JPS6117783B2 - - Google Patents

Info

Publication number
JPS6117783B2
JPS6117783B2 JP53071440A JP7144078A JPS6117783B2 JP S6117783 B2 JPS6117783 B2 JP S6117783B2 JP 53071440 A JP53071440 A JP 53071440A JP 7144078 A JP7144078 A JP 7144078A JP S6117783 B2 JPS6117783 B2 JP S6117783B2
Authority
JP
Japan
Prior art keywords
sound
parts
solid particles
inorganic solid
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53071440A
Other languages
Japanese (ja)
Other versions
JPS54163001A (en
Inventor
Mitsuru Koketsu
Yoshihiro Oota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP7144078A priority Critical patent/JPS54163001A/en
Publication of JPS54163001A publication Critical patent/JPS54163001A/en
Publication of JPS6117783B2 publication Critical patent/JPS6117783B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は無機質固体粒子を有機結合剤により結
合した難燃性の吸音材に関するものである。 従来吸音材として硝子繊維をフエノール等で結
合した繊維質吸音材が多く用いられている。しか
しながら、これら繊維質の吸音材は水分を吸収し
易く、また吸収した水分の放出が極めて遅いた
め、吸水による吸音特性の低下が著しいものであ
り、さらに吸音特性が回復するのに長時間を要
し、また繊維状であることから、その吸音材の形
状を維持するためや、繊維質の飛散を防止するた
めに、金属枠内に納め、表面にパンチングメタル
等を配するなど、種々の吸音材の保護対策を施さ
ねばならず、このためパネル化した際の加工性が
著しく劣るなど、繊維質吸音材には多くの問題点
や欠点があつた。 また、珪砂或いは陶磁器粉砕物などの無機質固
体粒子を、ガラス系結合剤を用いて焼成結合した
謂ゆるセラミツク吸音材も広く知られているが、
このものは焼成コストが高く、しかも焼成品であ
るため、大きな寸法の吸音材の製作が困難であ
り、更に切削等の加工が極めて困難で、しかも吸
音材の重量が重いなどの多くの欠点を有するもの
であつた。 更に、パーライト、中空バルーン、軽石等の軽
量骨材や珪砂或いは陶磁器粉砕物等の無機質固体
粒子を、単独或いは混合して有機系結合剤或いは
無機質固体粒子を用いて結合した吸音材も種々提
案されているが、珪酸塩類、燐酸塩類、セメン
ト、石膏類などの無機系結合剤を用いた吸音材
は、その結合剤の接着強度が低いため、所定強度
を得るために多量の結合剤を使用しなければなら
ず、このため吸音に必要な骨材間の細隙が吸音剤
によつて埋められてしまい、吸音特性が低く、か
つ重量の重いものであり、更に無機系結合剤を用
いた吸音材は、耐水性、耐凍結性、加工性に劣る
等の欠点があるものであつた。 また、有機系結合剤を用いた吸音材は可燃性で
あり、特に屋内に使用した場合、防災上好ましく
ないものであつた。 本発明の高強度難燃性吸音材は、従来の吸音材
のこれらの欠点を解決するためになされたもので
あり、無機質固体粒子を難燃性剤の存在のもとで
有機系結合剤によつて結合した無機粒子結合型の
多孔質吸音材であり、嵩比重0.1〜1.5で平均粒径
0.2〜5mmの無機質固体粒子と、該無機質固体粒
子の1〜10容量部の有機結合剤と、有機結合剤に
対して30〜80重量部の水酸化アルミニウムおよび
三酸化アンチモン/塩化パラフインの混合比が
0.2〜1.5である5〜30重量部の三酸化アンチモン
と塩化パラフインの混合物並びにガラス繊維とよ
り少なくとも構成される高強度難燃性吸音材であ
る。すなわち本発明は、特定の粒径及び嵩比重の
無機質固体粒子と、特定量の有機結合剤と、特定
種類および量の難燃化剤並びに補強材であるガラ
ス繊維とより少なくとも構成されることの相乗的
効果により、難燃性、吸音特性、撥水性、曲げ強
さ、加工性等に優れた吸音材を得たものである。 更に本発明を詳しく説明すれば、珪砂、パーラ
イト、軽石、中空バルーン、軽量骨材、金属造粒
物、陶磁器、耐火物、タイル等の粉砕物等の無機
質固体粒子に対して1〜10容量部の好ましくは不
飽和ポリエステル樹脂類或いはフエノール樹脂類
などの有機結合剤と、その有機結合剤に対して30
〜80重量部の高温時に含有水分の放出によつて燃
焼温度を低下させる水酸化アルミニウムと、高温
時に不活性ガスを発生する塩化パラフインとの併
用によつて被覆効果のある三酸化アンチモンとの
混合物より成り、その混合比が0.2〜1.5の範囲内
である前記有機結合剤に対して5〜30重量部の前
記混合物と、ガラス単繊維、ロービング、ガラス
クロス等の補強用のガラス繊維とより少なくとも
成る吸音材であり、更に好ましくは吸音材の難燃
化をより高めるために、臭化アンモン、リン酸ア
ンモン、リン酸グアジニンのうち少くとも1種以
上を有機結合剤に対して1〜15重量部含むもので
ある。 そしてこれらの吸音材は、気孔率30〜50%、最
大気孔径が4mm以下の板状体に形成され、その吸
音材の厚さ方向の周囲は、金属あるいはプラスチ
ツク等の枠体で囲繞されパネル化されていること
がより好ましいものである。 次に本発明の難燃性吸音材の製造法について述
べる。 嵩比重が0.1〜1.5で平均粒径が0.2〜5mmに整粒
された前記無機質固体粒子の1種あるいはそれら
の混合物100部に対し、1〜10容量部の不飽和ポ
リエステル樹脂類、フエノール樹脂類、エポキシ
樹脂類等の有機結合剤を添加し、更に該有機結合
剤に対して30〜80重量部の水酸化アルミニウムお
よび該結合剤に対して5〜30重量部に相当し、そ
の混合比が(三酸化アンチモン/塩化パラフイ
ン)=0.2〜1.5の範囲内に混合された三酸化アン
チモンと塩化パラフインとの混合物および必要に
応じて該結合剤に対して1〜15重量部の臭化アン
モン、リン酸アンモン、リン酸グアニシンのいず
れか一種またはこれらの混合物および必要に応じ
て該結合剤に対して5〜50重量部の長さ約3〜25
mm程度のガラス単織繊を加え、十分混練して無機
質固体粒子表面に結合剤の被膜を形成する。 この際、無機質固体粒子と結合剤を混練するに
当り、必要に応じて硬化促進剤、紫外線吸収剤、
増量材、顔料等を加えても勿論良い。 そして次に所定寸法の金型の内面四周に、好ま
しくは金属あるいはプラスチツク等の枠体を配
し、更に必要に応じて所定寸法に切断されたガラ
スクロスを金型内に配し、前記混練物を枠体内に
入れて均一化し、振動圧縮成形法等で成形した
後、結合剤を硬化させて枠体と一体結合した多孔
質の高強度難燃吸音材を製造する。 尚、気孔率、最大気孔径、吸音材の嵩比重など
の調整は、加振力、加振時間、加圧力、滑材の粒
度分布や結合剤量の調整などにより任意に所定の
最適数値に容易に製造できるものであるが、特に
気孔率は30〜50%、最大気孔径は4mm以下に調整
することが吸音特性に最も優れた吸音材が得られ
るものである。 尚、吸音材の厚さ方向の周囲を囲繞する枠体
は、金型中に配置せず成形し硬化した後の吸音材
の周囲を囲うように設けても勿論良い。 また、ガラス繊維は短繊維でもつても、クロス
であつてもいずれも良いが、補強のためにはいず
れかの繊維が必要であり、その繊維は表面に露出
していても、内部に埋設されていてもいずれでも
良い。 次に本発明の限定理由を述べる。 無機質固体粒子の嵩比重を0.1〜1.5と限定した
のは、嵩比重が0.1を下廻るものでは、固体粒子
に存在する気孔の形態が、開気孔であつても、ま
た閉気孔であつても、気孔中に存在する空気が燃
焼に大きく寄与し、本発明における各種難燃化
剤、補強材の効果を以てしても良好なる難燃性が
得られないものであり、更に、嵩比重が0.1を下
廻るものは、一般に固体粒子強度が弱く、混練、
成形工程において破損しやすいためであり、また
嵩比重が1.5を上廻るものでは、吸音材の重量が
重くなるためであり、および嵩比重が1.5を上廻
る固体粒子は一般に固く、該無機質固体粒子を用
いた吸音材では、切断、孔開け等の加工法が劣る
ためである。 また、無機質固体粒子の平均粒径を0.2〜5mm
と限定したのは、平均粒径が0.2mm未満の粒子を
用いた吸音材では成形板の表裏を貫通する細隙の
径が細かくなり、毛細現象により吸水量が多く、
また吸水水分の排出が悪くなり、降雨時における
吸音特性の低下および回復の遅れが著しくなり、
更には吸音特性のピーク値が著しく低下するため
である。また、平均粒径が5mmを越えると、吸着
材表裏を貫通する細隙の径が大きくなり、高温に
曝された際に炎が貫通し易く、また燃焼に寄与す
る空気が供給され易く、更には燃焼による分解ガ
スが放出され易くなり、難燃性が著しく低下し、
また、細隙の径が大きくなることにより、吸音特
性のピーク性が強くなり、良好な吸音特性が得ら
れないためである。 次に、有機結合剤の含有量が無機質固体粒子に
対して、1〜10容量部と限定したのは、1部未満
では有機結合剤の量が少な過ぎて機械的強度が不
十分であり、10部を越えると粒子間の空隙を結合
材が埋めて気孔率が低下し、吸音特性が低下する
ためである。 次に、水酸化アルミニウムの含有量を、結合剤
に対して30〜80重量部と限定したのは、30重量部
未満では高温時に水分の発生も少なく、難燃化が
不十分であり、また80重量部を越えると高温時に
亀裂やふくれを生ずるためである。 次に、三酸化アンチモンと塩化パラフインとの
混合比を三酸化アンチモン/塩化パラフイン=
0.2〜1.5とし、該混合物の含有量を有機結合剤に
対して5〜30重量部と限定したのは、第1図に示
すように、三酸化アンチモンと塩化パラフインと
の混合比が前記限定範囲外となると、難燃化効果
が低下するためであり、また、該混合物の含有量
が結合剤に対して5重量部未満であると排気温度
時間面積が増加し、残炎時間も長くなり、30重量
部を越えると発煙量が増加し、いずれの場合も難
燃化効果が低下するためである。 次に本発明の実施例を述べる。 第1表に示した嵩比重、平均粒径を有する無機
質固体粒子に対し、第1表に示した割合の熱硬化
性不飽和ポリエステル樹脂を加え、更に第1表に
記載する量の水酸化アルミニウムおよび三酸化ア
ンチモンと塩化パラフインの等重量混合物(混合
比1)およびガラス繊維を加え、臭化アンモン、
リン酸アンモン、リン酸グアジニンのいずれか一
種又はそれらの混合物を加え、混練機にて混練
し、混練物―Aを得た。
The present invention relates to a flame-retardant sound absorbing material in which inorganic solid particles are bonded with an organic binder. Conventionally, fibrous sound-absorbing materials in which glass fibers are bonded with phenol or the like are often used as sound-absorbing materials. However, these fibrous sound-absorbing materials easily absorb moisture and release the absorbed moisture very slowly, so the sound-absorbing properties deteriorate significantly due to water absorption, and it takes a long time for the sound-absorbing properties to recover. In addition, since it is fibrous, in order to maintain the shape of the sound-absorbing material and to prevent the fibrous material from scattering, various sound-absorbing methods are used, such as placing it in a metal frame and placing punching metal etc. on the surface. Fibrous sound-absorbing materials have many problems and drawbacks, such as the need to take measures to protect the material and the workability of the material when made into panels is extremely poor. Also, so-called ceramic sound absorbing materials are widely known, which are made by firing and bonding inorganic solid particles such as silica sand or crushed ceramics with a glass-based binder.
This material has many disadvantages, such as high firing cost, and since it is a fired product, it is difficult to produce large-sized sound absorbing materials, it is extremely difficult to process such as cutting, and the sound absorbing material is heavy. It was something I had. Furthermore, various sound absorbing materials have been proposed in which lightweight aggregates such as perlite, hollow balloons, and pumice, and inorganic solid particles such as silica sand and crushed ceramics are combined using organic binders or inorganic solid particles, either singly or in combination. However, sound absorbing materials using inorganic binders such as silicates, phosphates, cement, and gypsum have low adhesive strength, so a large amount of binder must be used to obtain the desired strength. For this reason, the gaps between the aggregates required for sound absorption are filled with sound absorbing materials, resulting in poor sound absorbing properties and heavy weight. The material had drawbacks such as poor water resistance, low freeze resistance, and poor workability. In addition, sound absorbing materials using organic binders are flammable and are unfavorable from a disaster prevention standpoint, especially when used indoors. The high-strength flame-retardant sound-absorbing material of the present invention was developed to solve these drawbacks of conventional sound-absorbing materials, and is made by combining inorganic solid particles with an organic binder in the presence of a flame retardant. It is a porous sound absorbing material with inorganic particles bound together, with a bulk specific gravity of 0.1 to 1.5 and an average particle size.
A mixing ratio of 0.2 to 5 mm inorganic solid particles, 1 to 10 parts by volume of an organic binder for the inorganic solid particles, and 30 to 80 parts by weight of aluminum hydroxide and antimony trioxide/paraffin chloride to the organic binder. but
The present invention is a high-strength flame-retardant sound-absorbing material comprising at least a mixture of antimony trioxide and paraffin chloride in an amount of 0.2 to 1.5 parts by weight, and glass fiber. That is, the present invention provides at least a method comprising at least inorganic solid particles having a specific particle size and bulk specific gravity, a specific amount of an organic binder, a specific type and amount of a flame retardant, and glass fiber as a reinforcing material. Due to the synergistic effect, a sound absorbing material with excellent flame retardancy, sound absorption properties, water repellency, bending strength, workability, etc. was obtained. To further explain the present invention in detail, 1 to 10 parts by volume of inorganic solid particles such as silica sand, perlite, pumice, hollow balloons, lightweight aggregates, metal granules, ceramics, refractories, pulverized materials such as tiles, etc. of an organic binder, preferably unsaturated polyester resins or phenolic resins, and 30% of the organic binder.
A mixture of ~80 parts by weight of aluminum hydroxide, which lowers the combustion temperature by releasing moisture at high temperatures, and antimony trioxide, which has a coating effect when used in combination with chlorinated paraffin, which generates inert gas at high temperatures. 5 to 30 parts by weight of the mixture to the organic binder, the mixing ratio of which is within the range of 0.2 to 1.5, and at least glass fiber for reinforcing glass single fibers, rovings, glass cloth, etc. More preferably, in order to further enhance the flame retardancy of the sound absorbing material, at least one of ammonium bromide, ammonium phosphate, and guanidine phosphate is added in an amount of 1 to 15% by weight based on the organic binder. This includes: These sound absorbing materials are formed into a plate-like body with a porosity of 30 to 50% and a maximum pore diameter of 4 mm or less, and the thickness of the sound absorbing material is surrounded by a frame made of metal or plastic. It is more preferable that the Next, a method for manufacturing the flame-retardant sound-absorbing material of the present invention will be described. 1 to 10 parts by volume of unsaturated polyester resins and phenolic resins per 100 parts of the above-mentioned inorganic solid particles having a bulk specific gravity of 0.1 to 1.5 and an average particle size of 0.2 to 5 mm, or a mixture thereof. , an organic binder such as epoxy resins is added, and the mixture ratio is equivalent to 30 to 80 parts by weight of aluminum hydroxide and 5 to 30 parts by weight to the binder. (Antimony trioxide/paraffin chloride) = A mixture of antimony trioxide and paraffin chloride mixed within the range of 0.2 to 1.5, and if necessary, 1 to 15 parts by weight of ammonium bromide and phosphorus to the binder. about 3 to 25 parts by weight of ammonium acid, guanisine phosphate, or a mixture thereof and optionally 5 to 50 parts by weight based on the binder;
Glass single woven fibers of approximately 1.0 mm in diameter are added and thoroughly kneaded to form a binder coating on the surface of the inorganic solid particles. At this time, when kneading the inorganic solid particles and the binder, curing accelerators, ultraviolet absorbers,
Of course, fillers, pigments, etc. may also be added. Next, a frame body, preferably made of metal or plastic, is placed around the inner surface of a mold of a predetermined size, and if necessary, a glass cloth cut to a predetermined size is placed inside the mold, and the kneaded material is is put into the frame to make it uniform, and after molding by vibration compression molding or the like, the binder is cured to produce a porous, high-strength, flame-retardant, sound-absorbing material that is integrally bonded to the frame. In addition, the porosity, maximum pore diameter, bulk specific gravity of the sound absorbing material, etc. can be adjusted to the predetermined optimal values by adjusting the excitation force, excitation time, pressing force, particle size distribution of the lubricant, and amount of binder. Although it is easy to manufacture, a sound absorbing material with the best sound absorbing properties can be obtained by adjusting the porosity to 30 to 50% and the maximum pore diameter to 4 mm or less. Note that the frame surrounding the sound absorbing material in the thickness direction may, of course, be provided so as to surround the sound absorbing material after it has been molded and cured, instead of being placed in the mold. Also, the glass fibers can be either short fibers or cloth, but either type of fiber is required for reinforcement, and even if the fibers are exposed on the surface, they cannot be buried inside. Either is fine. Next, the reasons for the limitations of the present invention will be described. The reason why the bulk specific gravity of inorganic solid particles is limited to 0.1 to 1.5 is because if the bulk specific gravity is less than 0.1, regardless of whether the pores present in the solid particles are open or closed. , the air present in the pores greatly contributes to combustion, and good flame retardancy cannot be obtained even with the effects of the various flame retardants and reinforcing materials in the present invention, and furthermore, the bulk specific gravity is 0.1 Generally, the solid particle strength is weak, and it is difficult to knead,
This is because they are easily damaged during the molding process, and if the bulk specific gravity exceeds 1.5, the weight of the sound absorbing material becomes heavy.Also, solid particles with bulk specific gravity exceeding 1.5 are generally hard, and the inorganic solid particles This is because the processing methods such as cutting and drilling are inferior to sound absorbing materials using . In addition, the average particle size of inorganic solid particles is 0.2 to 5 mm.
The reason for this limitation is that in sound absorbing materials using particles with an average particle size of less than 0.2 mm, the diameter of the pores that penetrate the front and back of the molded plate becomes small, and the amount of water absorbed is large due to capillary phenomenon.
In addition, water absorption and drainage become worse, resulting in a significant decline in sound absorption properties during rainfall and a significant delay in recovery.
Furthermore, this is because the peak value of the sound absorption properties is significantly reduced. In addition, when the average particle size exceeds 5 mm, the diameter of the pores penetrating the front and back sides of the adsorbent becomes large, making it easier for flames to penetrate when exposed to high temperatures, and making it easier to supply air that contributes to combustion. decomposition gas is easily released due to combustion, and the flame retardance is significantly reduced.
Furthermore, as the diameter of the slit becomes larger, the peak property of the sound absorption property becomes stronger, making it impossible to obtain good sound absorption property. Next, the content of the organic binder was limited to 1 to 10 parts by volume based on the inorganic solid particles because if it is less than 1 part, the amount of the organic binder is too small and the mechanical strength is insufficient. This is because if the amount exceeds 10 parts, the binder fills the voids between particles, resulting in a decrease in porosity and a decrease in sound absorption properties. Next, the content of aluminum hydroxide was limited to 30 to 80 parts by weight based on the binder because if it is less than 30 parts by weight, less moisture will be generated at high temperatures, and flame retardation will be insufficient. This is because if it exceeds 80 parts by weight, cracks and blisters will occur at high temperatures. Next, the mixing ratio of antimony trioxide and chlorinated paraffin is determined as antimony trioxide/chlorinated paraffin =
0.2 to 1.5, and the content of the mixture was limited to 5 to 30 parts by weight based on the organic binder, as shown in FIG. If the content of the mixture is less than 5 parts by weight based on the binder, the exhaust temperature time area increases and the afterflame time becomes longer. This is because if the amount exceeds 30 parts by weight, the amount of smoke generated increases, and in either case, the flame retardant effect decreases. Next, examples of the present invention will be described. To inorganic solid particles having the bulk specific gravity and average particle size shown in Table 1, thermosetting unsaturated polyester resin in the proportion shown in Table 1 is added, and aluminum hydroxide in the amount shown in Table 1 is added. A mixture of equal weights of antimony trioxide and paraffin chloride (mixing ratio 1) and glass fiber were added, and ammonium bromide,
Ammonium phosphate, guanidine phosphate, or a mixture thereof was added and kneaded using a kneader to obtain a kneaded product-A.

【表】【table】

【表】 次に、離型剤を塗布し、ガラスペーパーとガラ
スクロスが敷かれた内寸法100cm×50cm×2cmの
金型内の周囲に、肉厚2mmの枠体を設置し、混合
物―Aの所定量を枠体内に入れ、均一にならした
後、ガラスペーパーとガラスクロスを敷き上型を
乗せた。次に該金型を加圧下において加振した
後、130℃に保つたホツトプレスにて10分間加熱
し、本発明品No.1〜No.23を得た。尚、参考品とし
ては本発明品の数値限定範囲外のものを用意し、
No.24〜No.33とした。 また、従来品としてグラスウール系繊維質吸音
材(No.34)および無機粒子を釉薬にて焼成結合し
た謂ゆるセラミツク吸音材(No.35)も用意した。 これらの吸音材について気孔率および最大気孔
径を各々測定すると共に、各々JIS―A―1321に
示されている難燃性試験方法に準じた試験を行
い、標準温度曲線を超える時間温度面積、発煙係
数、残炎時間を測定し、結果を第2表に記載し
た。
[Table] Next, a frame with a wall thickness of 2 mm was installed around the inside of a mold with internal dimensions of 100 cm x 50 cm x 2 cm, which was coated with a mold release agent and lined with glass paper and glass cloth. A predetermined amount of the material was put into the frame and leveled out evenly, then glass paper and glass cloth were laid down and the upper mold was placed on top. Next, the mold was vibrated under pressure and then heated in a hot press kept at 130°C for 10 minutes to obtain products No. 1 to No. 23 of the present invention. In addition, as a reference product, we have prepared a product that is outside the numerically limited range of the product of the present invention.
No. 24 to No. 33. In addition, as conventional products, we also prepared a glass wool-based fibrous sound absorbing material (No. 34) and a so-called ceramic sound absorbing material (No. 35), which is made by firing and bonding inorganic particles with glaze. In addition to measuring the porosity and maximum pore diameter of these sound-absorbing materials, we also conducted tests based on the flame retardant test method specified in JIS-A-1321 to determine the time-temperature area and smoke generation exceeding the standard temperature curve. The coefficient and afterflame time were measured and the results are listed in Table 2.

【表】【table】

【表】 また、吸音特性はJTS―A―1405「管内法によ
る建築材料の垂直入射吸音率測定方法」に準拠し
て背後空気層を60mmとして測定し、さらに吸撥水
試験は、試料を24時間水中浸漬した後、温度20
℃、湿度60%に保つた恒温恒湿槽内に放置し測定
を行つた。 また、吸音板よりカツターによりテストピース
を切り出し、曲げ強さを測定すると共に、その際
の機械的加工性について比較測定し、各々結果を
第1表および第2表に記載した。また、本発明品
No.1およびNo.20と参考品No.24、No.25および従来品
No.35の吸音特性は第2図に示す通りである。 以上述べた通り、本発明の高強度難燃性吸音材
は、特定の嵩比重および平均粒径の無機質固体粒
子と、特定量の有機結合剤と、特定種類および量
の難燃化剤および補強ガラス繊維との組合せによ
る相乗効果により、難燃性、吸音特性、撥水性、
曲げ強さ、加工性等に極めて優れた吸音材を初め
て得たものであり、防音壁用吸音材、吸音内装
材、床下吸音材等、各種騒音公害防止用の吸音材
として使用でき、公害防止上、極めて有用なもの
である。
[Table] In addition, the sound absorption properties were measured in accordance with JTS-A-1405 "Method for measuring the normal incidence sound absorption coefficient of building materials using the in-pipe method" with a back air layer of 60 mm. After soaking in water for an hour, the temperature is 20
Measurements were performed by leaving the sample in a constant temperature and humidity chamber maintained at ℃ and humidity of 60%. In addition, test pieces were cut out from the sound-absorbing plate using a cutter, and the bending strength was measured, as well as the mechanical workability was comparatively measured, and the results are listed in Tables 1 and 2. In addition, the product of the present invention
No.1 and No.20, reference products No.24, No.25 and conventional products
The sound absorption characteristics of No. 35 are shown in Figure 2. As described above, the high-strength flame-retardant sound-absorbing material of the present invention comprises inorganic solid particles with a specific bulk specific gravity and average particle size, a specific amount of an organic binder, a specific type and amount of a flame retardant, and reinforcement. Due to the synergistic effect in combination with glass fiber, flame retardancy, sound absorption properties, water repellency,
This is the first sound-absorbing material that has excellent bending strength and workability, and can be used as sound-absorbing materials for various noise pollution prevention applications, such as sound-absorbing materials for sound-proof walls, sound-absorbing interior materials, and under-floor sound-absorbing materials. Above all, it is extremely useful.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は三酸化アンチモンと塩化パラフインと
の混合比と難燃性との関係を示す説明図であり、
第2図は本発明品と参考品および従来品との吸音
特性の比較を示す説明図である。
FIG. 1 is an explanatory diagram showing the relationship between the mixing ratio of antimony trioxide and chlorinated paraffin and flame retardancy.
FIG. 2 is an explanatory diagram showing a comparison of sound absorption characteristics between the product of the present invention, reference products, and conventional products.

Claims (1)

【特許請求の範囲】[Claims] 1 嵩比重0.1〜1.5で平均粒径0.2〜5mmの無機質
固体粒子と、該無機質固体粒子の1〜10容量部の
有機結合剤に対して30〜80重量部の水酸化アルミ
ニウムおよび三酸化アンチモン/塩化パラフイン
の混合比が0.2〜1.5である5〜30重量部の前記混
合物ならびにガラス繊維とより少なくとも構成さ
れることを特徴とする高強度難燃吸音材。
1. Inorganic solid particles with a bulk specific gravity of 0.1 to 1.5 and an average particle size of 0.2 to 5 mm, and 30 to 80 parts by weight of aluminum hydroxide and antimony trioxide per 1 to 10 parts by volume of an organic binder of the inorganic solid particles. A high-strength flame-retardant sound-absorbing material comprising at least 5 to 30 parts by weight of the above mixture with a mixing ratio of chlorinated paraffin of 0.2 to 1.5 and glass fibers.
JP7144078A 1978-06-15 1978-06-15 High strength flame resisting sound absorber Granted JPS54163001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7144078A JPS54163001A (en) 1978-06-15 1978-06-15 High strength flame resisting sound absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7144078A JPS54163001A (en) 1978-06-15 1978-06-15 High strength flame resisting sound absorber

Publications (2)

Publication Number Publication Date
JPS54163001A JPS54163001A (en) 1979-12-25
JPS6117783B2 true JPS6117783B2 (en) 1986-05-09

Family

ID=13460592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7144078A Granted JPS54163001A (en) 1978-06-15 1978-06-15 High strength flame resisting sound absorber

Country Status (1)

Country Link
JP (1) JPS54163001A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61216912A (en) * 1985-03-22 1986-09-26 住友金属鉱山株式会社 Light sournd-proof wall
JPS6221770A (en) * 1985-07-18 1987-01-30 滋賀県 Manufacture of water-permeable tile
JP2784294B2 (en) * 1991-04-15 1998-08-06 松下電工株式会社 Sound absorbing material and method of manufacturing sound absorbing material
CN106128447A (en) * 2016-08-16 2016-11-16 苏州市云林电子有限公司 A kind of composite sound-absorbing foam

Also Published As

Publication number Publication date
JPS54163001A (en) 1979-12-25

Similar Documents

Publication Publication Date Title
Zhang et al. Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete
TWI706074B (en) Gypsum core and slurry for making the same
JP6189753B2 (en) Lightweight and low density fireproof gypsum panel
EP2132385B1 (en) Utility materials incorporating a microparticle matrix
US6598358B1 (en) Use of aerogels for deadening structure-borne and/or impact sounds
JP2001509097A (en) Multilayer composite having at least one airgel-containing layer and at least one further layer, method for its production and use thereof
KR101797219B1 (en) nonflammable firewall
CA2231461C (en) Process for producing non-flammable phenolic resin foam
JPS6117783B2 (en)
JP4375987B2 (en) Molded body for radio wave absorber, method for producing the same, and radio wave absorber
KR101758309B1 (en) Non-flammable construction interior and exterior panel and method of manufacturing the same
JPH10212772A (en) Sound absorption and insulation pannel
DE2352969A1 (en) PROCESS FOR THE PRODUCTION OF HARD FOAMS WITH HIGH FIRE RESISTANCE TIME
KR102600579B1 (en) Eco-friendly adhesive composition for interior material and method for manufacturing the same
JP3848674B2 (en) Sound absorption and insulation panel
JPH04284242A (en) Light-weight composite panel
JP2510590B2 (en) Soundproof panel manufacturing method
Zach et al. DEVELOPMENT OF ADVANCED THERMAL AND ACOUSTIC INSULATION MATERIALS BASED ON FOAM GLASS AGGREGATE
JPS5931454B2 (en) sandwich panel
JPS594026Y2 (en) lightweight fireproof board
EP1078899B1 (en) Composite insulating material and method for manufacturing it
JPH10166321A (en) Composite synthetic lumber
KR20130108918A (en) Alc composition for carbonation resistance enhancement and fabrication method of alc using this composition
JP3039061U (en) Composite synthetic wood
JP2889473B2 (en) Sound-absorbing molded article and method for producing the same