JPH06226300A - Method and device for treating water-containing soil on site by electroosmosis - Google Patents

Method and device for treating water-containing soil on site by electroosmosis

Info

Publication number
JPH06226300A
JPH06226300A JP4219793A JP4219793A JPH06226300A JP H06226300 A JPH06226300 A JP H06226300A JP 4219793 A JP4219793 A JP 4219793A JP 4219793 A JP4219793 A JP 4219793A JP H06226300 A JPH06226300 A JP H06226300A
Authority
JP
Japan
Prior art keywords
electrode
soil
peripheral
treatment
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4219793A
Other languages
Japanese (ja)
Other versions
JP3343662B2 (en
Inventor
Tsutomu Katsura
勤 桂
Tsutomu Moriya
勉 守屋
Kaoru Ichinomiya
薫 一ノ宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP4219793A priority Critical patent/JP3343662B2/en
Publication of JPH06226300A publication Critical patent/JPH06226300A/en
Application granted granted Critical
Publication of JP3343662B2 publication Critical patent/JP3343662B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To directly treat water-contg. soil on the treating site with a simple structure and to provide a device capable of treating the soil by electroosmosis without contaminating the environment around the site. CONSTITUTION:An electrode combination 2 consisting of a central electrode 2A and plural peripheral electrodes 2B surrounding the electrode 2A is successively and adjacently arranged in the water-contg. soil treating region. Current and voltage are impressed in parallel between the electrode combinations to dehydrate the soil by electroosmosis, and then the polarity of the impressed voltage is inverted to restore the >= value of the treating region. Since the structure is simple and a mechanically operating part is not needed, the soil is directly treated on the site, and the secondary contamination of the treated soil or its surroundings due to the change in # value is prevented as a current is applied in the reverse direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電気浸透による含水土壌
のその場処理方法および装置に関する。
FIELD OF THE INVENTION The present invention relates to an in situ treatment method and apparatus for hydrous soil by electroosmosis.

【0002】[0002]

【従来の技術および発明の解決すべき課題】無機および
有機汚泥などの各種汚泥を焼却やコンポスト化等の最終
処理に付し、又はこれらを最終処理施設まで移送するた
めには、それらを予め目的に適した含水分にまで脱水し
て減量、減容しておくことが望ましく、このために従来
から天日乾燥等の自然処理や機械的な圧搾、濾過処理お
よび凝固剤による化学的処理等が用いられている。しか
し、天日乾燥は敷地面積や処理時間の点で大量の汚泥処
理については実用的ではない。一方、機械的および化学
的な処理は設備費ならびに動力や薬剤等のランニングコ
ストが嵩み、また汚泥の種類によっては充分な脱水が困
難なこともある。
BACKGROUND OF THE INVENTION In order to subject various sludges such as inorganic and organic sludges to final treatment such as incineration and composting, or to transfer them to a final treatment facility, they must be used in advance. It is desirable to dehydrate and reduce the volume to reduce the water content to a suitable water content.For this reason, natural treatment such as sun drying, mechanical squeezing, filtration treatment and chemical treatment with a coagulant are conventionally performed. It is used. However, sun drying is not practical for treating large amounts of sludge in terms of site area and treatment time. On the other hand, mechanical and chemical treatments increase equipment costs and running costs such as power and chemicals, and depending on the type of sludge, sufficient dehydration may be difficult.

【0003】このため、これら汚泥の脱水のために電気
浸透法の技術を適用した方法が試みられており、経済性
および効率の点で近年注目されている。電気浸透法を用
いる脱水処理では、汚泥中の土壌粒子が水に対して負電
位に帯電(ゼータ電位)していることを利用し、被処理
汚泥中に対向して設けた電極(陽極−陰極)間に直流電
圧を印加することにより汚泥中の水分を陰極側に移動さ
せて汚泥の脱水が行われる。
For this reason, a method applying the electroosmosis technique has been attempted for dehydration of these sludges, and attention has been paid in recent years in terms of economical efficiency and efficiency. In the dehydration treatment using the electroosmosis method, the fact that the soil particles in the sludge are negatively charged (zeta potential) with respect to water is utilized, and the electrodes (anode-cathode) provided opposite to each other in the sludge to be treated are used. By applying a DC voltage between the two, the water in the sludge is moved to the cathode side and the sludge is dehydrated.

【0004】具体的には、このような電気浸透法による
汚泥の脱水としては、たとえば特開昭56−60603
および500678号等に記載されているように、機械
的にある程度予備脱水した汚泥を相対的に回転移動する
正負電圧を印加された一対のコンベアの間の移送路に沿
って加圧下に移送し、この間に電気浸透によって陰極側
に移行した汚泥の水分を回収して排出する方法等が多く
提案されている。
Concretely, as the dehydration of sludge by such an electroosmotic method, for example, JP-A-56-60603 is used.
As described in No. 500678 and the like, sludge mechanically preliminarily dehydrated to some extent is transferred under pressure along a transfer path between a pair of conveyors to which a positive and negative voltage that relatively rotationally moves is applied, Many methods have been proposed for recovering and discharging the water content of sludge that has moved to the cathode side by electroosmosis during this period.

【0005】このような電気浸透による汚泥脱水方法に
よればその脱水効率が極めて高いため、最終の焼却処分
における効率が向上し、また化学的脱水の場合のように
後の微生物処理や廃棄処理に適合するように処理剤を選
択する煩わしさもない。
According to such a sludge dewatering method by electroosmosis, the dewatering efficiency is extremely high, so that the efficiency in the final incineration disposal is improved, and in the case of the chemical dewatering, the subsequent microbial treatment and waste treatment are performed. Nor is there the hassle of choosing a treatment to suit.

【0006】しかし、前記従来技術の汚泥脱水処理では
被処理汚泥が加圧コンベア等の移動路に沿って導入さ
れ、また場合によっては予め汚泥をある程度脱水する前
処理と組合わされるので、複雑な機械的作動部が必要に
なって装置が大規模化し、設備費が嵩むと共に運転操作
や保守の点で問題が多い。
However, in the sludge dewatering process of the prior art, the sludge to be treated is introduced along a moving path such as a pressure conveyor, and in some cases, it is combined with a pretreatment for previously dewatering the sludge to some extent, which is complicated. Since a mechanical operating unit is required, the apparatus becomes large in scale, equipment costs increase, and there are many problems in terms of operation and maintenance.

【0007】また、一般に脱水処理の対象となる汚泥は
下水処理場や工場等から排出される有機汚泥の他、河
川、湾岸等の浚渫汚泥や建設現場の残土に由来する汚泥
等の無機汚泥などその発生源が多岐にわたっているた
め、通常はこれら汚泥は特定の脱水処理施設まで一旦運
搬してから一括処理されている。しかし、この場合には
汚泥の運搬コストが汚泥処理費用の相当な部分を占める
ことになる。
[0007] Generally, the sludge to be dewatered is not only organic sludge discharged from a sewage treatment plant or factory, but also inorganic sludge such as dredged sludge from rivers and bays, and sludge derived from the remaining soil at construction sites. Since there are various sources of such sludge, these sludges are usually transported to a specific dehydration treatment facility and then treated collectively. However, in this case, the sludge transportation cost occupies a considerable part of the sludge treatment cost.

【0008】したがって、このような汚泥の脱水処理は
発生現場においてその場で処理することが望ましく、特
に軟弱な土質や有害物質を含む土壌の改良等の場合には
それらを「その場」で処理することが必要である。しか
し分散して各所に存在する処理現場毎に前記のような大
規模な設備をその都度搬送又は設置することは容易では
ない。
[0008] Therefore, it is desirable to perform such dehydration treatment of sludge on the spot at the site of generation, and in the case of improvement of soft soil or soil containing harmful substances, treat them "on the spot". It is necessary to. However, it is not easy to transport or install such large-scale equipment for each processing site that is distributed and exists in each place.

【0009】したがって、前記の汚泥等の発生源毎に必
要に応じて簡単に配置することができ、かつ運転、保守
に労力を要しない構造が簡単で取扱いの容易な土壌のそ
の場処理技術の開発が望まれている。
Therefore, in-situ treatment technology of soil that can be easily arranged for each source of the above-mentioned sludge and the like, and has a simple structure that does not require labor for operation and maintenance and is easy to handle. Development is desired.

【0010】また前記のような処理設備を汚泥や残土の
発生現場や土質改良場所等に直接設置して電気浸透によ
って脱水処理を行う場合には、通電の際に生じる電解作
用によって電極付近の土壌のpH値が変化する。特に陽
極側のpH値は脱水処理と共に著しく酸性側に移行し、
それによって場合によっては処理土壌自体およびその周
辺に塩類等の形態で保持されていた金属がイオン化して
溶出し、処理域の周辺に二次汚染を発生させるおそれが
ある。したがって含水土壌を電気浸透法によって処理す
る際には、周囲の土壌等にpH変化によって与えられる
悪影響を極力回避することが必要となる。
Further, when the above-mentioned treatment equipment is directly installed at a place where sludge or residual soil is generated, a soil improvement place, etc. to perform dehydration treatment by electroosmosis, the soil near the electrodes is electrolyzed by electricity. PH value changes. In particular, the pH value on the anode side shifts significantly to the acid side with dehydration treatment,
As a result, the metal retained in the form of salts or the like in the treated soil itself and its surroundings may be ionized and eluted, which may cause secondary pollution around the treated area. Therefore, when treating the water-containing soil by the electroosmosis method, it is necessary to avoid the adverse effect of the pH change on the surrounding soil and the like as much as possible.

【0011】本発明の目的は処理対象としての含水土壌
を、従来技術のように複雑な機械的作動部を必要とする
大規模な設備を用いずにかつその場において効率的に処
理することのできる電気浸透による含水土壌のその場処
理方法および装置を提供することにある。
It is an object of the present invention to efficiently treat water-containing soil as an object to be treated on the spot without using a large-scale facility which requires a complicated mechanical operation unit as in the prior art. An object of the present invention is to provide an in-situ method and apparatus for treating water-containing soil by electroosmosis.

【0012】本発明の別の目的は含水土壌を電気浸透に
よって処理する際に特に酸性側に傾いた被処理域のpH
を中性または特定のpH値に回復させることのできる含
水土壌のその場処理方法および装置を提供することにあ
る。
[0012] Another object of the present invention is to treat the water-containing soil by electroosmosis, particularly when the pH of the treated area is inclined to the acidic side.
An object of the present invention is to provide an in-situ treatment method and apparatus for water-containing soil capable of recovering water to a neutral or specific pH value.

【0013】[0013]

【課題を達成するための手段】前記本発明の目的は土壌
の被処理域に対向して設けた電極間に通電して土壌の水
分含有率を電気浸透によって低下させる含水土壌の処理
方法において、中心電極とこの中心電極に対して等距離
の位置に夫々配置される複数の周辺電極とからなる電極
組合せ体を土壌の被処理域に順次隣接させて設置し、前
記中心電極と前記各周辺電極との間に前記各周辺電極か
ら前記中心電極又は前記中心電極から前記周辺電極に向
う方向に電流を生じさせるような極性の直流電圧を前記
各電極組合せ体に対して並列に印加して前記被処理域の
土壌中の水分を電気浸透により前記中心電極側に移行さ
せて排水する脱水工程と、前記脱水工程に引続いて前記
中心電極と前記各周辺電極との間に前記脱水工程におけ
る電流の方向を逆転させるような極性の電圧を印加し、
前記脱水工程中の通電によって低下した前記周辺電極側
のpH値を所定の値に回復させるpH調節工程とを含む
ことを特徴とする含水土壌のその場処理方法によって達
成される。
The object of the present invention is to provide a method for treating a water-containing soil in which a water content of the soil is reduced by electroosmosis by applying an electric current between electrodes provided opposite to a treated area of the soil. An electrode combination consisting of a center electrode and a plurality of peripheral electrodes that are arranged at equidistant positions with respect to the center electrode is installed in such a manner that they are sequentially adjacent to a treated area of soil, and the center electrode and each of the peripheral electrodes are arranged. And a DC voltage having a polarity that causes a current to flow from each of the peripheral electrodes to the center electrode or from the center electrode to the peripheral electrode, is applied in parallel to each of the electrode combinations, and Dehydration step of migrating water in the soil of the treatment area to the central electrode side by electroosmosis and draining it, and subsequently to the dehydrating step, between the central electrode and each of the peripheral electrodes of the current in the dehydrating step Reverse direction The polarity of the voltage that is applied,
And an in-situ treatment method for water-containing soil, which comprises a pH adjusting step of recovering a pH value on the side of the peripheral electrode, which has been lowered by energization during the dehydration step, to a predetermined value.

【0014】また前記本発明の方法は内部に吸引排水路
を有する中空管状の中心電極と、この中心電極から夫々
等距離の位置に配置される複数の周辺電極とからなり、
土壌の被処理域に夫々の中心電極および夫々の周辺電極
を互いに並列に接続した状態で順次隣接して設置される
電極組合せ体と、前記中心電極の吸引排水路に接続され
る排水手段と、前記電極組合せ体の中心電極と各周辺電
極との間に前記周辺電極から中心電極に向かう直流電圧
を印加する電源と、前記被処理域の土壌のpH値を測定
するpHセンサと、前記電源の直流電圧の極性を前記p
Hセンサによって測定される土壌のpH値にしたがって
反転させる手段を少なくとも含む供電制御装置とを備え
ていることを特徴とする含水土壌のその場処理装置によ
って実施することができる。
Further, the method of the present invention comprises a hollow tubular center electrode having a suction / drainage channel therein, and a plurality of peripheral electrodes arranged at positions equidistant from the center electrode.
Each center electrode and each peripheral electrode in the area to be treated of soil, an electrode combination sequentially installed in a state of being connected to each other in parallel, and a drainage means connected to the suction drainage channel of the center electrode, A power supply for applying a DC voltage from the peripheral electrode to the center electrode between the center electrode and each peripheral electrode of the electrode combination, a pH sensor for measuring the pH value of the soil in the treated area, and a power supply for the power supply. Set the polarity of the DC voltage to p
It can be carried out by an in-situ treatment apparatus for water-containing soil, comprising: a power supply control apparatus including at least a means for inverting the pH value of the soil measured by the H sensor.

【0015】[0015]

【作用】本発明においては、まず中心電極とこの中心電
極に対して夫々等距離の位置に配置される複数の周辺電
極とからなる電極組合せ体を各中心電極および各周辺電
極が互いに並列に接続された状態で含水土壌の被処理域
に順次隣接させて複数組設置し、たとえば前記各周辺電
極から前記中心電極に向かう電流が生じさせるような極
性の直流電圧を印加して前記被処理域の土壌中の水分を
電気浸透により前記中心電極側に移行させてその吸引排
水路を通して適宜な手段によって排水する。
In the present invention, first, the center electrode and the peripheral electrodes are connected in parallel to each other by forming the electrode combination body including the center electrode and the plurality of peripheral electrodes arranged at positions equidistant from the center electrode. In this state, a plurality of sets are installed sequentially adjacent to the treated area of the water-containing soil, and for example, a DC voltage of a polarity that causes a current from each of the peripheral electrodes toward the center electrode is applied to the treated area. Water in the soil is transferred to the center electrode side by electroosmosis, and drained by an appropriate means through the suction drainage channel.

【0016】従来技術の電気浸透による脱水処理設備に
おいては汚泥をその処理工程中で移動させながら連続的
に脱水させるために脱水処理時間を極力短縮することが
必要であり、そのために用いられる前処理装置や圧縮コ
ンベア等が設備の構造や運転保守を複雑なものとしてい
た。
In the conventional dehydration treatment equipment by electroosmosis, it is necessary to shorten the dehydration treatment time as much as possible in order to continuously dehydrate sludge while moving it in the treatment process, and the pretreatment used for that purpose Equipment, compression conveyors, etc. made the equipment structure and operation maintenance complicated.

【0017】しかし、本発明においては含水土壌はその
発生源においてそのまゝ一括処理されるので処理時間に
はそれほどの制約がなく、電極間の通電による電気浸透
作用のみによる全く静止的な脱水処理によって充分所期
の目的が達成される。
However, in the present invention, since the water-containing soil is treated as a batch at the source, the treatment time is not so limited, and a completely static dehydration treatment is carried out only by the electroosmotic action by energizing the electrodes. By this, the intended purpose is sufficiently achieved.

【0018】たとえば、一般に各種汚泥の含水分は通常
80〜90%程度であり、微生物処理や焼却等の最終処
理に適合するように通常の脱水処理ではこれを約40〜
50%程度の含水分に低下させる。本発明者等の実験に
よれば、本発明を適用する際には脱水処理時間を半日な
いし一日程度に設定すれば、約20V程度の比較的低い
電圧でこのような目的とする脱水率が充分に得られるこ
とが判明した。
For example, the water content of various sludges is usually about 80 to 90%, and in order to be suitable for the final treatment such as microbial treatment and incineration, the water content is about 40 to 40% in ordinary dehydration treatment.
The water content is reduced to about 50%. According to the experiments by the present inventors, when applying the present invention, if the dehydration treatment time is set to about half a day to about one day, such a desired dehydration rate can be obtained at a relatively low voltage of about 20V. It turned out that it was obtained sufficiently.

【0019】この場合、被処理域の土壌を一括して処理
するためには、被処理域の土壌全体に対して均等に通電
することが必要である。このため、本発明においては中
心電極(陰極)とその周辺に夫々等距離でこれと対向す
る複数の周辺電極(陽極)とからなる電極組合せ体を複
数組用い、これらを含水土壌の被処理域に順次隣接して
配置し、各電極組合せ体に対して直流電圧を並列に印加
して処理域内の土壌全体に均等な電気浸透による脱水作
用を生じさせ、夫々の中心電極側に移動した水分を排出
して脱水を行うようになされている。
In this case, in order to collectively treat the soil in the treated area, it is necessary to uniformly energize the entire soil in the treated area. For this reason, in the present invention, a plurality of electrode combinations comprising a central electrode (cathode) and a plurality of peripheral electrodes (anode) facing each other at equal distances are used around the central electrode, and these are combined in the treated area of the water-containing soil. Are sequentially arranged adjacent to each other, and a DC voltage is applied in parallel to each electrode combination to cause a dehydration action by uniform electroosmosis over the entire soil in the treatment area, and the moisture that has moved to each center electrode side is removed. It is designed to be discharged and dehydrated.

【0020】一般に含水土壌の汚泥の脱水速度は電極間
の印加電圧に比例しかつ電極間距離に反比例するが、平
均的な汚泥を40〜50%程度に脱水する場合には、た
とえば半径1mの正六角形の中心に中心電極をまたその
各頂点に周辺電極を配置した組合せ体を用い、周辺電極
に約20Vの低電圧を印加すれば約10〜24時間程度
の通電時間で被処理域の汚泥に対して前記の所望の脱水
率が得られることが実験によって確認された。
Generally, the dewatering rate of sludge in hydrous soil is proportional to the applied voltage between the electrodes and inversely proportional to the distance between the electrodes, but when dewatering an average sludge to about 40 to 50%, for example, a radius of 1 m. Using a combination of a center electrode and a peripheral electrode at each apex of a regular hexagon, if a low voltage of about 20V is applied to the peripheral electrode, the sludge in the treated area will be heated in about 10 to 24 hours. It was confirmed experimentally that the above-mentioned desired dehydration rate was obtained.

【0021】実際の装置では、たとえば中心電極(陰
極)として中空管状の鋼管等を用い、その管腔部を吸引
排水路としてポンプ等の排水手段に接続し、一方周辺電
極(陽極)としては任意の導電性材料たとえば鉄筋など
を用いて電極組合せ体を簡単に構成することができる。
この場合土壌から脱水された水分は微細な土壌粒子間隙
を通して排出されるので土壌粒子自体がフィルタとして
作用し、排水は高度に浄化されるので放流に際してそれ
以上の濾過処理を必要としない。一方処理後の土壌は約
40〜50%に脱水減容されでおり、たとえばコンポス
ト化および焼却処理またはこれらの処理施設への運搬が
極めて容易となる。
In an actual device, for example, a hollow tubular steel pipe or the like is used as a center electrode (cathode), and its lumen is connected to a drainage means such as a pump as a suction drainage channel, while a peripheral electrode (anode) is arbitrarily selected. The electrode assembly can be easily constructed by using the conductive material such as rebar.
In this case, the water dewatered from the soil is discharged through the fine pores of the soil particles, so that the soil particles themselves act as a filter, and the wastewater is highly purified, so that no further filtration treatment is required at the time of discharge. On the other hand, the treated soil is dehydrated and reduced in volume to about 40 to 50%, which makes composting and incineration or transportation to these treatment facilities extremely easy.

【0022】ここで電気浸透による脱水処理に際しては
陽陰極間で含水土壌成分を電解質とする電解を生じるた
め、被処理域のpHは中心電極(陰極)側で上昇してア
ルカリ性となり周辺電極(陽極)側では低下して酸性p
Hとなる。
During the dehydration treatment by electroosmosis, since electrolysis using a water-containing soil component as an electrolyte occurs between the positive and negative electrodes, the pH of the area to be treated rises on the side of the central electrode (cathode) and becomes alkaline, so that the peripheral electrodes (anode) ) Side, it decreases and acid p
It becomes H.

【0023】この場合特に酸性になった陽極側では金属
を溶出させ易い条件が生じるので、被処理土壌自体また
はその周辺の土壌等に含まれていた化合物から有害な金
属等がイオンとして溶出し、周囲の土壌や地下水を汚染
したりまたは隣接する岩盤および構築物自体に悪影響を
与えるおそれがある。
In this case, particularly on the side of the acidified anode, a condition is apt to elute the metal, so that harmful metal or the like elutes as an ion from the compound contained in the treated soil itself or the surrounding soil. It may contaminate the surrounding soil and groundwater or adversely affect the adjacent bedrock and the structure itself.

【0024】このため本発明においては、たとえば周辺
電極(陽極)の近傍にpH値を検出するpHセンサを設
置し、脱水工程の終了時に電源電圧の極性を反転して中
心電極(陰極)に正電圧を印加して両極間で脱水工程時
とは極性を逆向きにした状態で電解作用を生じさせ、そ
れによって周辺電極近傍の土壌のpH値を中性側に上昇
(回復)させる。このpH値が初期の値又は予め設定し
た値に達したときにpHセンサからの検出出力で通電を
停止し全体の処理工程を終了させる。
Therefore, in the present invention, for example, a pH sensor for detecting the pH value is installed near the peripheral electrode (anode), and the polarity of the power supply voltage is reversed at the end of the dehydration process to make the central electrode (cathode) positive. A voltage is applied to cause an electrolysis action between both electrodes in a state where the polarity is opposite to that in the dehydration step, thereby increasing (recovering) the pH value of the soil near the peripheral electrodes to the neutral side. When the pH value reaches an initial value or a preset value, the energization is stopped by the detection output from the pH sensor and the entire processing step is ended.

【0025】尚含水土壌の性状が一定で所望の脱水率に
達したときのpH値が予め予測できるような場合には、
脱水工程とpH調節工程との切換時点およびpH調節工
程の終了時点を決定する手段として水分計を用いてもよ
く、また場合によってはpH計と水分計とを併用しても
よい。
When the pH of the water-containing soil is constant and the desired dehydration rate can be predicted in advance,
A moisture meter may be used as a means for determining the switching time point between the dehydration step and the pH adjusting step and the ending time point of the pH adjusting step. In some cases, the pH meter and the moisture meter may be used together.

【0026】このように本発明においては、含水土壌の
被処理域に設置される前記の簡単な構造の電極組合せ体
と、中心電極の吸引排水路に接続される吸引ポンプと、
pHセンサおよび制御回路付の電源のみからなる簡単な
構造のシステムを用いて容易に脱水処理が可能であり、
このため処理現場毎に処理装置を随時設置して作業を行
うことができる。したがって従来の発生源から脱水処理
施設までの運搬コストおよび前処理や圧搾処理に要して
いた設備費やそれらの運転、保守の労力を省略すること
ができ、処理を効果的に行うことができる。
As described above, in the present invention, the electrode assembly having the above-mentioned simple structure, which is installed in the treated area of the water-containing soil, and the suction pump connected to the suction drainage channel of the center electrode,
Dehydration can be easily performed using a system with a simple structure consisting of a pH sensor and a power supply with a control circuit.
For this reason, it is possible to install the processing device at each processing site as needed and perform the work. Therefore, it is possible to omit the conventional transportation cost from the source to the dehydration treatment facility, the equipment cost required for pretreatment and squeezing treatment, and the labor for their operation and maintenance, and the treatment can be effectively performed. .

【0027】このように、本発明の一つの重要な特色は
含水土壌をその処理現場において直接脱水できる点にあ
るが、そのために電気浸透による処理時には処理土壌自
体およびその周辺の土壌等にpH変化を生じるおそれが
ある。しかし本発明では前記脱水工程に引きつづくpH
調節工程によってpH値を当初の値もしくは所定値に回
復させているので、特に周辺電極(陽極)側のpHが酸
性に変化することによる重金属イオン等の溶出を防止し
て周辺の環境汚染の問題を回避することができる。
As described above, one of the important features of the present invention is that the water-containing soil can be dehydrated directly at the treatment site. Therefore, during the treatment by electroosmosis, the pH of the treated soil itself and the surrounding soil can be changed. May occur. However, in the present invention, the pH that follows the dehydration step is
Since the pH value is restored to the initial value or the predetermined value by the adjustment process, the elution of heavy metal ions and the like due to the pH of the peripheral electrode (anode) side changing to acidic is prevented, and the problem of environmental pollution around Can be avoided.

【0028】尚本発明は汚泥や残土の脱水処理のほか、
有害物質を含んだ土壌や高含水分の軟弱な土質の改良等
本来その場で行うことが必要な土壌処理に対しても適用
することができる。たとえば含水土壌中にクロム(6
価)その他の有害な重金属粒が含まれている場合でも、
これらの化合物は土壌水中に溶解している状態におい
て、又は電解作用中酸性pHとなった正極付近の土壌か
らの土壌水中への溶解によって、電気浸透処理による脱
水時に容易に陰極側に排出されるので、汚染土壌の無害
化処理にも有効である。尚汚染土壌の無害化には脱水し
た水を浄化して洗浄液として反復使用することが好まし
い。前記のように、本発明における土壌処理とは汚泥の
脱水、軟質土壌の改良、有害物質を含む土壌の再生等を
含む。
In addition to the dehydration treatment of sludge and residual soil, the present invention
It can also be applied to soil treatment that originally needs to be performed on the spot, such as improvement of soil containing harmful substances and soft soil with high water content. For example, chromium (6
Value) Even if it contains other harmful heavy metal particles,
These compounds are easily discharged to the cathode side during dehydration by electroosmotic treatment in the state of being dissolved in soil water or by being dissolved in soil water from the soil near the positive electrode that has become acidic pH during electrolysis. Therefore, it is also effective in detoxifying contaminated soil. In order to render the contaminated soil harmless, it is preferable to purify dehydrated water and repeatedly use it as a cleaning liquid. As described above, the soil treatment in the present invention includes dehydration of sludge, improvement of soft soil, regeneration of soil containing harmful substances, and the like.

【0029】[0029]

【実施例】以下本発明を実施例によって説明する。図1
は本発明の方法および装置を実用化するための実験装置
の概要を示す図、図2は本発明を実施する際の土壌処理
域中の電極組合せ体の配置を示す説明図である。
EXAMPLES The present invention will be described below with reference to examples. Figure 1
FIG. 2 is a diagram showing an outline of an experimental apparatus for putting the method and apparatus of the present invention into practical use, and FIG. 2 is an explanatory diagram showing the arrangement of electrode combinations in a soil treatment area when the present invention is carried out.

【0030】[0030]

【実験例】本発明の方法における電気浸透脱水工程によ
る脱水およびかゝる工程の実施による電極周辺のpH変
化および逆極性電圧の印加によるpHの回復を確認する
ために前記図1の装置を用いて下記の予備実験を行っ
た。
[Experimental Example] The apparatus of FIG. 1 was used to confirm the dehydration by the electroosmotic dehydration step in the method of the present invention and the pH change around the electrode due to the execution of such step and the pH recovery by the application of the reverse polarity voltage. The following preliminary experiment was conducted.

【0031】初期含水率49.8%、pH8.2の無機
汚泥11kgを含む脱水槽1中に吸引排水路を管腔部に
有する中心電極2Aとしての内径20mmφのステンレ
ス鋼管2Aおよびその周辺に250mmの距離で同一円
周上に配置した周辺電極2Bとしての径5mmの鉄筋か
らなる電極組合せ体2を汚泥の堆積深さ(155mm)
に対応して設け、中心電極2Aを負極および各周辺電極
2Bを正極として電源3から20VのDC電圧(初期電
流0.95A)を印加して電気浸透を実施した。その他
図中、2Cは中心電極2Aの管壁に穿設した吸引・排水
孔、2Dは管腔部を利用して形成した排水路、4は電源
3の出力極性の反転のための制御部、5は吸引ポンプ、
6はpHセンサである。
A stainless steel pipe 2A having an inner diameter of 20 mmφ as a central electrode 2A having a suction / drainage channel in its lumen in a dehydration tank 1 containing 11 kg of an inorganic sludge having an initial water content of 49.8% and a pH of 8.2 and 250 mm around it. The electrode combination 2 made of a reinforcing bar having a diameter of 5 mm as the peripheral electrode 2B arranged on the same circumference at a distance of 5 is the sludge accumulation depth (155 mm)
The central electrode 2A was used as the negative electrode and each peripheral electrode 2B was used as the positive electrode, and a DC voltage of 20 V (initial current 0.95 A) was applied from the power source 3 to carry out electroosmosis. In the other figures, 2C is a suction / drain hole formed in the tube wall of the center electrode 2A, 2D is a drainage channel formed by using a lumen portion, 4 is a control unit for reversing the output polarity of the power source 3, 5 is a suction pump,
6 is a pH sensor.

【0032】7時間の通電中の電気浸透脱水量およびそ
れにともなう汚泥各部でのpH値の変化は表1に示す通
りである。
Table 1 shows the amount of electroosmotic dehydration during 7 hours of energization and the accompanying change in pH value at each part of the sludge.

【0033】[0033]

【表1】 初期値 2時間後 4時間後 7時間後 pH +側 8.2 6.1 5.7 5.2 pH −側 8.2 10.5 11.0 11.4 pH 中央部 8.2 8.2 8.2 8.4 電 流 (A) 0.95 0.9 0.7 0.5 電 圧 (V) 20 20 20 20 排 水 量 (ml) 0 300 200 250 排水pH ー 11.6 11.7 11.8 [Table 1] Initial value After 2 hours After 4 hours After 7 hours pH + side 8.2 6.1 5.7 5.2 pH − side 8.2 10.5 11.0 11.4 pH Central part 8.2 8.2 8.2 8.4 Current (A) 0.95 0.9 0.7 0.5 Voltage (V) 20 20 20 20 Discharged water (ml) 0 300 200 250 Wastewater pH ー 11.6 11.7 11.8

【0034】電気浸透処理により変化したpH、特に陽
極側の酸性pH値をほゞ初期の値まで回復させるため、
中心電極2Aおよび周辺電極2B間の印加電圧の極性を
反転させ4時間通電した。結果を表2に示す。
In order to recover the pH changed by the electroosmotic treatment, especially the acidic pH value on the anode side to almost the initial value,
The polarity of the applied voltage between the central electrode 2A and the peripheral electrode 2B was reversed, and electricity was supplied for 4 hours. The results are shown in Table 2.

【0035】[0035]

【表2】 初期値 2時間後 3時間後 4時間後 pH +側 11.4 9.5 9.2 8.5 pH −側 5.2 6.5 6.9 7.5 pH 中央部 8.4 8.2 8.2 8.2 電 流 (A) 0.6 0.6 0.6 0.6 電 圧 (V) 20 20 20 20 排 水 量 (ml) 0 100 100 120 排水pH ー 3.5 5.3 6.5 [Table 2] Initial value 2 hours later 3 hours later 4 hours pH + side 11.4 9.5 9.2 8.5 pH − side 5.2 6.5 6.9 7.5 pH Central part 8.4 8.2 8.2 8.2 Current (A) 0.6 0.6 0.6 0.6 Voltage (V) 20 20 20 20 Discharged water (ml) 0 100 100 120 Wastewater pH ー 3.5 5.3 6.5

【0036】4時間の通電後、表2に示すように(−)
側(この場合周辺電極2B)のpH値は5.2から7.
5に上昇し、ほぼ当初のpH値に回復した。
After energizing for 4 hours, as shown in Table 2, (-)
The pH value on the side (in this case, the peripheral electrode 2B) is from 5.2 to 7.
It rose to 5, and recovered to almost the initial pH value.

【0037】以下本発明を実際の各種汚泥等の発生源に
おいて直接適用して脱水を行った実施例によって説明す
る。装置の基本的な構成は図1に示すものと同様であ
る。各実施例においては中心電極(陰極)2Aと周辺電
極(陽極)2Bとからなる電極組合せ体2を図2に示す
ように正六角形状に構成し、各組合せ体の中心電極同志
および周辺電極同志を並列に接続し(各極間の接続は図
示を省略した)、これらを順次汚泥の処理域に隣接して
設置した。夫々の場合の各種汚泥の処理量は60,000k
g:処理面積は30m2 、深さは2mであった。
Hereinafter, the present invention will be described with reference to Examples in which dewatering is performed by directly applying it to various sources such as sludge. The basic configuration of the device is similar to that shown in FIG. In each embodiment, an electrode combination 2 including a center electrode (cathode) 2A and a peripheral electrode (anode) 2B is formed in a regular hexagonal shape as shown in FIG. 2, and the center electrode and the peripheral electrode of each combination are formed. Were connected in parallel (the connection between the electrodes is not shown), and these were sequentially installed adjacent to the sludge treatment area. The throughput of each sludge in each case is 60,000k
g: The treated area was 30 m 2 and the depth was 2 m.

【0038】実施例1 含水分約82.2%の活性無機建設汚泥の(pH8.
6)の被処理域に、図2に示す複数の電極組合せ体2、
2、...を順次隣接させて配置した。本実施例におい
ては各中心電極2Aと周辺電極2Bとの距離を1mと
し、これら電極組合せ体に対する電源3からの脱水工程
における合計通電電流の初期値を10Aとした他は前記
実験例と同様な装置および条件を用いた。
Example 1 An activated inorganic construction sludge having a water content of about 82.2% (pH 8.
6), a plurality of electrode combinations 2 shown in FIG.
2 ,. . . Were sequentially arranged adjacent to each other. In this example, the distance between each central electrode 2A and the peripheral electrode 2B was set to 1 m, and the initial value of the total energizing current in the dehydration process from the power source 3 to these electrode combinations was set to 10 A, which was the same as the above-described experimental example. Equipment and conditions were used.

【0039】各電極組合せ体2の中心電極2Aに対して
電源3から夫々20VのDC電圧を印加し10時間通電
して脱水処理を行ない、次いで極性を反転して4時間p
H調節処理を行った。結果を表3に示す。表3に示すよ
うに汚泥の含水率は初期値82.2%から35.5%に
低下し減量、減容によって搬送コストが著しく減少し
た。また脱水処理時の陽性pHは4.5は低下したが、
pH調節処理によりほゞ当初の値に回復した。
A DC voltage of 20 V is applied from the power source 3 to the center electrode 2A of each electrode assembly 2 to supply electricity for 10 hours for dehydration treatment, and then the polarity is reversed for 4 hours p.
An H adjustment process was performed. The results are shown in Table 3. As shown in Table 3, the water content of sludge decreased from the initial value of 82.2% to 35.5%, and the transportation cost was remarkably reduced due to the weight reduction and volume reduction. Also, the positive pH during the dehydration process decreased by 4.5,
The pH value was restored to the initial value by the pH adjustment treatment.

【0040】実施例2 含水率82.0%の有機下水汚泥に対して、実施例1と
同様にして脱水処理を17時間行った。結果を表3に示
す。含水率は51.2%に低下し微生物処理によるコン
ポスト化に適した水分となった。
Example 2 An organic sewage sludge having a water content of 82.0% was dehydrated for 17 hours in the same manner as in Example 1. The results are shown in Table 3. The water content decreased to 51.2%, and the water content was suitable for composting by microbial treatment.

【0041】実施例3 含水率80.8%の河川浚渫汚泥に対して実施例1と同
様にして脱水処理を12時間おこなった。結果を表3に
示す。処理後の含水率は41.6%に低下し、化学固化
剤を加えて支持力を増大させることにより埋め戻し等に
利用可能な状態となった。
Example 3 The same procedure as in Example 1 was carried out to dehydrate the river dredged sludge having a water content of 80.8% for 12 hours. The results are shown in Table 3. The water content after the treatment decreased to 41.6%, and by adding a chemical solidifying agent to increase the supporting capacity, it became possible to use it for backfilling.

【0042】実施例4 含水率82.6%の湖沼浚渫汚泥に対して、実施例1と
同様にして脱水処理を24時間おこなった。結果を表3
に示す。処理後の含水率は53.3%に低下した。尚前
記各実施例2〜4においても実施例1と同様なpH調節
処理を行った結果、陽極pHはいずれも夫々の当初値の
±0.2%の範囲まで回復された。
Example 4 A lake dredged sludge having a water content of 82.6% was dehydrated for 24 hours in the same manner as in Example 1. The results are shown in Table 3.
Shown in. The water content after the treatment was reduced to 53.3%. In each of Examples 2 to 4, the same pH adjustment treatment as in Example 1 was performed, and as a result, the anode pH was restored to the range of ± 0.2% of each initial value.

【0043】[0043]

【表3】 実施例 脱水時間 初期 終期 pH値 含水分 含水分 初期 終期 (Hr) (%) (%) (陽極)(陰極) 1無機建設汚泥 10 82.2 35.5 8.6 4.5 9.3 2有機下水汚泥 17 82.0 51.2 6.9 3.8 8.9 3河川浚渫汚泥 12 80.8 41・6 7.2 4.2 8.8 4湖沼浚渫汚泥 24 82.6 53.3 7.4 5.5 9.4 実施例5 本発明による含水土壌処理は土壌もしくは水壌水中に有
害金属等が含有されている場合、電気浸透による脱水中
にこれらの有害金属をイオン状態として排水と共に除去
する土壌の無害化処理にも適用することができる。6価
クロムを含有する含水土壌に前記各実施例と同様な方法
を適用したところ、約48時間の脱水通電および逆極性
のpH調節通電によって含水率が低下すると共に、6価
クロムの含有量が当初の20.2ppmから0.01p
pm以下に低下したことが溶出試験によって確認され
た。
[Table 3] Example Dehydration time Initial end pH value Moisture content Moisture content Initial end phase (Hr) (%) (%) (Anode) (Cathode) 1 Inorganic construction sludge 10 82.2 35.5 8.6 4.5 9.3 2 Organic sewage sludge 17 82.0 51.2 6.9 3.8 8.9 3 River dredging sludge 12 80.8 41.6 6 7.2 4.2 8.8 4 Lake dredging sludge 24 82. 6 53.3 7.4 5.5 5.5 9.4 Example 5 In the hydrous soil treatment according to the present invention, when harmful metals or the like are contained in soil or water-loam water, these harmful metals are removed during dehydration by electroosmosis. It can also be applied to the detoxification treatment of soil that is removed together with drainage in an ionic state. When the same method as in each of the above-described examples was applied to the water-containing soil containing hexavalent chromium, the water content was decreased by the dehydration energization for about 48 hours and the pH adjustment energization of the opposite polarity, and the content of hexavalent chromium was decreased. 0.01p from the initial 20.2ppm
It was confirmed by the dissolution test that the pH was lowered to pm or less.

【0044】尚本発明については前記実施例に限ること
なく種々の変形や改良が可能である。たとえば本発明に
おいては、電極組合せ体において中心電極を陰極とし周
辺電極を陽極として用いることが効果的であるが、必要
によっては両電極の極性を逆にした組合せ体を用いるこ
ともできる。
The present invention is not limited to the above-described embodiment, and various modifications and improvements can be made. For example, in the present invention, it is effective to use the center electrode as the cathode and the peripheral electrode as the anode in the electrode combination, but it is also possible to use a combination in which the polarities of both electrodes are reversed, if necessary.

【0045】[0045]

【発明の効果】以上のように本発明によれば、たとえば
各種汚泥等の含水率を、運搬、焼却、コンポスト化等に
適した低含水分まで効率的に低下させることができる。
特に本発明においては従来提案されている機械的脱水手
段との組合せは全く採用されていないので設備が極めて
簡略化され、必要に応じて処理敷地に直接設置してその
場で脱水処理を行うことができる。またこの脱水処理に
よるpH変化はpH調節工程で初期値に回復され周囲に
環境汚染を生じさせるおそれが全くない。
As described above, according to the present invention, the water content of, for example, various sludges can be efficiently reduced to a low water content suitable for transportation, incineration, composting and the like.
In particular, in the present invention, since the combination with the conventionally proposed mechanical dewatering means is not adopted at all, the equipment is extremely simplified, and if necessary, it can be directly installed on the treatment site to perform the dewatering treatment on the spot. You can Further, there is no possibility that the pH change due to this dehydration treatment is restored to the initial value in the pH adjusting step and causes environmental pollution in the surroundings.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施する実験的装置の概要を示す図で
ある。
FIG. 1 is a diagram showing an outline of an experimental apparatus for carrying out the present invention.

【図2】本発明の実施に用いる電極組合せ体の配置図で
ある。
FIG. 2 is a layout view of an electrode assembly used for implementing the present invention.

【符号の説明】[Explanation of symbols]

1……脱水槽 2……電極組合せ体 2A…管状中心電極(陰極) 2B…周辺電極(陽極) 2C…吸引排水孔 2D…吸引排水路 3……電源、 4……制御部、 5……排水ポンプ、 6……pHセンサ 1 ... Dehydration tank 2 ... Electrode combination 2A ... Tubular center electrode (cathode) 2B ... Peripheral electrode (anode) 2C ... Suction / drainage hole 2D ... Suction / drainage path 3 ... Power supply, 4 ... Control part, 5 ... Drainage pump, 6 ... pH sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 桂 勤 東京都青梅市河辺町1ー805ー1 ライオ ンズマンション多摩川河辺308 (72)発明者 守屋 勉 東京都江東区南砂2丁目31番11ー703号 (72)発明者 一ノ宮 薫 千葉県習志野市東習志野3丁目5番12号 ラフォーレ実籾206号 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Katsura Katsura 1-805-1 Kawabe-cho, Ome-shi, Tokyo Lions Mansion 308 Kawabe Kawabe (72) Inventor Tsutomu Moriya 2-31-11-703 Minamisuna, Koto-ku, Tokyo Issue (72) Inventor Kaoru Ichinomiya 3-5-12 Higashi Narashino, Narashino City, Chiba Laforet No. 206

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 土壌の被処理域に対向して設けた電極間
に通電して土壌の水分含有率を電気浸透によって低下さ
せる含水土壌の処理方法において、 中心電極とこの中心電極に対して等距離の位置に夫々配
置される複数の周辺電極とからなる電極組合せ体を土壌
の被処理域に順次隣接させて設置し、 前記中心電極と前記各周辺電極との間に前記各周辺電極
から前記中心電極又は前記中心電極から前記周辺電極に
向う電流を生じさせるような極性の直流電圧を前記各電
極組合せ体に対して並列に印加して前記被処理域の土壌
中の水分を電気浸透により前記中心電極側に移行させて
排水する脱水工程と、 前記脱水工程に引続いて前記中心電極と前記各周辺電極
との間に前記脱水工程における電流の方向を逆転させる
ような極性の電圧を印加し、前記脱水工程中の通電によ
って低下した前記周辺電極側のpH値を所定の値に回復
させるpH調節工程とを含むことを特徴とする含水土壌
のその場処理方法。
1. A method for treating a water-containing soil in which a water content of the soil is reduced by electroosmosis by applying an electric current between electrodes provided opposite to a treated area of the soil, wherein the center electrode and the center electrode are equal to each other. An electrode combination consisting of a plurality of peripheral electrodes arranged at a distance position, respectively, is installed in such a manner as to be adjacent to the treated area of the soil, and between the central electrode and the peripheral electrodes. A DC voltage having a polarity that causes a current to flow from the central electrode or the central electrode to the peripheral electrode is applied in parallel to each of the electrode combinations, and water in the soil in the treated area is electroosmotically A dehydration step of transferring to the center electrode side and draining, and a voltage of a polarity that reverses the direction of the current in the dehydration step is applied between the center electrode and each of the peripheral electrodes subsequent to the dehydration step. , The above And a pH adjusting step of recovering the pH value on the side of the peripheral electrode, which has been lowered by energization during the dehydration step, to a predetermined value.
【請求項2】 内部に吸引排水路を有する中空管状の中
心電極と、この中心電極から夫々等距離の位置に配置さ
れる複数の周辺電極とからなり、土壌の被処理域に夫々
の中心電極および夫々の周辺電極を互いに並列に接続し
た状態で順次隣接して設置される電極組合せ体と、 前記中心電極の吸引排水路に接続される排水手段と、 前記電極組合せ体の中心電極と各周辺電極との間に前記
周辺電極から中心電極に向かう直流電圧を印加する電源
と、 前記被処理域の土壌のpH値を測定するpHセンサと、 前記電源の直流電圧の極性を前記pHセンサによって測
定される土壌のpH値にしたがって反転させる手段を少
なくとも含む供電制御装置とを備えていることを特徴と
する含水土壌のその場処理装置。
2. A central electrode having a hollow tubular shape having a suction / drainage channel inside, and a plurality of peripheral electrodes arranged at positions equidistant from the central electrode. And an electrode combination that is installed adjacent to each other in the state where the respective peripheral electrodes are connected to each other in parallel, a drainage unit that is connected to the suction drainage channel of the center electrode, a center electrode of the electrode combination, and each periphery. A power supply that applies a DC voltage from the peripheral electrode to the center electrode between the electrodes, a pH sensor that measures the pH value of the soil in the treated area, and a polarity of the DC voltage of the power supply that is measured by the pH sensor. And a power supply control device including at least means for inverting the pH value of the soil to be treated.
JP4219793A 1993-02-06 1993-02-06 In-situ treatment method and apparatus for hydrous soil by electroosmosis Expired - Fee Related JP3343662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4219793A JP3343662B2 (en) 1993-02-06 1993-02-06 In-situ treatment method and apparatus for hydrous soil by electroosmosis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4219793A JP3343662B2 (en) 1993-02-06 1993-02-06 In-situ treatment method and apparatus for hydrous soil by electroosmosis

Publications (2)

Publication Number Publication Date
JPH06226300A true JPH06226300A (en) 1994-08-16
JP3343662B2 JP3343662B2 (en) 2002-11-11

Family

ID=12629288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4219793A Expired - Fee Related JP3343662B2 (en) 1993-02-06 1993-02-06 In-situ treatment method and apparatus for hydrous soil by electroosmosis

Country Status (1)

Country Link
JP (1) JP3343662B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011005413A (en) * 2009-06-25 2011-01-13 Daiki Ataka Engineering Co Ltd Method for operating electro-osmosis dehydrator
CN109987818A (en) * 2019-04-11 2019-07-09 浙江广川工程咨询有限公司 A kind of mud modification-reparation integrated system and application based on electrochemical treatments
CN110000199A (en) * 2019-04-16 2019-07-12 吕敦玉 A kind of soil pollution emergency pumping preventing control method
CN115318821A (en) * 2022-08-10 2022-11-11 东南大学 Microbial electrochemical device and method for removing composite heavy metals in soil

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011005413A (en) * 2009-06-25 2011-01-13 Daiki Ataka Engineering Co Ltd Method for operating electro-osmosis dehydrator
CN109987818A (en) * 2019-04-11 2019-07-09 浙江广川工程咨询有限公司 A kind of mud modification-reparation integrated system and application based on electrochemical treatments
CN110000199A (en) * 2019-04-16 2019-07-12 吕敦玉 A kind of soil pollution emergency pumping preventing control method
CN110000199B (en) * 2019-04-16 2021-04-02 吕敦玉 Soil pollution emergency pumping and injecting prevention and control method
CN115318821A (en) * 2022-08-10 2022-11-11 东南大学 Microbial electrochemical device and method for removing composite heavy metals in soil
CN115318821B (en) * 2022-08-10 2023-08-18 东南大学 Microbial electrochemical device and method for removing composite heavy metals in soil

Also Published As

Publication number Publication date
JP3343662B2 (en) 2002-11-11

Similar Documents

Publication Publication Date Title
Weng et al. Dewatering of bio-sludge from industrial wastewater plant using an electrokinetic-assisted process: Effects of electrical gradient
CN105149336A (en) Method and device for remediating soil
CN110434166B (en) Double-ring vertical self-cleaning type in-situ dehydration pollution-reduction electric repair device and method
US5865964A (en) Apparatus for stripping ions from concrete and soil
JP2000140819A (en) Method for cleaning heavy metal-contaminated soil
JP2018514382A (en) Electroadsorption system for removing foreign matter from water
JP3343662B2 (en) In-situ treatment method and apparatus for hydrous soil by electroosmosis
JPH0947748A (en) Polluted soil purifying method
KR100767339B1 (en) Electrokinetic remediation of fluorine-contaminated soil
KR20030066901A (en) Development of electrode compartment for enhanced electrokinetic remediation and post-treatment of waste water
JPH115077A (en) Contaminated ground purification system
JPH1034126A (en) Method and apparatus for purifying soil polluted with heavy metal
JPH11221553A (en) Purifying method of heavy metal contamination soil
EP0760718B1 (en) Apparatus for the decontamination of heavy metals containing soil
KR20030062988A (en) Remediation and dewatering of dredged slurry and mine tailing with the vacuum method and electrokinetic phenomenon(Vacuum-electrokinetic dewatering and remediatin method)
JP4782904B2 (en) Electrochemical purification method for contaminated ground
JP2004181407A (en) Method for treating contaminated underground water and soil by electrode reduction
KR20060036813A (en) Remediation and dewatering of dredged slurry and mine tailing with the vacuum method and electrokinetic phenomenon and apparatus)
JP2002035736A (en) Treatment device for contaminated soil and method therefor
KR20030068697A (en) Enhanced electrokinetic remediation with gypsum tex
KR100414771B1 (en) Chemical oxidation method of petroleum-contaminated soil using electro-osmosis and apparatus thereof
JP3149425B2 (en) Concentration control method for removal of anionic contaminants
JP3180313B2 (en) Anion contaminant removal equipment
JPH1133531A (en) Method of cleaning polluted soil
JPH09215975A (en) Method for arranging electrode in removing anion contaminant

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080830

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees