JPH06228702A - Nitrogen-containing sintered hard alloy - Google Patents

Nitrogen-containing sintered hard alloy

Info

Publication number
JPH06228702A
JPH06228702A JP5018283A JP1828393A JPH06228702A JP H06228702 A JPH06228702 A JP H06228702A JP 5018283 A JP5018283 A JP 5018283A JP 1828393 A JP1828393 A JP 1828393A JP H06228702 A JPH06228702 A JP H06228702A
Authority
JP
Japan
Prior art keywords
alloy
average
phase
hard
binder phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5018283A
Other languages
Japanese (ja)
Other versions
JP3064722B2 (en
Inventor
Kazutaka Isobe
和孝 磯部
Nobuyuki Kitagawa
信行 北川
Toshio Nomura
俊雄 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP5018283A priority Critical patent/JP3064722B2/en
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to EP98102547A priority patent/EP0864661B1/en
Priority to EP94905840A priority patent/EP0635580A4/en
Priority to PCT/JP1994/000158 priority patent/WO1994018351A1/en
Priority to DE69433214T priority patent/DE69433214T2/en
Priority to US08/313,222 priority patent/US5577424A/en
Priority to KR1019940703517A priority patent/KR0143508B1/en
Priority to TW083101466A priority patent/TW291499B/zh
Publication of JPH06228702A publication Critical patent/JPH06228702A/en
Priority to KR1019940703517A priority patent/KR950701006A/en
Application granted granted Critical
Publication of JP3064722B2 publication Critical patent/JP3064722B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To provide a high-quality nitrogen-containing sintered hard alloy used for cutting tool and having superior strength. CONSTITUTION:This alloy is composed of a hard phase consisting, e.g. of the carbides of at least two transition metals selected from the group IVa, Va, and VIa metals of the periodic table and a binding phase of Ni, Co, etc. As to the amount of the binding metal phase, the maximum part of the amount of binding phase exists in the range of depth between the position at a depth of 3mum from the surface and the position at a depth of 500mum from the surface. As to the hard phase, when the composition of the metals constituting the hard phase is represented by (TixWyMc), (x) in the surface part is >=1.01 times the average (x) in the alloy, (y) is 0.1-0.9 times the average (y) in the alloy, and also the above (x) and (y) return the average (x) and average (y) of the whole alloy, respectively, within a depth of 800mum. Moreover, WC grains do not exist in the surface part, or, even if they do exist, the amount is <=0.1vol%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、切削加工用工具の材質
として極めて強度に富む高品質な窒素含有焼結硬質合金
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-quality nitrogen-containing sintered hard alloy having extremely high strength as a material for cutting tools.

【0002】[0002]

【従来の技術】Tiを主成分とする炭窒化物などを硬質
層とし、これをNiとCoからなる金属で結合した窒素
を含有する焼結硬質合金が切削工具としてすでに実用化
されている。この窒素含有焼結硬質合金は、従来の窒素
を含有しない焼結硬質合金に比べ硬質相が著しく微粒に
なるため耐高温クリープ特性が大幅に改善されるためW
Cを主成分としたいわゆる超硬合金と並んで切削工具と
して広く使用されてきている。
2. Description of the Related Art Sintered hard alloys containing nitrogen composed of a carbonitride containing Ti as a main component and a hard layer bonded with a metal composed of Ni and Co have already been put to practical use as cutting tools. In this nitrogen-containing sintered hard alloy, the high-temperature creep resistance is significantly improved because the hard phase becomes significantly finer than that of the conventional nitrogen-free sintered hard alloy.
It has been widely used as a cutting tool along with so-called cemented carbide containing C as a main component.

【0003】しかしながら、この窒素含有焼結硬質合金
は、主成分であるTiの炭窒化物の熱伝導度が超硬合
金の主成分であるWCのそれに比べ著しく小さいことに
より、合金としての熱伝導度は約1/2である、熱膨
張係数も、同様に主成分の特性値に依存して窒素含有焼
結硬質合金のそれは超硬合金に比べ1.3倍になる、な
どの理由により熱衝撃に対する抵抗が低くなる。このた
め、特に熱衝撃の厳しくなる条件下での切削、例えばフ
ライス切削や角材の旋盤による切削加工、また、切込み
の大きく変動する湿式での倣い切削などには、充分な信
頼性をもって使用されてはいないのが現状だった。
However, this nitrogen-containing sintered hard alloy has a thermal conductivity as an alloy due to the fact that the carbonitride of Ti which is the main component has a significantly lower thermal conductivity than that of WC which is the main component of the cemented carbide. The degree of thermal expansion is about 1/2, and the coefficient of thermal expansion is 1.3 times as high as that of cemented carbide containing nitrogen depending on the characteristic value of the main component. Resistance to shock is low. Therefore, it must be used with sufficient reliability for cutting under conditions where thermal shock is severe, such as milling, cutting with a lathe for square timber, and wet copying cutting where the depth of cut changes greatly. It was the current situation.

【0004】[0004]

【発明が解決しようとする問題点】発明者らは、種々の
切削における工具内での温度分布や応力分布などの切削
現象の解析と、工具内の材料成分の配置との詳細な研究
をしてきた結果、以下の知見を得た。超硬合金は熱伝導
度が高いため切削中に工具表面に発生する高熱が工具内
部を通って速やかに拡散し、このため表面が高温になり
にくく、かつ、急に切削空転したり水溶性切削油がかか
るところに急にこの高温部が露出し急冷されたとして
も、熱膨張係数が小さいことも影響し、表層部に引っ張
り応力が発生、残留しにくい。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention The inventors have conducted detailed research on analysis of cutting phenomena such as temperature distribution and stress distribution in a tool in various cuttings and arrangement of material components in the tool. As a result, the following findings were obtained. Cemented carbide has a high thermal conductivity, so the high heat generated on the tool surface during cutting diffuses quickly through the inside of the tool, making it difficult for the surface to reach a high temperature and suddenly spinning idle or water-soluble cutting. Even if this high temperature part is suddenly exposed and rapidly cooled where oil is applied, tensile stress is generated in the surface layer part and is unlikely to remain, due to the small thermal expansion coefficient.

【0005】ところが、Tiを主成分とする窒素含有焼
結硬質合金は、熱伝導度が低いため最も高温となる刃先
先端やすくい面の切り粉の当たる部位から熱が拡散しに
くく、表面は高温でありながら内部は急激に温度が低く
なるといった、急な温度勾配を有する状態になってい
る。従って、一度亀裂が入ってしまったら内部の温度が
低いこの合金は著しく欠損し易くなる。さらにこのよう
な材料の場合、切削油がかかり急冷されたりすると、極
表面のみ冷やされその直下は高温になったままというい
わゆる温度勾配の逆転現象が発生し、熱膨張係数が大き
いことも影響し表層部に引っ張り応力が発生し、熱亀裂
が非常に発生し易くなる状況にある。即ち、窒素含有焼
結硬質合金において、切削仕上げ面を良好にするのに必
要なTiを含有したままこの熱伝導度と熱膨張係数の改
善を図ることはおのずと限界があった。そこで発明者ら
は、この問題を解決するために種々の研究を行った結
果、本発明に到達した。
However, since the nitrogen-containing sintered hard alloy containing Ti as its main component has a low thermal conductivity, it is difficult for the heat to diffuse from the portion of the cutting edge where the cutting edge easily reaches the highest temperature and the cutting surface hits the surface. However, the inside has a steep temperature gradient such that the temperature suddenly decreases. Therefore, once cracks occur, this alloy, which has a low internal temperature, is extremely susceptible to chipping. Furthermore, in the case of such a material, when cutting oil is applied and rapidly cooled, a so-called temperature gradient reversal phenomenon occurs in which only the pole surface is cooled and the temperature immediately below remains high, which also affects the large coefficient of thermal expansion. Tensile stress is generated in the surface layer, and thermal cracking is very likely to occur. That is, in the nitrogen-containing sintered hard alloy, it was naturally limited to improve the thermal conductivity and the thermal expansion coefficient while containing Ti necessary for improving the cut finished surface. Then, the inventors arrived at the present invention as a result of various studies to solve this problem.

【0006】[0006]

【問題点を解決するための手段】即ち、本発明の窒素含
有焼結硬質合金は、工具の切削仕上げ面の性状を決定す
る極表層部分にTi成分を多く配置し、その直下から特
定の距離の厚みに靱性の高いNiやCoなどの結合金属
を多く配置し刃先直下の強度を高める。このNi/Co
富化層は熱膨張係数が高いので焼結後の冷却時や切削工
具離脱時に表層部に圧縮応力を発生し得るという効果も
持つ。加えて、硬質層の必須成分であるWを表面から内
部にかけて富化する。これは窒素含有焼結硬質合金の主
たる熱伝導媒体は結合相と考えられるが硬質相もWを富
化させることにより特に内部での熱伝導に寄与させるの
である。この結合相富化層の内部で、結合相を減少させ
硬質相を増加させるのは、この熱伝導向上効果をより効
果的に発揮させるためである。
That is, in the nitrogen-containing sintered hard alloy of the present invention, a large amount of Ti component is arranged in the extreme surface layer portion that determines the properties of the cutting finish surface of the tool, and a specific distance from immediately below it. A large amount of a bonding metal such as Ni or Co having high toughness is arranged in the thickness of to increase the strength just below the cutting edge. This Ni / Co
Since the enriched layer has a high coefficient of thermal expansion, it also has an effect that compressive stress can be generated in the surface layer portion during cooling after sintering or when the cutting tool is removed. In addition, W, which is an essential component of the hard layer, is enriched from the surface to the inside. It is considered that the main heat conduction medium of the nitrogen-containing sintered hard alloy is the binder phase, but the hard phase also contributes to the heat conduction particularly inside by enriching W. Inside the binder phase-enriched layer, the binder phase is decreased and the hard phase is increased in order to more effectively exhibit the heat conduction improving effect.

【0007】このために、該窒素含有焼結硬質合金は、
結合金属相量が表面から3μm以上500μm以下の深
さ範囲に結合相量の最高部が存在しその値が合金平均結
合相量の1.1倍以上4倍以下で、深さ800μmまで
に合金全体の平均結合相量に戻り、かつ、表面部の結合
相量が結合相量最高部に対し0.9倍以下とする。深さ
800μmとするのは、熱伝導率の低下防止と切削時の
工具の耐塑性変形向上のためである。硬質相について
は、Ti及びこれと同様の鋼切削に対する耐摩耗性向上
効果を有するTa,Nb,Zrを表面部に富化させ、か
わりにその効果の少ないW及びMoを減らし特に表面に
はWをWC粒子としては存在しないかまたは存在しても
0.1体積%以下であればよいことを見いだした。
For this reason, the nitrogen-containing sintered hard alloy is
The maximum amount of the binder phase exists in the depth range of 3 μm or more and 500 μm or less from the surface, and the value is 1.1 times or more and 4 times or less of the average binder phase amount of the alloy, and the alloy is formed up to a depth of 800 μm. The average binder phase amount of the whole is restored, and the binder phase amount of the surface portion is set to 0.9 times or less of the maximum binder phase amount. The depth of 800 μm is used to prevent a decrease in thermal conductivity and to improve the plastic deformation resistance of the tool during cutting. As for the hard phase, Ti and Ta, Nb, and Zr, which have the similar effect of improving wear resistance to steel cutting, are enriched in the surface portion, and instead, W and Mo, which have little effect, are reduced, and especially W is added to the surface. It has been found that the WC particles do not exist, or even if they exist, the content is 0.1 vol% or less.

【0008】以下、本発明における制限理由などについ
て詳細に述べる。 結合相量の最高部の存在深さ範囲とその結合相量 結合相富化領域は工具強度を高めるためと、焼結後の冷
却時や切削工具離脱時に表層部に圧縮応力を発生し得る
という効果も持つために必要で、その最高部の深さが3
μm未満では工具としての耐摩耗性が劣り、500μm
を越えると表面への圧縮応力印加の作用が十分発揮され
ない。その最高部の結合相量の平均結合相量に対する比
は1.1倍以下では所望の強度向上効果が得られず、4
倍を越えると切削時に塑性変形をするか内部が余りに硬
質になり強度が不足してしまうので好ましくない。
The reasons for limitation in the present invention will be described in detail below. It is said that the existence depth range of the highest part of the amount of binder phase and its amount of binder phase enhance the tool strength, and that compressive stress can be generated in the surface layer part during cooling after sintering or when the cutting tool is released. It is necessary to have an effect, and the maximum depth is 3
If it is less than μm, the wear resistance as a tool is poor, and it is 500 μm.
If it exceeds, the effect of applying compressive stress to the surface is not sufficiently exhibited. If the ratio of the amount of the binder phase at the highest part to the average amount of the binder phase is 1.1 times or less, the desired strength improving effect cannot be obtained, and 4
If it exceeds 2 times, the plastic deformation during cutting or the inside becomes too hard and the strength becomes insufficient, which is not preferable.

【0009】表面部結合相量 表面部は耐摩耗性を有しかつ内部より熱膨張係数が小さ
くなることによる圧縮応力を受けている必要があり、従
って最高結合相量比0.9倍を越えてしまうとこれらの
所望の効果が得られない。 表面部での硬質相中のTi及びTa,Nb,Zr量 表面は高い耐摩耗性を有する必要がありTi及びこれと
同様の耐摩耗性向上効果を有するTa,Nb,Zrを表
面部に富化させる必要があるが、合金としての平均比
1.01倍未満では所望の耐摩耗性が得られない。特に
Ta,Nbは高温耐酸化性も高くし得るため好ましい。
さらにこの富化により切削仕上げ面の性状も極めて優れ
るという効果がある。 表面部での硬質相中のW及びMo量
Surface Binder Phase Content The surface section must have wear resistance and be subjected to compressive stress due to a smaller coefficient of thermal expansion than the interior, so that the maximum binder phase ratio exceeds 0.9 times. If so, these desired effects cannot be obtained. Amount of Ti, Ta, Nb, and Zr in the hard phase on the surface part The surface must have high wear resistance, and Ti and Ta, Nb, and Zr, which have the same effect of improving wear resistance, are rich in the surface part. However, if the average ratio of the alloy is less than 1.01, the desired wear resistance cannot be obtained. In particular, Ta and Nb are preferable because they can have high-temperature oxidation resistance.
Further, due to this enrichment, there is an effect that the properties of the cut finish surface are extremely excellent. W and Mo content in the hard phase at the surface

【0010】硬質相中のWおよびMo量は、(Tixy
c)および(TixyMobc)で表したとき、yおよび
bで表示される。表面部には耐摩耗性に劣るWCおよび
またはMo2Cを減らし、結果的に内部にかけて硬質相
中のWおよびまたはMoを富化させる。この量を合金と
しての平均比0.1未満は実質的に作成が不可能であ
り、0.9を越えると耐摩耗性に劣り好ましくない。M
oは、硬質相中ではWCとほぼ同様の挙動を示す。
The amounts of W and Mo in the hard phase are (Ti x W y
M c ) and (Ti x W y Mo b M c ) are represented by y and b. WC and / or Mo 2 C, which have poor wear resistance, are reduced on the surface portion, and as a result, W and / or Mo in the hard phase is enriched toward the inside. If this amount is less than 0.1 as an average ratio as an alloy, it is practically impossible to make it, and if it exceeds 0.9, the wear resistance is poor, which is not preferable. M
o exhibits almost the same behavior as WC in the hard phase.

【0011】ここでWCのみについて説明する。合金の
表面から内部にかけての硬質相中のW富化の形態は、W
C粒子として存在しているのも良いし、複合炭窒化物固
溶体の周辺組織がWーrich になっていても良い。また、
硬質相の存在形態としてW-richの固溶体が部分的に存
在し出してきたり、表面組織より多くなっていても良
く、走査型電子顕微鏡において中心が白く周辺が濃く観
察される硬質粒子(白芯粒子と呼ぶ。白いところがTi
-rich部分で灰色のところがWーrich部分)の比率が増え
ても、所望の熱伝導特性向上と強度向上の効果が得られ
る。尚、0.5<x≦0.95, 0.05<y≦0.5 の範囲とす
るのは、耐摩耗性と耐熱性を維持するためである。これ
らの範囲を逸脱すると耐摩耗性と耐熱性が低下するので
本願発明の目的が達成できない。以下、実施例にて詳し
く説明する。
Only the WC will be described here. The morphology of W enrichment in the hard phase from the surface to the interior of the alloy is
It may be present as C particles, or the peripheral structure of the composite carbonitride solid solution may be W-rich. Also,
As the existence form of the hard phase, a solid solution of W-rich may be partially present or may be more than the surface texture, and hard particles (white core with a white center and a dark periphery are observed in a scanning electron microscope). Called particles, white areas are Ti
Even if the ratio of the -rich portion in the gray portion of the -rich portion is the W-rich portion) increases, the desired effect of improving the heat conduction characteristics and the strength can be obtained. The range of 0.5 <x ≦ 0.95 and 0.05 <y ≦ 0.5 is to maintain wear resistance and heat resistance. If it deviates from these ranges, the wear resistance and the heat resistance are deteriorated, so that the object of the present invention cannot be achieved. Hereinafter, a detailed description will be given in examples.

【0012】[0012]

【実施例】【Example】

(実施例1) 原料粉末として、平均粒径2μmの(T
0.80.2)(C0.70.3)粉末を48重量%、同1.5
μmの(TaNb)C粉末(TaC:NbC=2:1
(重量比))を24重量%、同4μmのWC粉末を19重
量%、同1.5μmのNi粉末とCo粉末をそれぞれ3
重量%、6重量%を湿式混合後、型押し成形し、10-2
Torrの真空中で1200℃で脱ガス後、窒素ガス分圧5
Torr、水素ガス分圧0.5Torrで1400℃に昇温、一
度10-2Torrの真空とした後再びガス雰囲気を戻し1時
間焼結した。窒素で急冷の後1330℃からCO2を1
00Torr流しながら2℃/分で徐冷し、試料1を作成し
た。この試料の構造を第1表に示す。
(Example 1) As a raw material powder, (T
i 0.8 W 0.2 ) (C 0.7 N 0.3 ) powder 48% by weight, 1.5%
μm (TaNb) C powder (TaC: NbC = 2: 1)
(Weight ratio)), 24% by weight, 19% by weight of WC powder of 4 μm, 3% of Ni powder and Co powder of 1.5 μm, respectively.
Wt%, after the wet mixing 6 wt%, embossing molding, 10-2
After degassing in a Torr vacuum at 1200 ° C, nitrogen gas partial pressure 5
The temperature was raised to 1400 ° C. with Torr and hydrogen gas partial pressure of 0.5 Torr, and once evacuated to 10 −2 Torr, the gas atmosphere was returned again and sintering was carried out for 1 hour. CO 2 from 1330 ° C. After quenching with nitrogen 1
Sample 1 was prepared by gradually cooling at 2 ° C./minute while flowing 00 Torr. The structure of this sample is shown in Table 1.

【0013】[0013]

【表1】 [Table 1]

【0014】比較のために、いくつかの従来の製法によ
るサンプルとして、同一の型押し成形体を窒素分圧5To
rrで1400℃で焼結した試料2と、試料2と同一の焼
結後CO分圧200Torrで冷却した試料3、試料2と同
一の焼結後窒素分圧180Torrで冷却した試料4を作成
した。これらの構造を第2表に示す。
For comparison, the same embossed compact was used as a sample by several conventional manufacturing methods, and the nitrogen partial pressure was 5 To.
Sample 2 sintered at 1400 ° C. at rr, sample 3 cooled at the same post-sintering CO partial pressure of 200 Torr as sample 2 and sample 4 the same as sample 2 cooled at the nitrogen partial pressure of 180 Torr after sintering . These structures are shown in Table 2.

【0015】[0015]

【表2】 [Table 2]

【0016】各試料1〜4の窒素含有焼結硬質合金を第
3表の切削条件1〜3で実施し併記した判定による結果
を第4表に示す。
Table 4 shows the results of the judgments made on the nitrogen-containing sintered hard alloys of Samples 1 to 4 under the cutting conditions 1 to 3 shown in Table 3 together.

【0017】[0017]

【表3】 [Table 3]

【0018】[0018]

【表4】 [Table 4]

【0019】(実施例2) 原料粉末として、平均粒径
2μmの(Ti0.80.2)(C0.70.3)粉末を51重量
%、同1.2μmの(TaNb)C粉末(TaC:Nb
C=2:1(重量比))を27重量%、同5μmのWC粉
末を11重量%、同1.5μmのNi粉末とCo粉末を
それぞれ3重量%、8重量%を湿式混合後、型押し成形
し、10-2Torrの真空中で1200℃で脱ガス後、窒素
ガス分圧10Torrで1450℃にて1時間焼結後、10
-5Torrの高真空下で冷却し試料5を,CO2冷却し試料
6を作成した。比較のために同一の成形体から第5表に
示す構造の試料7,8も作成した。これらを第6表の切
削条件で評価しその結果を第7表に記した。
Example 2 As raw material powder, 51 wt% of (Ti 0.8 W 0.2 ) (C 0.7 N 0.3 ) powder having an average particle size of 2 μm and (TaNb) C powder (TaC: Nb) of 1.2 μm were used.
C = 2: 1 (weight ratio)), 27% by weight, 11% by weight of WC powder of 5 μm, 3% by weight and 8% by weight of Ni powder and Co powder of 1.5 μm, respectively. Press-molded, degassed in a vacuum of 10 -2 Torr at 1200 ° C, then sintered at 1450 ° C for 1 hour at a nitrogen gas partial pressure of 10 Torr, and then 10
Sample 5 was prepared by cooling under a high vacuum of -5 Torr and sample 5 by cooling under CO 2 . For comparison, samples 7 and 8 having the structures shown in Table 5 were prepared from the same molded body. These were evaluated under the cutting conditions shown in Table 6 and the results are shown in Table 7.

【0020】[0020]

【表5】 [Table 5]

【0021】[0021]

【表6】 [Table 6]

【0022】[0022]

【表7】 [Table 7]

【0023】(実施例3) 原料粉末として、平均粒径
2.5μmの(Ti0.80.2)(C0.70.3)粉末を42
重量%、同1.5μmの(TaNb)C粉末(TaC:
NbC=2:1(重量比))を23重量%、同4μmのW
C粉末を25重量%、同1.5μmのNi粉末とCo粉
末をそれぞれ2.5重量%、6.5重量%を湿式混合
後、型押し成形し、窒素ガス分圧15Torrで1430℃
にて1時間焼結後、CO2冷却し試料9を、露点−40
℃の水素ガスで冷却し試料10を作成した。比較のため
に同一原料粉末から第8表の結合相平均量と内部の硬質
相組成(Ti+Nb、W)になるように配合した試料1
1〜13も作成した。試料14〜19は試料9、10と
同一の成形体を使用した比較用の別構造合金である。第
9表にこれらの切削試験の条件とその結果を併記した。
Example 3 As a raw material powder, 42 (Ti 0.8 W 0.2 ) (C 0.7 N 0.3 ) powder having an average particle size of 2.5 μm was used.
% By weight, 1.5 μm of (TaNb) C powder (TaC:
NbC = 2: 1 (weight ratio)) 23 wt%, W of 4 μm
C powder 25 wt%, 1.5 μm of Ni powder and Co powder of 2.5 wt% and 6.5 wt% respectively were wet-mixed and then press-molded, and nitrogen gas partial pressure was 15 Torr and 1430 ° C.
After sintering for 1 hour, the sample 9 was cooled with CO 2 and the dew point was −40.
Sample 10 was prepared by cooling with hydrogen gas at 0 ° C. For comparison, sample 1 was prepared from the same raw material powder so that the average amount of the binder phase and the internal hard phase composition (Ti + Nb, W) in Table 8 were obtained.
1-13 were also created. Samples 14 to 19 are comparative structural alloys using the same molded body as Samples 9 and 10. Table 9 shows the conditions and results of these cutting tests.

【0024】[0024]

【表8】 [Table 8]

【0025】[0025]

【表9】 [Table 9]

【0026】(実施例4) 平均粒径2μmで、有芯構
造の外郭部分が反射電子顕微鏡像で白に、芯部分が黒に
見える(Ti0.75Ta0.04Nb0.040.17)(C0.56
0.44)粉末と、同1.5μmのNi粉末とCo粉末をそ
れぞれ85重量%、8重量%、7重量%を湿式混合後、
型押し成形し、10-2Torrの真空中で1200℃で脱ガ
ス後、窒素ガス分圧10Torrで1450℃にて1時間焼
結後、CO2冷却した合金を試料20、Ti(CN)、T
aC、WC、NbC、Co、Niを試料20と同一組成
となるように配合、混合し焼結した試料21を作成し
た。比較のために試料20と同一の成形体から第10表
に示す構造の試料22,23を、試料21と同一の成形
体から第10表に示す構造の試料24も作成した。第1
1表にこれらの切削テスト条件と評価結果を記した。
(Example 4) With an average particle diameter of 2 μm, the outer portion of the cored structure looks white in a reflection electron microscope image, and the core looks black (Ti 0.75 Ta 0.04 Nb 0.04 W 0.17 ) (C 0.56 N
0.44 ) powder and the same 1.5 μm Ni powder and Co powder of 85% by weight, 8% by weight and 7% by weight, respectively, after wet mixing,
After embossing, degassing at 1200 ° C. in a vacuum of 10 −2 Torr, sintering at 1450 ° C. for 1 hour at a nitrogen gas partial pressure of 10 Torr, and CO 2 cooled alloy sample 20, Ti (CN), T
Sample 21 was prepared by mixing aC, WC, NbC, Co, and Ni so as to have the same composition as sample 20, mixing and sintering. For comparison, samples 22 and 23 having the structure shown in Table 10 were prepared from the same molded body as sample 20, and sample 24 having the structure shown in Table 10 was also prepared from the same molded body as sample 21. First
Table 1 shows these cutting test conditions and evaluation results.

【0027】[0027]

【表10】 [Table 10]

【0028】[0028]

【表11】 [Table 11]

【0029】(実施例5) 平均粒径2μmの(Ti
0.80.2)(C0.70.3)粉末、同1.5μmのTaC粉
末、同4μmのWC粉末、同2μmのZrC粉末、同
1.5μmのNi粉末とCo粉末を用い第12表の平均
組成及び構造の合金を作成した。第13表にそれぞれの
合金試料の特性を示す。
Example 5 (Ti having an average particle size of 2 μm)
0.8 W 0.2 ) (C 0.7 N 0.3 ) powder, 1.5 μm TaC powder, 4 μm WC powder, 2 μm ZrC powder, 1.5 μm Ni powder and Co powder And structural alloys were made. Table 13 shows the characteristics of each alloy sample.

【0030】[0030]

【表12】 [Table 12]

【0031】[0031]

【表13】 [Table 13]

【0032】(実施例6) 平均粒径2μmの(Ti
0.80.2)(C0.70.3)粉末、同1.5μmのTaC粉
末、同3μmのNbC粉末、同4μmのWC粉末、同3
μmのMo2C粉末、同1.5μmのNi粉末とCo粉
末を用い第14表の平均組成及び構造の合金を作成し
た。第15表にそれぞれの合金試料の特性を示す。
Example 6 (Ti having an average particle size of 2 μm)
0.8 W 0.2 ) (C 0.7 N 0.3 ) powder, 1.5 μm TaC powder, 3 μm NbC powder, 4 μm WC powder, 3
An alloy having the average composition and structure shown in Table 14 was prepared by using Mo 2 C powder of μm, Ni powder and Co powder of 1.5 μm. Table 15 shows the characteristics of each alloy sample.

【0033】[0033]

【表14】 [Table 14]

【0034】[0034]

【表15】 [Table 15]

【0035】[0035]

【発明の効果】上述のように本発明によれば、切削工具
として特に熱衝撃の厳しい条件での切削、例えばフライ
ス切削や角材の旋盤による切削加工、また、切込みの大
きく変動する湿式での倣い切削加工などに対し、極めて
信頼性の高い窒素含有焼結硬質合金を提供できるという
効果を有する。
As described above, according to the present invention, as a cutting tool, cutting under particularly severe conditions of thermal shock, for example, milling cutting or cutting with a lathe of square timber, and wet copying with greatly varying cutting depth. It has an effect that a highly reliable nitrogen-containing sintered hard alloy can be provided for cutting and the like.

【図面の簡単な説明】[Brief description of drawings]

第1図から第4図は、実施例1における試料1〜4の表
面からの深さ方向の、組成分布を模式的に示す図であ
る。 〔図面の簡単な説明〕
1 to 4 are diagrams schematically showing composition distributions in the depth direction from the surface of Samples 1 to 4 in Example 1. [Brief description of drawings]

【図1】本実施例1における試料1の表面深さの組成分
布図
FIG. 1 is a composition distribution diagram of the surface depth of Sample 1 in Example 1.

【図2】本実施例1における試料2の表面深さの組成分
布図
FIG. 2 is a compositional distribution diagram of the surface depth of sample 2 in the first embodiment.

【図3】本実施例1における試料3の表面深さの組成分
布図
FIG. 3 is a compositional distribution diagram of the surface depth of Sample 3 in Example 1.

【図4】本実施例1における試料4の表面深さの組成分
布図
FIG. 4 is a composition distribution diagram of the surface depth of sample 4 in the first embodiment.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 周期律表の4a,5a,6a族から選ば
れた少なくとも2種の遷移金属の炭化物、窒化物、炭窒
化物あるいはこれらの複合炭窒化物の少なくとも1種以
上からなる硬質相と、Ni及びCo並びに不可避不純物
を含む結合相とからなる窒素含有焼結硬質合金におい
て、結合金属相量が表面から3μm以上500μm以下
の深さ範囲に結合相量の最高部が存在しその値が合金平
均結合相量の1.1倍以上4倍以下で、深さ800μm
までに合金全体の平均結合相量に戻り、かつ、表面部の
結合相量が結合相量最高部に対し0.9倍以下であっ
て、かつ、硬質相については、硬質相を形成する金属成
分組成を(Tixyc)(但し、MはTi,W以外の硬
質相形成遷移金属成分で,x,y,cは原子比率でx+
y+c=1(0.5<x≦0.95, 0.05<y≦0.5)を満た
す)と表したとき、表面部のxが合金平均のxに対し
1.01倍以上、yが合金平均のyに対し0.1以上
0.9以下で、深さ800μmまでにそれぞれ合金全体
の平均のx,yに戻り、かつ、表面部にWC粒子が存在
しないかまたは存在しても0.1体積%以下であること
を特徴とする窒素含有焼結硬質合金。
1. A hard phase comprising at least one kind of carbides, nitrides, carbonitrides of at least two kinds of transition metals selected from groups 4a, 5a and 6a of the periodic table, or composite carbonitrides thereof. And a nitrogen-containing sintered hard alloy consisting of a binder phase containing Ni and Co and unavoidable impurities, the maximum value of the binder phase amount exists in the depth range of the binder metal phase amount from 3 μm to 500 μm from the surface. Is 1.1 times or more and 4 times or less the alloy average binder phase amount, and the depth is 800 μm.
To the average binder phase amount of the entire alloy, and the binder phase amount of the surface part is 0.9 times or less than the binder phase highest part, and for the hard phase, the metal forming the hard phase The component composition is (Ti x W y M c ), where M is a transition metal component forming a hard phase other than Ti and W, and x, y, and c are atomic ratios x +
When expressed as y + c = 1 (satisfying 0.5 <x ≦ 0.95, 0.05 <y ≦ 0.5)), x of the surface portion is 1.01 times or more the alloy average x, and y is 0 relative to the alloy average y. .1 or more and 0.9 or less, and returns to the average x and y of the entire alloy by the depth of 800 μm, and WC particles are not present on the surface portion or are 0.1 volume% or less even if they are present. A nitrogen-containing sintered hard alloy characterized by the following.
【請求項2】 周期律表の4a,5a,6a族から選ば
れた少なくとも2種の遷移金属の炭化物、窒化物、炭窒
化物あるいはこれらの複合炭窒化物の少なくとも1種以
上からなる硬質相と、Ni及びCo並びに不可避不純物
を含む結合相とからなる窒素含有焼結硬質合金におい
て、結合金属相量が表面から3μm以上500μm以下
の深さ範囲に結合相量の最高部が存在しその値が合金平
均結合相量の1.1倍以上4倍以下で、深さ800μm
までに合金全体の平均結合相量に戻り、かつ、表面部の
結合相量が結合相量最高部に対し0.9倍以下であっ
て、かつ、硬質相については、硬質相を形成する金属成
分組成を(TixyM'bc)(但し、MはTi,W,T
a,Nb以外の硬質相形成遷移金属成分で、M'はT
a,またはNbから選ばれてなり、x,y,b,cは原
子比率でx+y+b+c=1(0.5<x≦0.95, 0.05
<y≦0.5, 0.01<b≦0.4)を満たす)と表したと
き、表面部のx+bが合金平均のx+bに対し1.01
倍以上、yが合金平均のyに対し0.1以上0.9以下
で、深さ800μmまでにそれぞれ合金全体の平均のx
+b,yに戻り、かつ、表面部にWC粒子が存在しない
かまたは存在しても0.1体積%以下であることを特徴
とする窒素含有焼結硬質合金。
2. A hard phase comprising at least one kind of carbides, nitrides, carbonitrides of at least two kinds of transition metals selected from the groups 4a, 5a and 6a of the periodic table, or composite carbonitrides thereof. And a nitrogen-containing sintered hard alloy consisting of a binder phase containing Ni and Co and unavoidable impurities, the maximum value of the binder phase amount exists in the depth range of the binder metal phase amount from 3 μm to 500 μm from the surface. Is 1.1 times or more and 4 times or less the alloy average binder phase amount, and the depth is 800 μm.
To the average binder phase amount of the entire alloy, and the binder phase amount of the surface part is 0.9 times or less than the binder phase highest part, and for the hard phase, the metal forming the hard phase The composition of the components is (Ti x W y M'b M c ) (where M is Ti, W, T
Hard phase forming transition metal components other than a and Nb, M'is T
a, or Nb, where x, y, b, and c are atomic ratios x + y + b + c = 1 (0.5 <x ≦ 0.95, 0.05
<Y ≦ 0.5, 0.01 <b ≦ 0.4) is satisfied), x + b of the surface portion is 1.01 with respect to the alloy average x + b.
X or more, y is 0.1 or more and 0.9 or less with respect to the average y of the alloy, and the average x of the entire alloy is up to 800 μm in depth.
A nitrogen-containing sintered hard alloy characterized by returning to + b, y, and having no WC particles on the surface portion or 0.1% by volume or less even if they are present.
【請求項3】 周期律表の4a,5a,6a族から選ば
れた少なくとも2種の遷移金属の炭化物、窒化物、炭窒
化物あるいはこれらの複合炭窒化物の少なくとも1種以
上からなる硬質相と、Ni及びCo並びに不可避不純物
を含む結合相とからなる窒素含有焼結硬質合金におい
て、結合金属相量が表面から3μm以上500μm以下
の深さ範囲に結合相量の最高部が存在しその値が合金平
均結合相量の1.1倍以上4倍以下で、深さ800μm
までに合金全体の平均結合相量に戻り、かつ、表面部の
結合相量が結合相量最高部に対し0.9倍以下であっ
て、かつ、硬質相については、硬質相を形成する金属成
分組成を(TixyTaaNbbc)(但し、MはTi,
W,Ta,Nb以外の硬質相形成遷移金属成分で、x,
y,a,b,cは原子比率でx+y+a+b+c=1
(0.5<x≦0.95, 0.05<y≦0.5, 0.01<a≦0.
4, 0.01<b≦0.4)を満たす)と表したとき、表面部
のx+a+bが合金平均のx+a+bに対し1.01倍
以上、yが合金平均のyに対し0.1以上0.9以下
で、深さ800μmまでにそれぞれ合金全体の平均のx
+a+b,yに戻り、かつ、表面部にWC粒子が存在し
ないかまたは存在しても0.1体積%以下であることを
特徴とする窒素含有焼結硬質合金。
3. A hard phase comprising at least one kind of carbides, nitrides, carbonitrides of at least two kinds of transition metals selected from groups 4a, 5a and 6a of the periodic table, or composite carbonitrides thereof. And a nitrogen-containing sintered hard alloy consisting of a binder phase containing Ni and Co and unavoidable impurities, the maximum value of the binder phase amount exists in the depth range of the binder metal phase amount from 3 μm to 500 μm from the surface. Is 1.1 times or more and 4 times or less the alloy average binder phase amount, and the depth is 800 μm.
To the average binder phase amount of the entire alloy, and the binder phase amount of the surface part is 0.9 times or less than the binder phase highest part, and for the hard phase, the metal forming the hard phase The composition of the components is (Ti x W y Ta a Nb b M c ) (where M is Ti,
Hard phase forming transition metal components other than W, Ta, Nb, x,
y, a, b, c are atomic ratios x + y + a + b + c = 1
(0.5 <x ≦ 0.95, 0.05 <y ≦ 0.5, 0.01 <a ≦ 0.
4, 0.01 <b ≦ 0.4) is satisfied), x + a + b of the surface part is 1.01 times or more the alloy average x + a + b, and y is 0.1 or more and 0.9 or less of the alloy average y. , The average x of the whole alloy up to a depth of 800 μm
A nitrogen-containing sintered hard alloy characterized by returning to + a + b, y, and having no or no WC particles on the surface portion, or 0.1% by volume or less.
【請求項4】 周期律表の4a,5a,6a族から選ば
れた少なくとも2種の遷移金属の炭化物、窒化物、炭窒
化物あるいはこれらの複合炭窒化物の少なくとも1種以
上からなる硬質相と、Ni及びCo並びに不可避不純物
を含む結合相とからなる窒素含有焼結硬質合金におい
て、結合金属相量が表面から3μm以上500μm以下
の深さ範囲に結合相量の最高部が存在しその値が合金平
均結合相量の1.1倍以上4倍以下で、深さ800μm
までに合金全体の平均結合相量に戻り、かつ、表面部の
結合相量が結合相量最高部に対し0.9倍以下であっ
て、かつ、硬質相については、硬質相を形成する金属成
分組成を(TixyZrbc)(但し、MはTi,W,Z
r以外の硬質相形成遷移金属成分で、x,y,b,cは
原子比率でx+y+b+c=1(0.5<x≦0.95, 0.0
5<y≦0.5, 0.01<b≦0.4)を満たす)と表したと
き、表面部のx+bが合金平均のx+bに対し1.01
倍以上、yが合金平均のyに対し0.1以上0.9以下
で、深さ800μmまでにそれぞれ合金全体の平均のx
+b,yに戻り、かつ、表面部にWC粒子が存在しない
かまたは存在しても0.1体積%以下であることを特徴
とする窒素含有焼結硬質合金。
4. A hard phase comprising at least one kind of carbides, nitrides, carbonitrides of at least two kinds of transition metals selected from the groups 4a, 5a and 6a of the periodic table, or composite carbonitrides thereof. And a nitrogen-containing sintered hard alloy consisting of a binder phase containing Ni and Co and unavoidable impurities, the maximum value of the binder phase amount exists in the depth range of the binder metal phase amount from 3 μm to 500 μm from the surface. Is 1.1 times or more and 4 times or less the alloy average binder phase amount, and the depth is 800 μm.
To the average binder phase amount of the entire alloy, and the binder phase amount of the surface part is 0.9 times or less than the binder phase highest part, and for the hard phase, the metal forming the hard phase The component composition is (Ti x W y Zr b M c ) (where M is Ti, W, Z
Hard phase forming transition metal components other than r, x, y, b, c are atomic ratios x + y + b + c = 1 (0.5 <x ≦ 0.95, 0.0
5 <y ≦ 0.5, 0.01 <b ≦ 0.4)), x + b of the surface portion is 1.01 with respect to the alloy average x + b.
X or more, y is 0.1 or more and 0.9 or less with respect to the average y of the alloy, and the average x of the entire alloy is up to 800 μm in depth.
A nitrogen-containing sintered hard alloy characterized by returning to + b, y, and having no WC particles on the surface portion or 0.1% by volume or less even if they are present.
【請求項5】 周期律表の4a,5a,6a族から選ば
れた少なくとも2種の遷移金属の炭化物、窒化物、炭窒
化物あるいはこれらの複合炭窒化物の少なくとも1種以
上からなる硬質相と、Ni及びCo並びに不可避不純物
を含む結合相とからなる窒素含有焼結硬質合金におい
て、結合金属相量が表面から3μm以上500μm以下
の深さ範囲に結合相量の最高部が存在しその値が合金平
均結合相量の1.1倍以上4倍以下で、深さ800μm
までに合金全体の平均結合相量に戻り、かつ、表面部の
結合相量が結合相量最高部に対し0.9倍以下であっ
て、かつ、硬質相については、硬質相を形成する金属成
分組成を(TixyMobc)(但し、MはTi,W,M
o以外の硬質相形成遷移金属成分で、x,y,b,cは
原子比率でx+y+b+c=1(0.5<x≦0.95, 0.0
5<y≦0.5, 0.01<b≦0.4)を満たす)と表したと
き、表面部のxが合金平均のxに対し1.01倍以上、
y+bが合金平均のy+bに対し0.1以上0.9以下
で、深さ800μmまでにそれぞれ合金全体の平均の
x,y+bに戻り、かつ、表面部にWC粒子が存在しな
いかまたは存在しても0.1体積%以下であることを特
徴とする窒素含有焼結硬質合金。
5. A hard phase comprising at least one kind of carbides, nitrides, carbonitrides of at least two kinds of transition metals selected from the groups 4a, 5a and 6a of the periodic table, or composite carbonitrides thereof. And a nitrogen-containing sintered hard alloy consisting of a binder phase containing Ni and Co and unavoidable impurities, the maximum value of the binder phase amount exists in the depth range of the binder metal phase amount from 3 μm to 500 μm from the surface. Is 1.1 times or more and 4 times or less the alloy average binder phase amount, and the depth is 800 μm.
To the average binder phase amount of the entire alloy, and the binder phase amount of the surface part is 0.9 times or less than the binder phase highest part, and for the hard phase, the metal forming the hard phase The composition of the components is (Ti x W y Mo b M c ) (where M is Ti, W, M
Hard phase forming transition metal components other than o, x, y, b, c are atomic ratios x + y + b + c = 1 (0.5 <x ≦ 0.95, 0.0
5 <y ≦ 0.5, 0.01 <b ≦ 0.4) is satisfied), x of the surface portion is 1.01 times or more the x of the alloy average,
y + b is 0.1 or more and 0.9 or less with respect to the average y + b of the alloy, returns to the average x, y + b of the entire alloy by a depth of 800 μm, and WC particles are not present or present on the surface portion. Also, the nitrogen-containing sintered hard alloy is characterized by being 0.1% by volume or less.
JP5018283A 1993-02-05 1993-02-05 Nitrogen-containing sintered hard alloy Expired - Fee Related JP3064722B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP5018283A JP3064722B2 (en) 1993-02-05 1993-02-05 Nitrogen-containing sintered hard alloy
EP94905840A EP0635580A4 (en) 1993-02-05 1994-02-03 Nitrogen-containing hard sintered alloy.
PCT/JP1994/000158 WO1994018351A1 (en) 1993-02-05 1994-02-03 Nitrogen-containing hard sintered alloy
DE69433214T DE69433214T2 (en) 1993-02-05 1994-02-03 Hard sintered alloy containing nitrogen
EP98102547A EP0864661B1 (en) 1993-02-05 1994-02-03 Nitrogen-containing sintered hard alloy
US08/313,222 US5577424A (en) 1993-02-05 1994-02-03 Nitrogen-containing sintered hard alloy
KR1019940703517A KR0143508B1 (en) 1993-02-05 1994-02-03 Nitrogen containing sintered hard alloy
TW083101466A TW291499B (en) 1993-02-05 1994-02-19
KR1019940703517A KR950701006A (en) 1993-02-05 1994-10-05 NITROGEN-CONTAINING HARD SINTERED ALLOY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5018283A JP3064722B2 (en) 1993-02-05 1993-02-05 Nitrogen-containing sintered hard alloy

Publications (2)

Publication Number Publication Date
JPH06228702A true JPH06228702A (en) 1994-08-16
JP3064722B2 JP3064722B2 (en) 2000-07-12

Family

ID=11967311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5018283A Expired - Fee Related JP3064722B2 (en) 1993-02-05 1993-02-05 Nitrogen-containing sintered hard alloy

Country Status (1)

Country Link
JP (1) JP3064722B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015086464A (en) * 2013-11-01 2015-05-07 住友電気工業株式会社 Cermet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015086464A (en) * 2013-11-01 2015-05-07 住友電気工業株式会社 Cermet

Also Published As

Publication number Publication date
JP3064722B2 (en) 2000-07-12

Similar Documents

Publication Publication Date Title
US5577424A (en) Nitrogen-containing sintered hard alloy
KR960010815B1 (en) Surface refined sintered alloy and process for producing the same and coated surface refined intered alloy comprising rigid film coated on the alloy
CN110168121B (en) Cemented carbide and cutting tool
WO2014208447A1 (en) Cermet, and method for manufacturing same, as well as cutting tool
JP5213326B2 (en) cermet
JPH02254131A (en) Nitrogen-containing cermet having excellent various characteristics, its manufacture and coated nitrogen-containing cermet
US6057046A (en) Nitrogen-containing sintered alloy containing a hard phase
KR0180522B1 (en) Nitrogen containing sintered hard alloy
KR20230132366A (en) Pulverizing/stirring/mixing/kneading machine component
JPH06228702A (en) Nitrogen-containing sintered hard alloy
JP3803694B2 (en) Nitrogen-containing sintered hard alloy
JP3648758B2 (en) Nitrogen-containing sintered hard alloy
JP5381616B2 (en) Cermet and coated cermet
JP2775298B2 (en) Cermet tool
JP5436083B2 (en) Cermet sintered body and cutting tool
JP2737677B2 (en) Nitrogen-containing sintered hard alloy
JP2005200668A (en) Cermet and coated cermet, and manufacturing methods for them
JPH09104943A (en) Sintered hard alloy
JPH0813077A (en) Nitrogen-containing sintered hard alloy
JP3359221B2 (en) TiCN-based cermet tool and its manufacturing method
JPH08176719A (en) Nitrogen-containing sintered hard alloy
JP7008249B2 (en) TiN-based sintered body and cutting tool made of TiN-based sintered body
JP2012512963A (en) cermet
JPH0641673A (en) Sintered hard alloy
JP2003113438A (en) Die made from sintered hard metal alloy

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees