JPH0622972B2 - Manufacturing method of building materials - Google Patents

Manufacturing method of building materials

Info

Publication number
JPH0622972B2
JPH0622972B2 JP6160288A JP6160288A JPH0622972B2 JP H0622972 B2 JPH0622972 B2 JP H0622972B2 JP 6160288 A JP6160288 A JP 6160288A JP 6160288 A JP6160288 A JP 6160288A JP H0622972 B2 JPH0622972 B2 JP H0622972B2
Authority
JP
Japan
Prior art keywords
base material
carbon powder
protective layer
self
powder particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6160288A
Other languages
Japanese (ja)
Other versions
JPH01234233A (en
Inventor
茂久 石原
秀一 川井
哲 ▲吉▼見
弥寿郎 ▲吉▼田
綏 ▲吉▼田
淳久 高松
勇 井出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIGUNAITO KK
Daikin Industries Ltd
Original Assignee
RIGUNAITO KK
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIGUNAITO KK, Daikin Industries Ltd filed Critical RIGUNAITO KK
Priority to JP6160288A priority Critical patent/JPH0622972B2/en
Publication of JPH01234233A publication Critical patent/JPH01234233A/en
Publication of JPH0622972B2 publication Critical patent/JPH0622972B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は耐火性,遮音性に優れた建築用材の製造方法に
関する。
TECHNICAL FIELD The present invention relates to a method for manufacturing a building material having excellent fire resistance and sound insulation.

従来技術と発明が解決しようとする課題 従来、一般に、間仕切り壁や天井等の下地材には、水硬
性物質をバインダーに用いた石膏板,木質セメント板等
や、合板,パーティクルボードからなる基材の表面に金
属板を貼着一体化したものが用いられている。
Conventional technology and problems to be solved by the invention Conventionally, as a base material for partition walls, ceilings, etc., a gypsum board using a hydraulic substance as a binder, a wood cement board, etc. The one in which a metal plate is attached and integrated on the surface of is used.

前者は不燃材料で構成されているので、一応の耐火性を
有しているが、火炎にさらされると、結晶に含まれる水
が遊離し、その蒸気により爆裂したり、強度が急激に低
下するという欠点があった。
Since the former is composed of non-combustible material, it has a certain degree of fire resistance, but when exposed to a flame, the water contained in the crystals is liberated and explodes due to the vapor, or the strength drops sharply. There was a drawback.

一方、後者は金属板の熱伝達率,熱膨張率が大きいの
で、高温にさらされると、基材と金属板との界面に応力
が集中し、剥離や反りが生じ、板の変形が大きくなると
いう欠点があった。
On the other hand, in the latter case, the heat transfer coefficient and the thermal expansion coefficient of the metal plate are large, so when exposed to high temperature, stress concentrates at the interface between the base material and the metal plate, causing peeling and warping, and the plate deformation increases. There was a drawback.

このため、前述の従来例にかかる建築用材を間仕切り壁
や天井に用いると、火災が発生した時に突然くずれ落ち
たり、避難口が変形して扉が開かない等の問題点が指摘
されていた。
Therefore, when the building material according to the above-mentioned conventional example is used for a partition wall or a ceiling, problems such as sudden collapse and fall of the fire and deformation of the evacuation opening and opening of the door have been pointed out.

これに対し、大きな断面積を有する木質材では、火災に
あっても、その表面が炭化するにすぎず、火炎による損
傷が内部に進行せず、熱応力も小さいので、耐火性に優
れているという報告がある。このため、建築用材の表面
を、例えば、バーナーで予め炭化させて炭化層を形成す
ることが提案されている。
On the other hand, a wood material having a large cross-sectional area is excellent in fire resistance because even if it is in a fire, its surface is only carbonized, damage due to flame does not progress inside, and thermal stress is small. There is a report. Therefore, it has been proposed to carbonize the surface of the building material in advance with, for example, a burner to form a carbonized layer.

しかし、この方法では前記炭化層が多孔質であるため、
酸素が炭化層を容易に通過して基材に到達する。このた
め、基材が薄いと、容易に着火,燃焼して火炎が貫通す
るという問題点があった。
However, in this method, since the carbonized layer is porous,
Oxygen easily passes through the carbonized layer to reach the substrate. Therefore, if the base material is thin, there is a problem in that the base material is easily ignited and burned to penetrate the flame.

そこで、基材の表面に緻密な保護層を設けるため、熱硬
化性合成樹脂をバインダーとして炭素粉粒を基材の表面
に固着することが考えられている。
Therefore, in order to provide a dense protective layer on the surface of the base material, it has been considered to fix the carbon powder particles to the surface of the base material using a thermosetting synthetic resin as a binder.

しかし、炭素粉粒は熱硬化性合成樹脂に濡れにくく、混
練して塗布しただけでは均一に分散しにくいので、保護
層の密度が不均一になり、耐火性にバラツキが生じやす
い。
However, the carbon powder particles are difficult to wet with the thermosetting synthetic resin, and are difficult to be uniformly dispersed only by kneading and coating, so that the density of the protective layer becomes non-uniform and the fire resistance tends to vary.

本発明は、前記問題点に鑑み、基材の表面に強固で均一
な保護層を形成することにより、耐火性を向上させるこ
とを目的とするものである。
In view of the above problems, the present invention has an object of improving fire resistance by forming a strong and uniform protective layer on the surface of a base material.

課題を解決するための手段 本発明は、前記目的を達成するため、主に炭素成分から
なる粉粒の表面に熱硬化性樹脂を付着してなる自硬化性
炭素粉粒体を、基材の表面に配した後、加熱圧締して基
材の表面に一体な保護層を形成することを特徴とする建
築用材の製造方法である。
Means for Solving the Problems The present invention, in order to achieve the above-mentioned object, a self-curing carbon powder comprising a thermosetting resin adhered to the surface of powder consisting mainly of a carbon component is used as a base material. The method for producing a building material is characterized in that it is placed on the surface and then heated and pressed to form an integral protective layer on the surface of the base material.

主に炭素成分からなる前記粉粒は木材の他、コーリャ
ン、ムギ、サトウキビ、イネ、アワといった禾本科植物
の種子、外皮、幹、枝、葉等、例えばモミガラを用いた
り、タールピッチ等の有機物を加熱分解,焼成すること
によって得られ、処理温度が高いものほど好適である。
例えば、処理温度が300℃〜500℃であれば、炭化
は進行するが、1000℃以上の温度で焼成すると、炭
の収縮がおこるとともに、比表面積が小さくなり、しか
も、炭素リッチになるため、燃焼しにくくなるので、よ
り一層好しい。
In addition to wood, the powder grains mainly composed of carbon components are seeds of grassy plants such as kollyan, wheat, sugar cane, rice and millet, hulls, trunks, branches, leaves, etc. It is obtained by thermally decomposing and baking, and the higher the treatment temperature, the better.
For example, if the treatment temperature is 300 ° C. to 500 ° C., carbonization proceeds, but if calcined at a temperature of 1000 ° C. or higher, the carbon shrinks, the specific surface area becomes small, and the carbon becomes rich. It is more preferable because it becomes difficult to burn.

このようにして人工的につくった速や黒鉛の他、天然に
存在する黒鉛や各種の炭が炭素粉粒として使用できる。
これらのうちの鱗片状の炭素粉粒を使用すれば、保護層
を形成する際に重なり合うので、緻密な保護層を形成で
きるという利点がある。この炭素粉粒の粒径は30〜2
000ミクロンが好ましい。
In addition to artificially produced velocities and graphite, naturally occurring graphite and various kinds of charcoal can be used as carbon powder particles.
If scale-like carbon powder particles are used among these, they overlap each other when forming the protective layer, so that there is an advantage that a dense protective layer can be formed. The particle size of the carbon powder is 30 to 2
000 microns is preferred.

一方、熱硬化性樹脂としては、炭素粉粒との濡れ性をよ
くするため、例えば、ノボラック型あるいはレゾール型
のフェノール樹脂、メラミン樹脂の初期縮合物が好適で
ある。特に、フェノール樹脂は固定炭素量が多いので、
熱分解で炭化すると、断熱性が高まり、耐火性がより一
層向上するという利点がある。
On the other hand, as the thermosetting resin, for example, a novolac-type or resol-type phenol resin or an initial condensate of a melamine resin is suitable in order to improve wettability with carbon powder particles. Especially, since phenolic resin has a large amount of fixed carbon,
Carbonization by pyrolysis has the advantage that the heat insulating property is enhanced and the fire resistance is further improved.

自硬化性炭素粉粒体の製造方法としては、炭素粉粒およ
び固形の熱硬化性低分子量材料、例えば、レゾール型フ
ェノール樹脂の初期縮合物をニーダーに投入し、これら
をアルコール溶媒等で混練した後、混練物をニーダーか
ら取り出し、押し出して成形した成形物を乾燥し、つい
で、粉砕して自硬化性炭素粉粒体の得る方法がある。
As a method for producing a self-curing carbon powder, carbon powder and a solid thermosetting low molecular weight material, for example, an initial condensate of a resol type phenol resin is charged into a kneader, and these are kneaded with an alcohol solvent or the like. After that, there is a method in which the kneaded product is taken out from the kneader, the molded product extruded and molded is dried, and then pulverized to obtain a self-curing carbon powder.

また、炭素粉粒の表面に均一に樹脂を付着させた自硬化
性炭素粉粒体を得る別の方法としては、フェノール樹脂
を合成する際に、これらの炭素粉粒を予め反応容器に入
れて反応させることにより、炭素粉粒の表面に樹脂を均
一に付着させ、これを過した後、乾燥させることによ
り、自硬化性炭素粉粒体を得る方法がある。
Further, as another method of obtaining a self-curing carbon powder material in which a resin is uniformly attached to the surface of carbon powder particles, when synthesizing a phenol resin, these carbon powder particles are put in a reaction vessel in advance. There is a method in which a resin is uniformly attached to the surface of the carbon powder particles by a reaction, and the resin is allowed to pass and then dried to obtain a self-curing carbon powder material.

なお、必要に応じ、シリカ,アルミナ,マグネシア等の粉
粒体を添加してもよく、禾本科植物等ではモミガラ等の
シリカ分を多く含むものを焼成すると、炭素粉粒との混
合物ができ、好適である。
In addition, if necessary, silica, alumina, may be added powdered particles such as magnesia, and in plants such as rice plants, if a material containing a large amount of silica such as rice husk is fired, a mixture with carbon powder particles is formed, It is suitable.

又、補強材として繊維状のものや軽量骨材を混入しても
よい。
Further, a fibrous material or a lightweight aggregate may be mixed as a reinforcing material.

基材としては、合板,パーティクルボード,LVL,木
材単板等の木質材の他、石膏材,ケイ酸カルシウム板,
木片セメント板,スラグ石膏板等の水硬化性無機質材が
挙げられるが、基材は必ずしも板状のものに限らず、柱
状,棒状のものであってもよい。
As the base material, wood materials such as plywood, particle board, LVL, wood veneer, plaster material, calcium silicate board,
Water-curable inorganic materials such as wood chip cement board and slag gypsum board can be mentioned, but the base material is not necessarily limited to a plate shape, and may be a columnar shape or a rod shape.

基材が木質材である場合には、木質材それ自体が熱伝導
率が小さいとともに、後述する保護層との界面部に熱分
解によって炭化層が生成し、この炭化層が断熱材となる
ので、その内部の熱分解を効果的に防止する。また、前
記炭化層は基材と保護層との間に生ずる応力を緩和する
ので、層間剥離やクラックが生じにくいという利点があ
る。
When the base material is a wood material, the wood material itself has low thermal conductivity, and a carbonized layer is generated by thermal decomposition at the interface with the protective layer described below, and this carbonized layer serves as a heat insulating material. , Effectively prevent thermal decomposition inside. Further, since the carbonized layer relieves the stress generated between the base material and the protective layer, there is an advantage that delamination and cracks are unlikely to occur.

一方、基材が無機質材である場合には、保護層の存在に
よって基材が直接炎にさらされないので、結晶に含まれ
る水の遊離が少なく、爆裂が生じにくくなり、基材の耐
火性が向上するという利点がある。
On the other hand, when the base material is an inorganic material, the base material is not directly exposed to the flame due to the presence of the protective layer, so the water contained in the crystals is less liberated, the explosion is less likely to occur, and the fire resistance of the base material is reduced. There is an advantage of improving.

前記基材の表面に保護層を形成する方法としては、例え
ば、前記基材の表面に自硬化性炭素粉粒体を散布した
後、加熱圧締することにより、保護層を形成する方法が
ある。
As a method of forming a protective layer on the surface of the base material, for example, there is a method of forming a protective layer by spraying a self-curing carbon powder on the surface of the base material and then heating and pressing. .

この方法によれば、自硬化性炭素粉粒体を基材の表面に
散布して加熱圧締するだけで、所望の密度,厚さを有す
る保護層を基材の表面に簡単に形成でき、混練物をウェ
ットな状態で塗布して保護層を形成する従来の方法に比
べ、前処理や乾燥工程が不要になるという利点がある。
According to this method, a protective layer having a desired density and thickness can be easily formed on the surface of the base material by simply spraying the self-curing carbon powder on the surface of the base material and heating and pressing. Compared with the conventional method of forming a protective layer by applying a kneaded material in a wet state, there is an advantage that a pretreatment and a drying step are unnecessary.

また、他の方法としては、木材小片と接着剤,セメント
等のバインダーとを混練してなるフォーミングマットの
上面に自硬化性炭素粉粒体を散布し、これを加熱圧締す
ることにより、成板と同時に保護層を形成する方法があ
る。
As another method, a self-curing carbon powder is sprinkled on the upper surface of a forming mat formed by kneading a small piece of wood and a binder such as an adhesive or cement, and heat-pressing the powder. There is a method of forming a protective layer at the same time as the plate.

この方法によれば、基材と保護材との界面部に混在一体
化した層が形成されるので、強力に固着し、剥離やクラ
ックが生じにくいという利点がある。
According to this method, since a mixed and integrated layer is formed at the interface between the base material and the protective material, there is an advantage that it strongly adheres and peeling or cracking hardly occurs.

形成する保護層の厚さは0.5〜5mm、好ましくは1〜
3mmが良く、炭素粉粒の固定含有量は重量比で50%以
上、好ましくは60〜95%が良い。また、比重が0.
8以上、好ましくは1.0〜1.4が良い。
The thickness of the protective layer to be formed is 0.5 to 5 mm, preferably 1 to
3 mm is preferable, and the fixed content of carbon powder particles is 50% or more by weight, preferably 60 to 95%. Also, the specific gravity is 0.
8 or more, preferably 1.0 to 1.4.

さらに、片面に限らず、板状基材の両面に保護層を設け
れば、いわゆるサンドイッチコンストラクションとなっ
て材料の物理的,力学的性質が安定するため、反りが生
じにくい。しかも、保護層が厚くなるので、火災時に火
炎が貫通しにくくなるとともに、遮音性が高まるという
利点がある。
Furthermore, if protective layers are provided not only on one side but also on both sides of the plate-shaped substrate, a so-called sandwich construction is formed and the physical and mechanical properties of the material are stabilized, so that warpage is unlikely to occur. Moreover, since the protective layer becomes thicker, the flame is less likely to penetrate during a fire, and the sound insulation is improved.

なお、保護層の表面には木材薄板,合成樹脂シート,ガ
ラスクロス等の化粧シート等による化粧層を設けてもよ
く、加熱圧締時に化粧シートを一体化すると、生産性が
良好となる。
A decorative layer made of a decorative sheet such as a thin wooden plate, a synthetic resin sheet, or a glass cloth may be provided on the surface of the protective layer. If the decorative sheet is integrated at the time of heating and pressing, the productivity is improved.

実施例1 双腕式ニーダーに黒鉛10kgを入れ、さらに、軟化点8
0℃の固形のレゾール型フェノール樹脂の60%メタノ
ールワニス11kgを加えて30分間攪拌混練した後、こ
の混練物を連続混練押出機で押し出して直径3mmの丸棒
とし、この丸棒を風乾して溶剤のメタノールを揮散し、
ついで、これを粉砕機で粉砕して粒径0.5mm以下の自
硬化性炭素粉粒体を得た。
Example 1 10 kg of graphite was put into a double-arm kneader and the softening point was set to 8
After adding 11 kg of 60% methanol varnish of solid resol type phenol resin at 0 ° C. and stirring and kneading for 30 minutes, this kneaded product was extruded by a continuous kneading extruder to make a round bar having a diameter of 3 mm, and the round bar was air-dried. Evaporate the solvent methanol,
Then, this was crushed by a crusher to obtain a self-curing carbon powder having a particle diameter of 0.5 mm or less.

そして、この自硬化性炭素粉粒体を厚さ17mm、比重
0.70のパーティクルボード(市販品)の表裏面にそれ
ぞれ散布して厚さ約3mm堆積させた後、160℃で5分
間加熱圧締して保護層の厚さをそれぞれ約1.5mmと
し、全体厚さ20mmの建築用材を得、これをサンプルと
した。
Then, this self-curing carbon powder is sprayed on the front and back surfaces of a particle board (commercially available) having a thickness of 17 mm and a specific gravity of 0.70 to deposit a thickness of about 3 mm, and then heated at 160 ° C. for 5 minutes. By tightening the protective layers to a thickness of about 1.5 mm, a building material having a total thickness of 20 mm was obtained and used as a sample.

実施例2 実施例1の基材の代わりに厚さ12mmの石膏ボードを用
いたことを除き、他の実施例1と同様に操作して得た建
築溶剤をサンプルとした。
Example 2 A building solvent obtained by the same procedure as in Example 1 was used as a sample, except that a 12 mm-thick gypsum board was used in place of the substrate in Example 1.

実施例3 5の四つ口フラスコに、フェノール770g、37%
ホルマリン1328g、ヘキサメチレンテトラミン80g
を仕込み、さらに平均粒径5μmのリン片状黒鉛110
0gを仕込んだ。
Example 35 In a four necked flask of 5, 770 g phenol, 37%
Formalin 1328g, Hexamethylenetetramine 80g
And flake graphite 110 having an average particle size of 5 μm.
I charged 0g.

約60分を要した90℃まで昇温し、そのまま3時間反
応を行い、冷却後、別した。これを風乾して、平均粒
径50μmの自硬化性炭素粉粒体を1830g得た。得
られた粉粒体中のフェノール樹脂の含有量は、40%で
あった。
The temperature was raised to 90 ° C., which required about 60 minutes, and the reaction was continued for 3 hours, cooled, and then separated. This was air dried to obtain 1830 g of self-curing carbon powder particles having an average particle size of 50 μm. The content of the phenol resin in the obtained powder and granular material was 40%.

この自硬化性炭素粉粒体を、実施例1と同様に操作して
得た建築用材をサンプルとした。
The building material obtained by operating this self-curing carbon powder in the same manner as in Example 1 was used as a sample.

比較例1 実施例1において使用した自硬化性炭素粉粒体に代えて
黒鉛10kgと200ポイズの粘度を有するレゾール型フ
ェノール樹脂6.5kgとを加え、30分間混練してペー
スト状としたものを直接塗布したことを除き、他は実施
例1と同様に操作して得た建築用材をサンプルとした。
Comparative Example 1 In place of the self-curing carbon powder used in Example 1, 10 kg of graphite and 6.5 kg of a resole type phenolic resin having a viscosity of 200 poise were added and kneaded for 30 minutes to form a paste. A construction material obtained by the same operation as in Example 1 except that the composition was directly applied was used as a sample.

比較例2 市販の比重1.15の木片セメント板をサンプルとし
た。
Comparative Example 2 A commercially available wood chip cement board having a specific gravity of 1.15 was used as a sample.

比較例3 市販の石膏ボード(汎用品)をサンプルとした。Comparative Example 3 A commercially available gypsum board (general-purpose product) was used as a sample.

そして、前記実施例1,2,3および比較例1,2,3につ
いて火炎下の曲げクリープ試験を行なった。
A bending creep test under a flame was conducted on the above-mentioned Examples 1, 2 and 3 and Comparative Examples 1, 2 and 3.

火炎下の曲げクリープ試験は高温環境下における耐火曲
げ性能を知るためのもので、JISA5908に準ずる
ボードの曲げ性能試験方法および装置を用いており、前
記装置は、中央集中荷重点の裏面側に相当する場所に、
一定流量になるように安定器を介して都市ガス供給され
るブンゼンバーナの火炎の先端をあてるように配してあ
る。
The bending creep test under flame is for knowing the fire resistance bending performance in a high temperature environment, and uses the board bending performance test method and device according to JIS A5908. The device corresponds to the back side of the central concentrated load point. Where you want to
It is arranged so that the tip of the flame of Bunsen burner, which is supplied with city gas through a ballast, is applied so that the flow rate is constant.

この火炎先端温度は約700℃であり、サンプルの曲げ
破壊強度の1/5に設定した荷重を加え、破壊に至るま
での所要時間と荷重点の変位量とを測定した。
The flame tip temperature was about 700 ° C., a load set to ⅕ of the bending fracture strength of the sample was applied, and the time required until the fracture and the displacement amount at the load point were measured.

測定結果を第1表に示す。The measurement results are shown in Table 1.

以上の測定結果から明らかなように、実施例1,2,3は
いずれも、比較例1,2,3よりも3倍ないし9倍の耐火
性能があることがわかった。
As is clear from the above measurement results, it was found that each of Examples 1, 2, and 3 had a fire resistance performance 3 to 9 times that of Comparative Examples 1, 2, and 3.

発明の効果 以上の説明から明らかなように、自硬化性炭素粉粒体を
基材の表面に配し、加熱圧締して保護層を形成すれば、
基材の表面に均一で緻密な保護層を形成することがで
き、耐火性にバラツキのない建築用材を得ることができ
る。
EFFECTS OF THE INVENTION As is clear from the above description, by disposing the self-curing carbon powder on the surface of the base material and heating and pressing to form the protective layer,
A uniform and dense protective layer can be formed on the surface of the base material, and a building material having no variation in fire resistance can be obtained.

しかも、前記保護層を形成する炭素粉粒は熱硬化性樹脂
を介してそれ自身が粉末接着剤的な機能を有するので、
基材が多孔質であっても、基材の空孔に侵入して基材と
強力に一体化する。又、炭素粉粒からなる保護層は熱膨
張が小さいので、高温の環境下で基材と保護層との間に
生じる応力集中が極めて小さい。この結果、反り,はく
離,クラック等が生じにくく、火災時においても充分な
強度を長時間維持し得る。
Moreover, since the carbon powder particles forming the protective layer have a function as a powder adhesive themselves through the thermosetting resin,
Even if the base material is porous, it penetrates into the pores of the base material and strongly integrates with the base material. Further, since the protective layer made of carbon powder particles has a small thermal expansion, the stress concentration generated between the base material and the protective layer in a high temperature environment is extremely small. As a result, warpage, peeling, cracks, etc. are unlikely to occur, and sufficient strength can be maintained for a long time even in the event of a fire.

また、炭素粉粒および合成樹脂からなる均一で緻密な保
護層で被覆された本願建築用材は、前記炭素粉粒の酸素
指数が大きいため、空気中で着火、展炎しにくいととも
に、酸素が遮断される。このため、基材が木質材であっ
ても内部が燃焼しないので、火炎が貫通せず、火災時に
突然くずれ落ちたりしないという耐火性能上、有用な効
果がある。
In addition, the building material of the present application, which is covered with a uniform and dense protective layer made of carbon powder and synthetic resin, has a large oxygen index of the carbon powder, which makes it difficult to ignite or spread in the air and block oxygen. To be done. For this reason, even if the base material is a wood material, the inside does not burn, so the flame does not penetrate, and there is a useful effect in terms of fire resistance that it does not suddenly fall off during a fire.

フロントページの続き (72)発明者 ▲吉▼田 弥寿郎 富山県東礪波郡井波町井波1番地ノ1 大 建工業株式会社内 (72)発明者 ▲吉▼田 綏 兵庫県川西市多田院字小寺前4―21 (72)発明者 高松 淳久 大阪府大阪市都島区内代町2―14―5 (72)発明者 井出 勇 大阪府堺市金岡町1648―15Front Page Continuation (72) Inventor ▲ Yoshi ▼ Yasutoro Tada 1 Inaba, Inami-cho, Higashibura-gun, Toyama Prefecture Within Daiken Kogyo Co., Ltd. Previous 4-21 (72) Inventor Atsushi Takamatsu 2-14-5 Uchishiro-cho, Miyakojima-ku, Osaka-shi, Osaka (72) Inventor Isamu Ide 1648-15 Kanaoka-cho, Sakai-shi, Osaka

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】主に炭素成分からなる粉粒の表面に熱硬化
性樹脂を付着してなる自硬化性炭素粉粒体を、基材の表
面に配した後、加熱圧締して基材の表面に一体な保護層
を形成することを特徴とする建築用材の製造方法。
1. A base material is prepared by arranging a self-curing carbon powder material obtained by adhering a thermosetting resin on the surface of powder particles mainly composed of carbon component, on the surface of the base material, followed by heating and pressing. A method for manufacturing a building material, comprising forming an integral protective layer on the surface of the building.
JP6160288A 1988-03-14 1988-03-14 Manufacturing method of building materials Expired - Fee Related JPH0622972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6160288A JPH0622972B2 (en) 1988-03-14 1988-03-14 Manufacturing method of building materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6160288A JPH0622972B2 (en) 1988-03-14 1988-03-14 Manufacturing method of building materials

Publications (2)

Publication Number Publication Date
JPH01234233A JPH01234233A (en) 1989-09-19
JPH0622972B2 true JPH0622972B2 (en) 1994-03-30

Family

ID=13175878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6160288A Expired - Fee Related JPH0622972B2 (en) 1988-03-14 1988-03-14 Manufacturing method of building materials

Country Status (1)

Country Link
JP (1) JPH0622972B2 (en)

Also Published As

Publication number Publication date
JPH01234233A (en) 1989-09-19

Similar Documents

Publication Publication Date Title
US20030003284A1 (en) Multilayer composite materials with at least one aerogel-containing layer and at least one layer containing polyethylene terephthalate fibres, process for producing the same and their use
KR100798124B1 (en) Noncombustible panel for construction
KR20200063934A (en) Composition for cement-based 3d printing exterior material having lightweight and flame retardant preformance
JP2969216B2 (en) Manufacturing method of building materials
JPH0622972B2 (en) Manufacturing method of building materials
JPH0757682B2 (en) Method for producing self-hardening rice husk charcoal granules
JPH0622973B2 (en) Manufacturing method of building materials
Beh et al. Development of lightweight fire resistant sandwich panel
JPH0622971B2 (en) Fireproof building material
KR100468083B1 (en) Refractory liquid and method of manufacturing the same, and refractory material, refractory building material and refractory adhesive each manufactured from the refractory liquid
US20060142155A1 (en) Gas absorbing material
JP2966429B2 (en) Refractory material
JPH0574460B2 (en)
JP3849981B2 (en) Building spray
JPH02136486A (en) Fireproof safe
JP2000095553A (en) Wood-wool cement board
JP3987634B2 (en) Building materials, building boards, and building insulation structures
WO2019065226A1 (en) Mineral board and production method therefor
SU1068404A1 (en) Method for making refractory heat insulating products
JPH02231135A (en) Fire resistant composite material
JP7436172B2 (en) Inorganic fiber molded body
JPH0640777A (en) Lightweight fiberproof composite panel and its production
JPS5913473B2 (en) Manufacturing method of lightweight molded body
JPS6221771A (en) Foamed body ceramic board
TWM331011U (en) Bamboo charcoal board

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees