protective layer, a uniform and dense protective layer is formed on the surface of the substrate. Therefore, it is possible to obtain a building material having no variation in fire resistance.

しかも、前記保護層を形成する炭素粉粒は、その自身が
熱硬化性樹脂を介して体質顔料的な機能を有するので、
基材が多孔質であっても、基材の空孔に侵入して基材と
強力に一体化する。また、炭素粉粒からなる保護層は熱
膨張が小さいので、高温の環境下で基材と保護層との間
に生じる応力集中が極めて小さい。この結果、反り,は
く離,クラック等が生じにくく、火災時においても充分
な強度を長時間維持し得る。
Moreover, since the carbon powder particles forming the protective layer have a function as an extender pigment by themselves through the thermosetting resin,
Even if the base material is porous, it penetrates into the pores of the base material and strongly integrates with the base material. Further, since the protective layer made of carbon powder particles has a small thermal expansion, the stress concentration generated between the base material and the protective layer in a high temperature environment is extremely small. As a result, warpage, peeling, cracks, etc. are unlikely to occur, and sufficient strength can be maintained for a long time even in the event of a fire.

また、炭素粉粒および合成樹脂からなる均一で緻密な保
護層で被覆された本願建築用材は、前記炭素粉粒の酸素
指数が大きいため、空気中で燃えにくいとともに、酸素
が遮断される。このため、基材が木質材であっても内部
が燃焼しないので、火炎が貫通せず、火災時に突然くず
れ落ちたりしないという耐火上有用な効果がある。
Further, the building material of the present application coated with a uniform and dense protective layer composed of carbon powder particles and synthetic resin has a large oxygen index of the carbon powder particles, so that it is difficult to burn in the air and oxygen is blocked. For this reason, even if the base material is a wood material, the interior does not burn, so the flame does not penetrate, and there is a useful effect on fire resistance that it does not suddenly fall off during a fire.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ▲吉▼田 弥寿郎 富山県東礪波郡井波町井波1番地ノ1 大 建工業株式会社内 (72)発明者 吉田 綏 兵庫県川西市多田院字小寺前4―21 (72)発明者 高松 淳久 大阪府大阪市都島区内代町2―14―5 (72)発明者 井出 勇 大阪府堺市金岡町1648―15 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor ▲ Yoshi ▼ Yasuro Tada 1 Inami, Inami-cho, Inami-cho, Higashibura-gun, Toyama Prefecture Within Daiken Kogyo Co., Ltd. Previous 4-21 (72) Inventor Atsushi Takamatsu 2-14-5 Uchishiro-cho, Miyakojima-ku, Osaka-shi, Osaka (72) Inventor Isamu Ide 1648-15 Kanaoka-cho, Sakai-shi, Osaka

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】主に炭素成分からなる粉粒と熱硬化性樹脂
とからなる自硬化性シート状物を基材の表面に配した
後、加熱圧締して基材の表面に一体な保護層を形成する
ことを特徴とする建築用材の製造方法。
1. A self-curing sheet material mainly composed of powdery particles of a carbon component and a thermosetting resin is placed on the surface of a base material and then heated and pressed to integrally protect the surface of the base material. A method for manufacturing a building material, which comprises forming a layer.
JP6160388A 1988-03-14 1988-03-14 Manufacturing method of building materials Expired - Fee Related JPH0622973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6160388A JPH0622973B2 (en) 1988-03-14 1988-03-14 Manufacturing method of building materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6160388A JPH0622973B2 (en) 1988-03-14 1988-03-14 Manufacturing method of building materials

Publications (2)

Publication Number Publication Date
JPH01234234A JPH01234234A (en) 1989-09-19
JPH0622973B2 true JPH0622973B2 (en) 1994-03-30

Family

ID=13175908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6160388A Expired - Fee Related JPH0622973B2 (en) 1988-03-14 1988-03-14 Manufacturing method of building materials

Country Status (1)

Country Link
JP (1) JPH0622973B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999016984A1 (en) * 1997-09-26 1999-04-08 Ibiden Co., Ltd. Composite refractory building material, method of manufacturing the same, gypsum board, and resin composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999016984A1 (en) * 1997-09-26 1999-04-08 Ibiden Co., Ltd. Composite refractory building material, method of manufacturing the same, gypsum board, and resin composition

Also Published As

Publication number Publication date
JPH01234234A (en) 1989-09-19

Similar Documents

Publication Publication Date Title
US20030003284A1 (en) Multilayer composite materials with at least one aerogel-containing layer and at least one layer containing polyethylene terephthalate fibres, process for producing the same and their use
US6598358B1 (en) Use of aerogels for deadening structure-borne and/or impact sounds
JPS6251908B2 (en)
NO152001B (en) PARTICLES OF A RIGID INORGANIC FOAM, PROCEDURE FOR THE MANUFACTURING OF THE PARTICLES, AND STRONG INORGANIC FOAM BODIES MADE BY THE PARTICLES
KR100798124B1 (en) Noncombustible panel for construction
CN106010301B (en) Water-soluble fire-resisting adhesive and its preparation method and application
KR20050027712A (en) Panel composition for building materials, manufacturing method thereof and its usage
CN103626472A (en) Ultra-high-temperature heat-insulating material and preparation method thereof
JP2969216B2 (en) Manufacturing method of building materials
JPH0622973B2 (en) Manufacturing method of building materials
JPH0757682B2 (en) Method for producing self-hardening rice husk charcoal granules
JPH0622971B2 (en) Fireproof building material
JPH0622972B2 (en) Manufacturing method of building materials
US20060142155A1 (en) Gas absorbing material
JP2966429B2 (en) Refractory material
JP3987634B2 (en) Building materials, building boards, and building insulation structures
JPH0574460B2 (en)
JP2005171466A (en) Lightweight heat insulating material formed by using artificial mineral fiber and method for manufacturing the same
JPH02136486A (en) Fireproof safe
CN110952740A (en) Heating building material and preparation method thereof
TWM331011U (en) Bamboo charcoal board
CN1796097A (en) Carbon board and preparation method
JPH02231135A (en) Fire resistant composite material
JP4392514B2 (en) Carbide-containing gypsum cured body and method for producing the same
JP2910899B2 (en) Manufacturing method of plate

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees