JPH02197661A - Non-charged floor panel - Google Patents

Non-charged floor panel

Info

Publication number
JPH02197661A
JPH02197661A JP1707989A JP1707989A JPH02197661A JP H02197661 A JPH02197661 A JP H02197661A JP 1707989 A JP1707989 A JP 1707989A JP 1707989 A JP1707989 A JP 1707989A JP H02197661 A JPH02197661 A JP H02197661A
Authority
JP
Japan
Prior art keywords
floor panel
base material
carbon powder
layer
floor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1707989A
Other languages
Japanese (ja)
Inventor
Shigehisa Ishihara
石原 茂久
Shuichi Kawai
川井 秀一
Yasushi Yoshida
吉田 綏
Isamu Ide
勇 井出
Atsuhisa Takamatsu
高松 淳久
Yasurou Yoshida
吉田 哉寿郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiken Trade and Industry Co Ltd
Lignyte Co Ltd
Original Assignee
Daiken Trade and Industry Co Ltd
Lignyte Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiken Trade and Industry Co Ltd, Lignyte Co Ltd filed Critical Daiken Trade and Industry Co Ltd
Priority to JP1707989A priority Critical patent/JPH02197661A/en
Publication of JPH02197661A publication Critical patent/JPH02197661A/en
Pending legal-status Critical Current

Links

Landscapes

  • Floor Finish (AREA)

Abstract

PURPOSE:To promote sound proof efficiency by providing leg bodies to four corners underneath a base material having non-charged layers constituted mainly of carbon powder and thermosetting resin on the surface thereof. CONSTITUTION:Non-charged layers 3 constituted mainly of carbon powder and thermowetting resin having a thickness about 0.4-5mm are provided to at least the upper surface of a base material 2 of a woody material and the like to form a floor panel 1. Four metallic leg bodies 5 are respectively mounted to corners underneath the floor panel 1 to form together with the floor panel as a unit. In addition, the side ends of the floor panel 1 are confronted with each other to form a floor, A conductive tape 6 is stuck between adjacent non-charged layers 3 of the floor panel 1 to connect electrically and, at the same time, the edge of the non-charged layer 3 located at the fasthest outside is earthed. According to the constitution, execution can be easily carried out.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は非帯電性パネル、具体的には、それ自体が帯電
することがなく、人体等に発生、帯電した静電気を除去
しうる非帯電性床パネルに関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a non-static panel, specifically, a non-static panel that does not itself become charged and is capable of removing static electricity generated and charged in the human body, etc. Regarding sexual floor panels.

(従来技術と発明が解決しようとする課題)一般に、着
衣同士の摩擦や靴とカーペットとの摩擦等により人体は
帯電状態にある。そして、このような状態でドアのノブ
やOA機器等に接触すると、人体に帯電した静電気が放
電され、人体が電気的ショックを受けるとともに、OA
機器が静電破壊を生じることは広く知られている。この
ため、従来より、床パネルを構成する基材の表面層や中
層にアルミシートやステンレスシートからなる非帯電層
を設け、この非帯電層を介して人体に発生、帯電した静
電気を除去することにより、前述の不具合を解消できる
非帯電性床パネルが開発されている。
(Prior Art and Problems to be Solved by the Invention) In general, the human body is electrically charged due to friction between clothes or friction between shoes and a carpet. If you touch a doorknob or OA equipment in such a state, the static electricity charged in your body will be discharged, and your body will receive an electric shock and the OA equipment will also discharge.
It is widely known that equipment can be damaged by electrostatic discharge. For this reason, conventionally, an uncharged layer made of aluminum sheet or stainless steel sheet is provided on the surface layer or middle layer of the base material that makes up the floor panel, and the static electricity generated and charged on the human body is removed through this uncharged layer. As a result, a non-static floor panel has been developed that can eliminate the above-mentioned problems.

しかしながら、前記非帯電性床パネルはアルミシートや
ステンレスシートを使用しているので、衝撃吸収性に乏
しく、歩行者や振動音が伝わりやすいとともに、歩行感
が悪かった。
However, since the non-electrostatic floor panel uses an aluminum sheet or a stainless steel sheet, it has poor shock absorption properties, easily transmits pedestrian and vibration sounds, and has a poor walking feel.

しかも、前述したような金属製シートは、単位面積当た
りの重量を増大させるだけでなく、孔あけや切断に手間
がかかるなど、床パネルの加工性を悪化させるという問
題点があった。
Moreover, the above-mentioned metal sheet not only increases the weight per unit area, but also has the problem of deteriorating the workability of the floor panel, such as requiring time and effort to drill and cut.

本発明は、前記問題点に鑑み、防音性に優れ、歩行感を
向上させるとともに、軽量で加工しゃすい非帯電性床パ
ネルを提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a non-static floor panel that has excellent soundproofing properties, improves the feeling of walking, and is lightweight and easy to process.

(課題を解決するための手段) 本発明にかかる非帯電性床パネルは、前記目的を達成す
るため、主として炭素粉末と熱硬化性樹脂とからなる非
帯電層を、基材の少なくとら上面に設けた構成としであ
る。
(Means for Solving the Problems) In order to achieve the above object, the non-static floor panel according to the present invention has an anti-static layer mainly composed of carbon powder and a thermosetting resin on at least the upper surface of the base material. This is the configuration provided.

前記炭素粉末としては黒鉛や炭が挙げられ、萌記炭には
、木材やコーリャン、麦、砂糖きび、稲、粟など禾本科
植物の種子や外皮、幹、枝、葉などの他、籾殻を焼成し
て得られるものが含まれる。
Examples of the carbon powder include graphite and charcoal, and Mengki charcoal includes seeds, husks, trunks, branches, leaves, etc. of plants in the family family, such as wood, kolyang, wheat, sugar cane, rice, and millet, as well as burned rice husks. This includes those obtained by

前記植物等を焼成する場合、その焼成温度は高いほど好
適である。これは、炭化は一般に焼成温度300〜50
0℃程度で進行するが、1000℃以上の温度で焼成す
ると、炭が収縮するとともに、比表面積が小さくなり、
しかも、炭素リッチになるからである。
When burning the plants, etc., the higher the baking temperature is, the more suitable it is. This is because carbonization is generally performed at a firing temperature of 300 to 50
It progresses at about 0℃, but when fired at a temperature of 1000℃ or higher, the charcoal shrinks and its specific surface area becomes smaller.
Moreover, it becomes carbon rich.

なお、前記炭素粉末は必ずしも単体で使用する必要はな
く、これにシリカ、アルミナ、マグネシアなどの粉末を
配合したものを使用してもよく、さらに、必要に応じて
繊維状の補強材、増量材および軽量骨材等を配合しても
よい。
Note that the carbon powder does not necessarily have to be used alone, and may be used in combination with powders such as silica, alumina, magnesia, etc. Furthermore, if necessary, fibrous reinforcing materials and fillers may be used. Also, lightweight aggregates and the like may be added.

また、前記炭素粉末を主成分とする粉粒体(以下、「炭
素粉粒体」という)の粒径は、特に限定されるものでは
ないが、0.2〜200μm程度が好ましい。
Further, the particle size of the granular material containing carbon powder as a main component (hereinafter referred to as "carbon granular material") is not particularly limited, but is preferably about 0.2 to 200 μm.

前記熱硬化性樹脂としては、ノボラック型フェノール樹
脂、レゾール型フェノール樹脂、フラン樹脂、メラミン
樹脂など任意のものを用いることができる。
As the thermosetting resin, any one such as a novolac type phenol resin, a resol type phenol resin, a furan resin, a melamine resin, etc. can be used.

前記基材としては、合板、パーティクルボード。The base material is plywood or particle board.

LVL、木材板等の木質材の他、石膏板、ケイ酸カルシ
ウム板、木片セメント板、スラグ石膏板等の水硬性無機
質材の単体またはこれらの複合体が挙げられるが、軽量
で加工しやすいものとするためには木質系のものが好ま
しい。基材の大きさは一辺の長さが300〜600mm
の正方形又は長方形が一般的で、厚さは20〜60mm
の範囲で選択される。
In addition to wood materials such as LVL and wood boards, examples include single or composite hydraulic inorganic materials such as gypsum boards, calcium silicate boards, wood chip cement boards, and slag plaster boards, which are lightweight and easy to process. In order to achieve this, wood-based materials are preferred. The size of the base material is 300 to 600 mm on one side.
It is generally square or rectangular, with a thickness of 20 to 60 mm.
selected within the range.

前記大きさに形成した非帯電性床パネルの下面4隅に脚
体(実施例で詳述する)を取付け、床スラブ上に敷設し
て用いる。
Legs (described in detail in Examples) are attached to the four corners of the lower surface of the non-static floor panel formed to the above size, and used by laying it on a floor slab.

脚体は床スラブと床パネルとの間に空間層を設けること
により、ケーブルを配設するためのものである。
The legs provide a space layer between the floor slab and the floor panel for arranging cables.

脚体を金属製にして非帯電層と導電材とを介して電気的
に接続し、脚体を介して壁面方向や床スラブにアースす
ることが好ましい。又、脚体の下端部には防音性を考慮
する場合、ゴム製の脚部を用いることが好ましいが、金
属性脚部を用いると、床スラブにもアース可能で帯電防
止効果がより一層向上する。
It is preferable that the legs be made of metal and electrically connected via an uncharged layer and a conductive material, and grounded to a wall surface or a floor slab via the legs. In addition, when considering soundproofing properties, it is preferable to use rubber legs at the lower ends of the legs, but if metal legs are used, they can be grounded to the floor slab, further improving the antistatic effect. do.

なお、脱着の頻度が少ない場合は一辺の長さを900〜
1800mmの大版サイズとしてもよい。
In addition, if the frequency of attachment and detachment is low, the length of one side should be 900~
It may be a large size of 1800 mm.

その場合は、下面辺部や下面中央部に所定間隔で脚体を
設けておくことが好ましい。
In that case, it is preferable to provide legs at predetermined intervals on the sides of the lower surface or in the center of the lower surface.

前記基材に非帯電層を形成する方法としては、例えば、
炭素粉粒体と熱硬化性樹脂とを直接混練し、これを用い
て非帯電層を形成する方法、および、前記炭素粉粒体の
表面に熱硬化性樹脂を付着させてなる自硬化性粉粒体を
作成した後、これを用いて非帯電層を形成する2つの方
法があるが、炭素粉粒体は樹脂との濡れ性が悪いため、
前者のように炭素粉粒体と熱硬化性樹脂とを混練しても
、バラツキなく炭素粉粒体を熱硬化性樹脂内で分散。
As a method for forming an uncharged layer on the base material, for example,
A method of directly kneading carbon powder and a thermosetting resin and using the same to form an uncharged layer, and a self-curing powder obtained by attaching a thermosetting resin to the surface of the carbon powder. There are two methods of forming an uncharged layer using the granules after they have been created, but carbon powder has poor wettability with resin.
Even when carbon powder and thermosetting resin are kneaded like in the former case, the carbon powder is uniformly dispersed within the thermosetting resin.

固着させることは困難である。この問題は、後者の方法
を採用することにより、解決できる。すなわち、後者の
方法によれば、あらかじめ炭素粉粒体の表面に熱硬化性
樹脂を付着させて自硬化性粉粒体を作成した後、これを
基材表面に層着して非帯電層を形成するので、炭素粉粒
体が非帯電層内で均等に分散する。このため、後者の方
法によれば、密度のバラツキが少ない非帯電層を形成で
き、基材との十分な接着性とバラツキの少ない導電性能
とを有する非帯電性床パネルが得られるという利点があ
る。
It is difficult to make it stick. This problem can be solved by adopting the latter method. That is, according to the latter method, a thermosetting resin is attached to the surface of carbon powder in advance to create a self-curing powder, and then this is layered on the surface of the base material to form an uncharged layer. As a result, the carbon powder is evenly dispersed within the uncharged layer. Therefore, the latter method has the advantage that it is possible to form an uncharged layer with less variation in density, and to obtain an uncharged floor panel that has sufficient adhesion to the base material and conductive performance with less variation. be.

後者の方法において用いる自硬化性粉粒体は、例えば、
以下の方法によって製造しうる。
The self-curing powder used in the latter method is, for example,
It can be manufactured by the following method.

第1は、炭素粉粒体および固形の熱硬化性樹脂の低分子
材料、例えばレゾール型フェノール樹脂の初期縮合物を
ニーグーに投入し、これらをアルコールなどの溶剤等と
ともに混練した後、混練物をニーグーから取り出し、こ
れを押出し成形機に投入し、さらに混練しつつ押し出し
て得た成形物を乾燥し、これを粉砕することにより、自
硬化性粉粒体を得る方法である。
First, carbon powder and a low-molecular material such as a solid thermosetting resin, such as an initial condensate of a resol type phenolic resin, are put into a Nigu, and after kneading these with a solvent such as alcohol, the kneaded product is In this method, a self-hardening powder is obtained by taking out the product from Nigu, putting it into an extrusion molding machine, extruding it while kneading it, drying the resulting molded product, and pulverizing it.

第2は、熱硬化性樹脂の初期縮合物を合成すると同時に
、この熱硬化性樹脂を炭素粉粒体の表面に付着させる方
法である。すなわち、フェノール樹脂の初期縮合物を反
応させる際に、反応容器にフェノール類やアルデヒド類
とともに炭素粉粒体を投入し、この状態でフェノール樹
脂の合成反応をおこなわせることにより、炭素粉粒体の
表面にフェノール樹脂の初期縮合物を均等に付着させ、
これを濾別して乾燥することにより、自硬化性粉粒体を
得る方法である。
The second is a method in which an initial condensate of a thermosetting resin is synthesized and, at the same time, this thermosetting resin is attached to the surface of carbon powder. That is, when reacting the initial condensate of phenolic resin, carbon powder is introduced into the reaction vessel along with phenols and aldehydes, and the phenol resin synthesis reaction is carried out in this state. Apply the initial condensate of phenolic resin evenly to the surface,
This is a method of obtaining self-hardening powder by filtering and drying the powder.

なお、熱硬化性樹脂の初期縮合物を合成する際に炭素粉
粒体を投入して混練すると、合成した初期縮合物に炭素
粉粒体を投入して混練する場合よりも、炭素粉粒体の表
面に熱硬化性樹脂が均等に付着するので、均等な非帯電
層を形成するためには、第2の方法で得られた自硬化性
粉粒体を用いるのが好ましい。
In addition, if carbon powder is added and kneaded when synthesizing the initial condensate of a thermosetting resin, the carbon powder will be more concentrated than when the carbon powder is added to the synthesized initial condensate and kneaded. Since the thermosetting resin evenly adheres to the surface of the thermosetting resin, it is preferable to use the self-curing powder obtained by the second method in order to form a uniform uncharged layer.

また、自硬化性粉粒体を作成する際における炭素粉粒体
と熱硬化性樹脂との含有割合は、炭素粉粒体100重量
部に対して熱硬化性樹脂を10〜80重量部の範囲に設
定するのが好ましい。熱硬化性樹脂が10重量部以下で
あると、使用に際し、基材との接着性等の機械的強度が
低くなり、好ましくないからであり、80重量部以上で
あると、フェノール樹脂リッチになる為、電気抵抗が高
くなるからである。
In addition, the content ratio of the carbon powder and thermosetting resin when creating the self-curing powder is in the range of 10 to 80 parts by weight of the thermosetting resin to 100 parts by weight of the carbon powder. It is preferable to set it to . If the thermosetting resin is 10 parts by weight or less, the mechanical strength such as adhesion with the base material will be lowered during use, which is undesirable. If it is 80 parts by weight or more, it will become rich in phenolic resin. This is because the electrical resistance becomes high.

前述のようにして得た自硬化性粉粒体を用いて基材の表
面に非帯電層を形成する方法としては以下に述べる各種
の方法がある。
There are various methods described below as methods for forming an uncharged layer on the surface of a substrate using the self-hardening powder obtained as described above.

第1は、基材の表面に自硬化性粉粒体を均等な厚さに散
布した後、加熱加圧成形することにより、基材の表面に
非帯電層を一体に形成する方法である。
The first method is to integrally form an uncharged layer on the surface of the base material by dispersing self-curing powder to a uniform thickness on the surface of the base material and then performing heating and pressure molding.

第2は、前記自硬化性粉粒体をプレート上に均等に散布
し、これを50〜100℃程度に加熱したロール等で加
圧することにより、自硬化性粉粒体を部分的に圧着させ
てあらかじめシート材を作成し、このシート材を基材の
表面に重ねて加熱加圧成形することにより、基材の表面
に非帯電層を一体に形成する方法である。
The second method is to spread the self-hardening powder evenly onto a plate and press it with a roll or the like heated to about 50 to 100°C, thereby partially compressing the self-hardening powder. This is a method of forming a non-charged layer integrally on the surface of a base material by creating a sheet material in advance, overlapping the sheet material on the surface of the base material, and molding under heat and pressure.

第3は、パーティクルボード、木片セメント板などを製
板すると同時に非帯電層3を形成する方法である。すな
わち、木片と接着樹脂又はセメントとを混練してなるフ
ォーミングマットの表面に前記自硬化性粉粒体を均一の
厚さに散布した後、これを加熱加圧成形することにより
、パーティクルボードなどの製板と同時に、その表面に
非帯電層を一体に形成する方法である。この方法によれ
ば、基材と非帯電層とが強固に密着するので、前述した
3つの方法の中では最も好適である。
The third method is to form the non-charged layer 3 at the same time as particle board, wood chip cement board, etc. are made. That is, the self-hardening powder is spread to a uniform thickness on the surface of a forming mat made by kneading wood chips and adhesive resin or cement, and then heated and pressure-molded to form a particle board or the like. This is a method in which an uncharged layer is integrally formed on the surface of the plate at the same time as the plate is made. According to this method, the base material and the uncharged layer are brought into close contact with each other, so it is the most suitable among the three methods described above.

なお、前記のような非帯電層を形成するにあたり、非帯
電層の厚みは0.4m m〜5mi+程度に設定するの
が好ましい。0.4mm以下であると、非帯電層が不均
一になり、欠落するおそれがあるからであり、5III
In以上であると、コスト高になるからである。
In forming the above-mentioned uncharged layer, the thickness of the uncharged layer is preferably set to about 0.4 mm to 5 mi+. This is because if it is less than 0.4 mm, the uncharged layer may become non-uniform and may be missing.
This is because if it is more than In, the cost will be high.

本発明の床パネルの非帯電層の電気抵抗(体積抵抗率)
を測定したところ、その抵抗率はlO6〜105Ωc1
1の範囲内であった。これを基材に用いる木質材の抵抗
率lO@〜10″Ωcmやバインダーとして用いるフェ
ノール樹脂の抵抗率10″〜10′″と比べると、極め
て小さく、良好な導電性を有するので、帯電防止効果が
大きい。
Electrical resistance (volume resistivity) of the uncharged layer of the floor panel of the present invention
When measured, the resistivity was lO6~105Ωc1
It was within the range of 1. Compared to the resistivity of the wood material used as the base material, lO@~10''Ωcm, and the resistivity of the phenol resin used as the binder, 10''~10'', it is extremely small and has good conductivity, so it has an antistatic effect. is large.

また、本願床パネルを敷設して床面を形成した後、その
表面に帯電防止性タイルカーペットや長尺発泡塩ビシー
ト等の床仕上げ材を敷設するのが一般的であるが、本願
パネルの表面に帯電防止処理した塩ビシートやカーペッ
ト等の化粧材を予め貼着一体化しておいてもよい。
In addition, after laying the floor panel of the present application to form a floor surface, it is common to lay a floor finishing material such as antistatic tile carpet or long foamed PVC sheet on the surface. A decorative material such as a PVC sheet or carpet that has been subjected to antistatic treatment may be attached and integrated in advance.

(実施例) 次に、前述の方法で得られた非帯電性床パネルを施工し
た場合の実施例について説明する。
(Example) Next, an example in which a non-static floor panel obtained by the above-described method was constructed will be described.

第1実施例は、第1図および第2図に示すように、基材
2の上面に非帯電層3を設けて非帯電性床パネル1を形
成するとともに、この床パネルlの下面隅部に4本の金
属製脚体5をそれぞれ取り付けた場合である。すなわち
、前記金属製脚体5は、その下端部にゴム製脚部又は金
属製脚部5aを有する。さらに、前記金属製脚体5は、
その上端部に固定用台座部5bを一体化したもので、前
記固定用台座部5bを基材2の下面隅部にビス止めする
ことにより、床パネル!に一体化されている。
In the first embodiment, as shown in FIGS. 1 and 2, a non-charging layer 3 is provided on the upper surface of a base material 2 to form a non-charging floor panel 1, and the bottom corner of this floor panel 1 is This is a case where four metal legs 5 are attached to each of the four metal legs 5. That is, the metal leg 5 has a rubber leg or a metal leg 5a at its lower end. Furthermore, the metal leg 5 is
A fixing pedestal part 5b is integrated into the upper end of the base material, and by screwing the fixing pedestal part 5b to the bottom corner of the base material 2, the floor panel can be created! is integrated into.

そして、前記床パネルlの側端面同士を突き合わせて床
面を形成し、床パネル1の隣接する非帯電層3間に導電
性テープ6を貼着して電気的接続するとともに、最外側
に位置する非帯電層3の縁部をアースした床構造となっ
ている。
Then, the side end surfaces of the floor panels 1 are butted against each other to form a floor surface, and a conductive tape 6 is pasted between the adjacent non-charged layers 3 of the floor panel 1 for electrical connection. It has a floor structure in which the edge of the uncharged layer 3 is grounded.

第2実施例は、第3図および第4図に示すように、基材
2の表裏面に非帯電層3.4を形成し、この非帯電層3
.4間にタブピングビス等の導電性ビン7をねじ込んで
電気的接続することにより、非帯電性床パネルlを形成
した場合である。さらに、前記床パネルlの下面隅部に
設けた凹孔8aにボルト8の上端部を挿入することによ
り、非帯電層4とボルト8とを電気的接続するとともに
、床パネル1の高さを調整できるようにしである。
In the second embodiment, as shown in FIGS. 3 and 4, uncharged layers 3.4 are formed on the front and back surfaces of the base material 2, and
.. This is a case where a non-static floor panel 1 is formed by screwing a conductive bottle 7 such as a tab pin screw between the 4 and 4 to make an electrical connection. Furthermore, by inserting the upper end of the bolt 8 into the recessed hole 8a provided in the lower corner of the floor panel l, the uncharged layer 4 and the bolt 8 are electrically connected, and the height of the floor panel 1 is reduced. It is adjustable.

そして、前記床パネル1の側端面同士を突き合わせて床
面を形成し、隣り合うボルト8.8同士を導電性連結材
9で連結するとともに、最外側に位置するボルト8をア
ースした床構造となっている。
Then, the side end surfaces of the floor panels 1 are butted against each other to form a floor surface, adjacent bolts 8 and 8 are connected with a conductive connecting material 9, and the outermost bolt 8 is grounded. It has become.

本実施例によれば、隣り合うボルト8.8を連結材9で
連結しているので、地震時における横ゆれを防止できる
という利点がある。
According to this embodiment, since the adjacent bolts 8.8 are connected by the connecting member 9, there is an advantage that sideways shaking during an earthquake can be prevented.

第3実施例は、第5図および第6図に示すように、基材
2の上面に非帯電層3を設けて非帯電性床パネル1を形
成し、この床パネルlの隅部に設けた貫通孔11aに雌
ねじ金具11を取り付けて非帯電層3に電気的接続し、
さらに、前記雌ねじ金具11にボルト8をねじ込むこと
により、電気的接続するとともに、高さ調整可能とした
場合である。
In the third embodiment, as shown in FIGS. 5 and 6, a non-charging layer 3 is provided on the upper surface of a base material 2 to form a non-charging floor panel 1. The female screw fitting 11 is attached to the through hole 11a and electrically connected to the non-charged layer 3,
Furthermore, by screwing the bolt 8 into the female threaded fitting 11, an electrical connection is established and the height can be adjusted.

そして、床パネルlの側端面を突き合わせて床面を形成
し、隣合うボルト8.8の下端に金属性脚部5aを設け
、床スラブへ電気的接続してアースした床構造となって
いる。
Then, a floor surface is formed by butting the side end surfaces of the floor panels l, metal legs 5a are provided at the lower ends of adjacent bolts 8.8, and the floor structure is electrically connected to the floor slab and grounded. .

第4実施例は、第7図および第8図に示すように、基材
2の上面に非帯電層3を形成するとともに、対向する側
端面に相互に組み付は可能な相欠き部13.14を設け
、この相欠き部13.14に金属板等導電材13a、1
4aを設け、非帯電層3を延設して非帯電性床パネルl
を形成した場合で、床パネル!の下面隅部には脚体5が
設けられている。
In the fourth embodiment, as shown in FIGS. 7 and 8, an uncharged layer 3 is formed on the upper surface of a base material 2, and mutually removable recessed portions 13 are formed on opposing side end surfaces. 14, and a conductive material 13a, 1 such as a metal plate is provided in this phase notch 13.14.
4a and extend the non-charging layer 3 to form a non-charging floor panel l.
If formed, the floor panel! Legs 5 are provided at the corners of the lower surface.

そして、前記床パネル1の相欠き部13,14を嵌合し
て電気的接続を図りながら床面を形成するとともに、最
外側に位置する非帯電層3をアースした床構造となって
いる。
A floor surface is formed by fitting the recessed portions 13 and 14 of the floor panel 1 to form an electrical connection, and the uncharged layer 3 located at the outermost side is grounded.

なお、前述の実施例では、床パネル1の上面に、帯電防
止処理を施したカーペットや樹脂シートを化粧材として
貼着一体化しておいてもよい。
In the above-mentioned embodiment, a carpet or resin sheet treated with antistatic treatment may be integrally attached to the upper surface of the floor panel 1 as a decorative material.

次に、本願にかかる非帯電層の導電性に関する実験例に
ついて述べる。
Next, an experimental example regarding the conductivity of the uncharged layer according to the present application will be described.

実験例1 反応容器にフェノールを770重量部、37%ホルマリ
ンを1328重量部、ヘキサメチレンテトラミン80重
量部を仕込み、さらに平均粒径5μ麿、固形炭素量87
.5%のリン片状黒鉛1100重量部を仕込んだ。これ
を約60分を要して90℃まで昇温し、そのまま3時間
反応をおこない、冷却後、濾別して風乾することにより
、平均粒径が50μ■の自硬化性粉粒体1830重量部
を得た。この自硬化性粉粒体中のフェノール樹脂の含有
量は40重量%であった。そして、この自硬化性粉粒体
を温度160℃、圧力25kgf/cra’の条件で1
0分間加熱圧締し、厚さ5mm。
Experimental Example 1 A reaction vessel was charged with 770 parts by weight of phenol, 1328 parts by weight of 37% formalin, and 80 parts by weight of hexamethylenetetramine, and further added with an average particle size of 5 μm and a solid carbon content of 87
.. 1100 parts by weight of 5% scale graphite was charged. This was heated to 90°C over about 60 minutes, reacted for 3 hours, cooled, filtered, and air-dried to obtain 1830 parts by weight of self-hardening powder with an average particle size of 50μ. Obtained. The content of phenolic resin in this self-curing powder was 40% by weight. Then, this self-hardening powder was heated at a temperature of 160°C and a pressure of 25 kgf/cra'.
Heat and press for 0 minutes to a thickness of 5 mm.

比重0.8の板状のサンプルを得、さらに、前述と同様
な操作によって異なる比重のサンプルを得、これらの表
面抵抗率1体積抵抗率を測定した(JISK6911 
 測定機;タケダ理研TR6843)。
A plate-shaped sample with a specific gravity of 0.8 was obtained, and samples with different specific gravity were obtained by the same operation as described above, and the surface resistivity 1 volume resistivity of these samples was measured (JISK6911
Measuring machine; Takeda Riken TR6843).

実験例2 炭素粉末として平均粒径lOμl、固定炭素量77.5
%の玉状の黒鉛を用い、他は前述の実験例1と同様にし
て得たサンプルの表面抵抗9体積抵抗を測定した。
Experimental example 2 Average particle size of carbon powder: lOμl, amount of fixed carbon: 77.5
The surface resistance 9 volume resistivity of a sample obtained in the same manner as in Experimental Example 1 described above except for using % bead-shaped graphite was measured.

比較例 炭素粉末の代わりに28メツシユを通過した市販のオガ
クズを用い、他は前述の実施例1と同様にして得たサン
プルの表面抵抗1体積抵抗を測定した。
Comparative Example The surface resistance 1 volume resistance of a sample obtained in the same manner as in Example 1 above was measured except that commercially available sawdust that had passed through 28 meshes was used in place of the carbon powder.

測定結果を第1表および第2表に示す。The measurement results are shown in Tables 1 and 2.

第1表 表面抵抗率(Ω) 第2表 体積抵抗率(0cm) 以上の測定結果から明らかなように、実験例1および実
験例2は比較例に比し、表面抵抗9体積抵抗が極めて小
さく、静電気を帯電しにくいものであることがわかった
。したがって、実験例1および実験例2にかかるサンプ
ルを基材の表面に一体に設けて非帯電層を形成すれば、
この非帯電層を介して人体に発生、帯電した静電気が除
去されるので、電気的ショックやOA機器の静電破壊を
防止できると考えられる。
Table 1: Surface resistivity (Ω) Table 2: Volume resistivity (0 cm) As is clear from the above measurement results, the surface resistance 9 volume resistivity of Experimental Examples 1 and 2 is extremely small compared to the comparative example. It was found that it is difficult to charge static electricity. Therefore, if the samples according to Experimental Examples 1 and 2 are integrally provided on the surface of the base material to form an uncharged layer,
Since the static electricity generated and charged in the human body is removed through this uncharged layer, it is thought that electric shock and electrostatic damage to OA equipment can be prevented.

実験例3 厚さ30mmのパーティクルボードの表面に実験例!で
用いた自硬化性粉粒体を散布し、温度160℃、圧力2
5kgf/am”で3分間加熱圧締することにより、厚
さ1a+eないし2IIIlの非帯電層を有する非帯電
性床パネルを作成した。
Experimental example 3 Experimental example on the surface of a particle board with a thickness of 30 mm! Sprinkle the self-hardening powder used in
A non-static floor panel having a non-static layer having a thickness of 1a+e to 2IIIl was produced by heating and pressing at 5 kgf/am'' for 3 minutes.

得られた床パネルは、木工用工具で切断、穴あけ可能で
あり、歩行時も木質パネルと同等の感触。
The resulting floor panel can be cut and drilled with woodworking tools, and feels the same as a wood panel when walking on it.

音の発生であった。It was the generation of sound.

(発明の効果) 以上の説明から明らかなように、本発明は基材の表面に
アルミシートやステンレスシートからなる非帯電層を設
けるのではなく、少なくとも炭素粉末と熱硬化性樹脂と
からなる非帯電層を設けであるので、衝撃吸収力が大き
く、振動音等の伝播が少ないとともに、歩行感が良く、
疲労感の少ない非帯電性床パネルが得られる。
(Effects of the Invention) As is clear from the above explanation, the present invention does not provide an uncharged layer made of an aluminum sheet or a stainless steel sheet on the surface of a base material, but rather an uncharged layer made of at least carbon powder and a thermosetting resin. Because it has a charged layer, it has a high shock absorption capacity, reduces the propagation of vibration noise, etc., and has a good walking feel.
A non-static floor panel with less fatigue feeling can be obtained.

さらに、少なくとも炭素粉末と熱硬化性樹脂とからなる
非帯電層は、切削性に優れているので、施工時における
孔あけや切断が容易となり、特別な技術や工具を用いる
ことなく、従来の帯電防止処理のない床パネルと同様の
施工が可能となるという効果がある。
Furthermore, since the non-electrostatic layer made of at least carbon powder and thermosetting resin has excellent machinability, it is easy to drill and cut holes during construction, making it possible to remove the conventional electrostatic charge without using special techniques or tools. This has the effect that it can be constructed in the same way as floor panels without prevention treatment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明にかかる非帯電性床パネル
の第1実施例を示す断面図および施工状態の断面図、第
3図および第4図は本発明にかかる第2実施例を示す断
面図および施工状態の断面図、第5図および第6図は本
発明にかかる第3実施例を示す断面図および施工状態の
断面図、第7図および第8図は本発明にかかる第4実施
例を示す断面図および施工状態の断面図である。 1・・・非帯電性床パネル、2・・・基材、3,4・・
・非帯電層。 第2囚 1:帯電り方止困床へ°ネlし 第4図
1 and 2 are cross-sectional views showing a first embodiment of a non-static floor panel according to the present invention and a cross-sectional view of the construction state, and FIGS. 3 and 4 are a cross-sectional view showing a second embodiment of a non-static floor panel according to the present invention. 5 and 6 are sectional views showing the third embodiment of the present invention and sectional views in the constructed state, and FIGS. 7 and 8 are sectional views showing the third embodiment of the present invention. FIG. 4 is a cross-sectional view showing a fourth embodiment and a cross-sectional view in a construction state. 1... Non-static floor panel, 2... Base material, 3, 4...
・Uncharged layer. 2nd prisoner 1: How to stop charging.

Claims (2)

【特許請求の範囲】[Claims] (1)主として炭素粉末と熱硬化性樹脂とからなる非帯
電層を、基材の少なくとも上面に設けたことを特徴とす
る非帯電性床パネル。
(1) A non-static floor panel characterized in that an anti-static layer consisting mainly of carbon powder and a thermosetting resin is provided on at least the upper surface of a base material.
(2)基材の少なくとも下面4隅部に脚体を設けたこと
を特徴とする請求項1記載の非帯電性床パネル。
(2) The non-electrostatic floor panel according to claim 1, characterized in that legs are provided at at least four corners of the lower surface of the base material.
JP1707989A 1989-01-26 1989-01-26 Non-charged floor panel Pending JPH02197661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1707989A JPH02197661A (en) 1989-01-26 1989-01-26 Non-charged floor panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1707989A JPH02197661A (en) 1989-01-26 1989-01-26 Non-charged floor panel

Publications (1)

Publication Number Publication Date
JPH02197661A true JPH02197661A (en) 1990-08-06

Family

ID=11933971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1707989A Pending JPH02197661A (en) 1989-01-26 1989-01-26 Non-charged floor panel

Country Status (1)

Country Link
JP (1) JPH02197661A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05239903A (en) * 1992-02-26 1993-09-17 Nec Corp Panel for free access floor
US5310784A (en) * 1990-07-31 1994-05-10 Lignyte Co., Ltd. Electromagnetic wave shielding material
JP2001214602A (en) * 2000-02-03 2001-08-10 Lonseal Corp Conductive floor tile and its laying method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61142248A (en) * 1984-12-17 1986-06-30 信越ポリマ−株式会社 Conductive floor material
JPS62164953A (en) * 1986-01-13 1987-07-21 大成建設株式会社 Dustless panel having conductivity

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61142248A (en) * 1984-12-17 1986-06-30 信越ポリマ−株式会社 Conductive floor material
JPS62164953A (en) * 1986-01-13 1987-07-21 大成建設株式会社 Dustless panel having conductivity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5310784A (en) * 1990-07-31 1994-05-10 Lignyte Co., Ltd. Electromagnetic wave shielding material
JPH05239903A (en) * 1992-02-26 1993-09-17 Nec Corp Panel for free access floor
JP2001214602A (en) * 2000-02-03 2001-08-10 Lonseal Corp Conductive floor tile and its laying method

Similar Documents

Publication Publication Date Title
EP0649368B1 (en) Particle board and use thereof
CN109025169B (en) Multilayer composite fireproof board applied to tongue-and-groove connection and production process thereof
JPH0860764A (en) Flame-retardant oriented strand board structural element
WO1998032709A1 (en) Multilayer composite materials with at least one aerogel-containing layer and at least one other layer, process for producing the same and their use
WO1999016984A1 (en) Composite refractory building material, method of manufacturing the same, gypsum board, and resin composition
CN106948574A (en) A kind of multi-functional Compossite solid-wood floor plate base material and its manufacture method
CN104989065B (en) A kind of wood-plastic composite floor and preparation method thereof
JPH02197661A (en) Non-charged floor panel
JP3010352B2 (en) Floor material
JP2969216B2 (en) Manufacturing method of building materials
TW442602B (en) Floor material
CN108756140A (en) A kind of compoiste wood floor of honeycomb and preparation method thereof
JPH02196012A (en) Self-hardening particulate chaff charcoal
CN1226526A (en) Electrically conductive graphite cement boards and process for producing the same
JPH0688242B2 (en) Wood composite board and manufacturing method thereof
JP6767528B2 (en) Manufacturing method of mixed composite material by high frequency
JP3388613B2 (en) Manufacturing method of carbonaceous material
JP3865897B2 (en) Fireproof ground plate
JP2733643B2 (en) Architectural board
CN106079023A (en) A kind of sound insulation Nano graphite aluminium powder electromagnetic shielding medium density fibre board (MDF) and preparation method thereof
JP2535177Y2 (en) Architectural board
JPS63292699A (en) Electromagnetic-wave shielding decorative laminated sheet
JP4163366B2 (en) Wood cement board and manufacturing method thereof
JPH0622971B2 (en) Fireproof building material
JP2670003B2 (en) Inorganic plate