JP3343662B2 - In-situ treatment method and apparatus for hydrous soil by electroosmosis - Google Patents

In-situ treatment method and apparatus for hydrous soil by electroosmosis

Info

Publication number
JP3343662B2
JP3343662B2 JP4219793A JP4219793A JP3343662B2 JP 3343662 B2 JP3343662 B2 JP 3343662B2 JP 4219793 A JP4219793 A JP 4219793A JP 4219793 A JP4219793 A JP 4219793A JP 3343662 B2 JP3343662 B2 JP 3343662B2
Authority
JP
Japan
Prior art keywords
electrode
soil
peripheral
treatment
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4219793A
Other languages
Japanese (ja)
Other versions
JPH06226300A (en
Inventor
勤 桂
勉 守屋
薫 一ノ宮
Original Assignee
株式会社チャージ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社チャージ filed Critical 株式会社チャージ
Priority to JP4219793A priority Critical patent/JP3343662B2/en
Publication of JPH06226300A publication Critical patent/JPH06226300A/en
Application granted granted Critical
Publication of JP3343662B2 publication Critical patent/JP3343662B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Sludge (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は電気浸透による含水土壌
のその場処理方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for in-situ treatment of hydrated soil by electroosmosis.

【0002】[0002]

【従来の技術および発明の解決すべき課題】無機および
有機汚泥などの各種汚泥を焼却やコンポスト化等の最終
処理に付し、又はこれらを最終処理施設まで移送するた
めには、それらを予め目的に適した含水分にまで脱水し
て減量、減容しておくことが望ましく、このために従来
から天日乾燥等の自然処理や機械的な圧搾、濾過処理お
よび凝固剤による化学的処理等が用いられている。しか
し、天日乾燥は敷地面積や処理時間の点で大量の汚泥処
理については実用的ではない。一方、機械的および化学
的な処理は設備費ならびに動力や薬剤等のランニングコ
ストが嵩み、また汚泥の種類によっては充分な脱水が困
難なこともある。
2. Description of the Related Art Various types of sludge such as inorganic and organic sludges are subjected to final treatment such as incineration and composting, or transported to a final treatment facility. It is desirable to reduce the volume and volume by dehydrating to a water content suitable for the purpose.For this purpose, natural treatment such as sun drying, mechanical pressing, filtration and chemical treatment with a coagulant have been conventionally used. Used. However, solar drying is not practical for treating large quantities of sludge in terms of site area and processing time. On the other hand, mechanical and chemical treatments increase equipment costs and running costs of power and chemicals, and depending on the type of sludge, it may be difficult to sufficiently dehydrate.

【0003】このため、これら汚泥の脱水のために電気
浸透法の技術を適用した方法が試みられており、経済性
および効率の点で近年注目されている。電気浸透法を用
いる脱水処理では、汚泥中の土壌粒子が水に対して負電
位に帯電(ゼータ電位)していることを利用し、被処理
汚泥中に対向して設けた電極(陽極−陰極)間に直流電
圧を印加することにより汚泥中の水分を陰極側に移動さ
せて汚泥の脱水が行われる。
[0003] For this reason, methods for applying the technique of electroosmosis to dewater these sludges have been attempted, and have recently attracted attention in terms of economy and efficiency. In the dehydration treatment using the electroosmosis method, an electrode (anode-cathode) provided opposite to the sludge to be treated, utilizing the fact that soil particles in the sludge are charged to a negative potential with respect to water (zeta potential). The moisture in the sludge is moved to the cathode side by applying a DC voltage during the period (1), and the sludge is dewatered.

【0004】具体的には、このような電気浸透法による
汚泥の脱水としては、たとえば特開昭56−60603
および500678号等に記載されているように、機械
的にある程度予備脱水した汚泥を相対的に回転移動する
正負電圧を印加された一対のコンベアの間の移送路に沿
って加圧下に移送し、この間に電気浸透によって陰極側
に移行した汚泥の水分を回収して排出する方法等が多く
提案されている。
Specifically, sludge dewatering by the electroosmosis method is described in, for example, Japanese Patent Application Laid-Open No. 56-60603.
And 500678, etc., transfer the sludge that has been mechanically pre-dewatered to some extent under pressure along a transfer path between a pair of conveyors to which a positive and negative voltage for rotating and rotating relatively is applied, During this time, many methods have been proposed for collecting and discharging the water content of the sludge transferred to the cathode side by electroosmosis.

【0005】このような電気浸透による汚泥脱水方法に
よればその脱水効率が極めて高いため、最終の焼却処分
における効率が向上し、また化学的脱水の場合のように
後の微生物処理や廃棄処理に適合するように処理剤を選
択する煩わしさもない。
[0005] According to the sludge dewatering method by electroosmosis, the dewatering efficiency is extremely high, so that the efficiency in the final incineration treatment is improved. There is no hassle of selecting a treatment agent to be suitable.

【0006】しかし、前記従来技術の汚泥脱水処理では
被処理汚泥が加圧コンベア等の移動路に沿って導入さ
れ、また場合によっては予め汚泥をある程度脱水する前
処理と組合わされるので、複雑な機械的作動部が必要に
なって装置が大規模化し、設備費が嵩むと共に運転操作
や保守の点で問題が多い。
However, in the conventional sludge dewatering treatment, the sludge to be treated is introduced along a moving path such as a pressurized conveyor or the like, and in some cases, it is combined with a pretreatment for dewatering the sludge to some extent. The need for a mechanical operating unit increases the size of the device, increases equipment costs, and has many problems in terms of operation and maintenance.

【0007】また、一般に脱水処理の対象となる汚泥は
下水処理場や工場等から排出される有機汚泥の他、河
川、湾岸等の浚渫汚泥や建設現場の残土に由来する汚泥
等の無機汚泥などその発生源が多岐にわたっているた
め、通常はこれら汚泥は特定の脱水処理施設まで一旦運
搬してから一括処理されている。しかし、この場合には
汚泥の運搬コストが汚泥処理費用の相当な部分を占める
ことになる。
In general, sludge to be subjected to dehydration treatment includes organic sludge discharged from sewage treatment plants and factories, as well as inorganic sludge such as dredged sludge from rivers and bays, and sludge derived from residual soil at construction sites. Due to the variety of sources, these sludges are usually transported once to a specific dewatering facility and then treated as a whole. However, in this case, the transportation cost of the sludge accounts for a considerable portion of the sludge treatment cost.

【0008】したがって、このような汚泥の脱水処理は
発生現場においてその場で処理することが望ましく、特
に軟弱な土質や有害物質を含む土壌の改良等の場合には
それらを「その場」で処理することが必要である。しか
し分散して各所に存在する処理現場毎に前記のような大
規模な設備をその都度搬送又は設置することは容易では
ない。
[0008] Therefore, it is desirable that such sludge dewatering treatment be performed on site at the site of generation, and especially in the case of improving soft soil or soil containing harmful substances, they are treated "on site". It is necessary to. However, it is not easy to transport or install such a large-scale facility for each processing site that is distributed and present at various locations.

【0009】したがって、前記の汚泥等の発生源毎に必
要に応じて簡単に配置することができ、かつ運転、保守
に労力を要しない構造が簡単で取扱いの容易な土壌のそ
の場処理技術の開発が望まれている。
Therefore, the in-situ treatment technology for soil which can be easily disposed as required for each generation source of the above-mentioned sludge, etc., has a simple structure which does not require labor for operation and maintenance, and is easy to handle. Development is desired.

【0010】また前記のような処理設備を汚泥や残土の
発生現場や土質改良場所等に直接設置して電気浸透によ
って脱水処理を行う場合には、通電の際に生じる電解作
用によって電極付近の土壌のpH値が変化する。特に陽
極側のpH値は脱水処理と共に著しく酸性側に移行し、
それによって場合によっては処理土壌自体およびその周
辺に塩類等の形態で保持されていた金属がイオン化して
溶出し、処理域の周辺に二次汚染を発生させるおそれが
ある。したがって含水土壌を電気浸透法によって処理す
る際には、周囲の土壌等にpH変化によって与えられる
悪影響を極力回避することが必要となる。
In the case where the above-mentioned treatment equipment is directly installed at a site where sludge or residual soil is generated, a soil improvement site, or the like to perform dehydration treatment by electroosmosis, the soil near the electrodes is formed by the electrolytic action generated when electricity is supplied. PH value changes. In particular, the pH value on the anode side remarkably shifts to the acidic side with the dehydration treatment,
As a result, in some cases, the metal retained in the form of salts and the like in and around the treated soil itself is ionized and eluted, which may cause secondary contamination around the treated area. Therefore, when treating the hydrated soil by the electroosmosis method, it is necessary to avoid as much as possible the adverse effects of the pH change on the surrounding soil and the like.

【0011】本発明の目的は処理対象としての含水土壌
を、従来技術のように複雑な機械的作動部を必要とする
大規模な設備を用いずにかつその場において効率的に処
理することのできる電気浸透による含水土壌のその場処
理方法および装置を提供することにある。
It is an object of the present invention to efficiently treat hydrous soil to be treated on site without using large-scale equipment requiring complicated mechanical working parts as in the prior art. It is an object of the present invention to provide a method and apparatus for in-situ treatment of hydrated soil by electroosmosis.

【0012】本発明の別の目的は含水土壌を電気浸透に
よって処理する際に特に酸性側に傾いた被処理域のpH
を中性または特定のpH値に回復させることのできる含
水土壌のその場処理方法および装置を提供することにあ
る。
Another object of the present invention is to provide a method for treating a hydrous soil by electroosmosis, in particular, the pH of a treated area inclined toward an acidic side.
Of the present invention is to provide a method and an apparatus for in-situ treatment of hydrated soil, which can restore water to a neutral or specific pH value.

【0013】[0013]

【課題を達成するための手段】前記本発明の目的は土壌
の被処理域に対向して設けた電極間に通電して土壌の水
分含有率を電気浸透によって低下させる含水土壌の処理
方法において、中心電極とこの中心電極に対して等距離
の位置に夫々配置される複数の周辺電極とからなり前記
中心電極を中心点に前記各周辺電極を各頂点に配した横
断面が正多角形の電極組合せ体を現場土壌の被処理域に
対応するように順次隣接させて複数設置し、前記中心電
極と前記各周辺電極との間に前記各周辺電極から前記中
心電極又は前記中心電極から前記周辺電極に向う電流を
生じさせるような極性の直流電圧を前記各電極組合せ体
に対して並列に印加して前記被処理域の土壌中の水分を
電気浸透により前記中心電極側に移行させて排水する脱
水工程と、前記脱水工程に引続いて前記中心電極と前記
各周辺電極との間に前記脱水工程における電流の方向を
逆転させるような極性の電圧を印加し、前記脱水工程中
の通電によって低下した前記周辺電極側のpH値を所定
の値に回復させるpH調節工程とを含むことを特徴とす
る含水土壌のその場処理方法によって達成される。
The object of the present invention is to provide a method for treating water-containing soil in which electricity is supplied between electrodes provided opposite to a treated area of soil to reduce the water content of the soil by electroosmosis. the result with respect to the central electrode and the central electrode and a plurality of peripheral electrodes are respectively disposed equidistant
Lateral with each peripheral electrode at each vertex centered on the center electrode
The electrode assembly with a regular polygonal cross section is applied to the treated area of the site soil.
A plurality of electrodes are arranged adjacent to each other so as to correspond to each other, and have a polarity such that a current flows from the peripheral electrode to the central electrode or from the central electrode to the peripheral electrode between the central electrode and the peripheral electrodes. A dewatering step of applying a DC voltage in parallel to each of the electrode combinations to transfer water in the soil of the treatment area to the center electrode side by electroosmosis and draining the water, and subsequent to the dehydration step A voltage having a polarity that reverses the direction of the current in the dehydration step is applied between the center electrode and each of the peripheral electrodes, and the pH value of the peripheral electrode side, which has been reduced by energization during the dehydration step, is reduced to a predetermined value. And a pH adjusting step of restoring the value to a value.

【0014】また前記本発明の方法は内部に吸引排水路
を有する中空管状の中心電極と、この中心電極から夫々
等距離の位置に配置される複数の周辺電極とからなり前
記中心電極を中心点に前記各周辺電極を各頂点に配した
横断面が正多角形の電極組合せ体が、現場土壌の被処理
域に対応するように順次隣接して設置される複数の電極
組合せ体と、前記中心電極の吸引排水路に接続される排
水手段と、夫々の中心電極および夫々の周辺電極を互い
に並列に接続する部分と、前記電極組合せ体の中心電極
と各周辺電極との間に前記周辺電極から中心電極に向か
う直流電圧を印加する電源と、前記被処理域の土壌のp
H値を測定するpHセンサと、前記電源の直流電圧の極
性を前記pHセンサによって測定される土壌のpH値に
したがって反転させる手段を少なくとも含む供電制御装
置とを備えていることを特徴とする含水土壌のその場処
理装置によって実施することができる。
[0014] The method of the present invention prior consists of a central electrode of a hollow tubular having a suction drainage channel therein, and a plurality of peripheral electrodes arranged respectively equidistant from the center electrode
The peripheral electrodes are arranged at the vertices with the central electrode as the center point.
An electrode assembly with a regular polygonal cross section is used for treating soil on site.
Multiple electrodes installed adjacent to each other in order to correspond to the area
A combination, a drainage unit connected to the suction drainage channel of the center electrode, a portion connecting each center electrode and each peripheral electrode in parallel with each other, and a center electrode and each peripheral electrode of the electrode combination. A power source for applying a DC voltage from the peripheral electrode to the center electrode,
A water sensor comprising: a pH sensor for measuring an H value; and a power supply control device including at least means for inverting the polarity of the DC voltage of the power supply in accordance with the pH value of soil measured by the pH sensor. It can be implemented by an in-situ soil treatment device.

【0015】[0015]

【作用】本発明においては、まず中心電極とこの中心電
極に対して夫々等距離の位置に配置される複数の周辺電
極とからなり前記中心電極を中心点に前記各周辺電極を
各頂点に配した横断面が正多角形の電極組合せ体を各中
心電極および各周辺電極が互いに並列に接続された状態
で現場の含水土壌の被処理域に対応するように順次隣接
させて複数組設置し、たとえば前記各周辺電極から前記
中心電極に向かう電流が生じさせるような極性の直流電
圧を印加して前記被処理域の土壌中の水分を電気浸透に
より前記中心電極側に移行させてその吸引排水路を通し
て適宜な手段によって排水する。
According to the present invention, each of the peripheral electrodes comprises a central electrode and a plurality of peripheral electrodes arranged at equal distances from the central electrode.
Each electrode assembly with a regular polygonal cross section at each vertex
Heart electrode and each peripheral electrode connected in parallel with each other
In order to correspond to the treated area of hydrous soil at the site
A plurality of sets are installed, for example, by applying a DC voltage having a polarity such that a current flowing from each of the peripheral electrodes toward the center electrode is generated, and the water in the soil in the treatment target area is electroosmically transferred to the center electrode side. After the transfer, the water is drained by appropriate means through the suction drainage channel.

【0016】従来技術の電気浸透による脱水処理設備に
おいては汚泥をその処理工程中で移動させながら連続的
に脱水させるために脱水処理時間を極力短縮することが
必要であり、そのために用いられる前処理装置や圧縮コ
ンベア等が設備の構造や運転保守を複雑なものとしてい
た。
In the prior art electroosmosis dewatering equipment, it is necessary to minimize the dewatering time in order to continuously dewater the sludge while moving the sludge during the processing step. The equipment and the compression conveyor complicate the structure and operation and maintenance of the equipment.

【0017】しかし、本発明においては含水土壌はその
発生源においてそのまゝ一括処理されるので処理時間に
はそれほどの制約がなく、電極間の通電による電気浸透
作用のみによる全く静止的な脱水処理によって充分所期
の目的が達成される。
However, in the present invention, since the hydrous soil is treated at once at its source, the treatment time is not so limited, and a completely static dehydration treatment only by the electroosmotic action by energization between the electrodes. Thus, the intended purpose is sufficiently achieved.

【0018】たとえば、一般に各種汚泥の含水分は通常
80〜90%程度であり、微生物処理や焼却等の最終処
理に適合するように通常の脱水処理ではこれを約40〜
50%程度の含水分に低下させる。本発明者等の実験に
よれば、本発明を適用する際には脱水処理時間を半日な
いし一日程度に設定すれば、約20V程度の比較的低い
電圧でこのような目的とする脱水率が充分に得られるこ
とが判明した。
For example, the water content of various sludges is generally about 80 to 90%, and is usually about 40 to 90% in a normal dehydration treatment so as to be suitable for final treatment such as microbial treatment or incineration.
The water content is reduced to about 50%. According to experiments by the present inventors, when applying the present invention, if the dehydration treatment time is set to about half a day to about one day, such a desired dehydration rate can be obtained at a relatively low voltage of about 20 V. It turned out that it can obtain enough.

【0019】この場合、被処理域の土壌を一括して処理
するためには、被処理域の土壌全体に対して均等に通電
することが必要である。このため、本発明においては中
心電極(陰極)とその周辺に夫々等距離でこれと対向す
る複数の周辺電極(陽極)とからなり前記中心電極を中
心点に前記各周辺電極を各頂点に配した横断面が正多角
形の電極組合せ体を複数組用い、これらを含水土壌の被
処理域に対応するように順次隣接して配置し、各電極組
合せ体に対して直流電圧を並列に印加して処理域内の土
壌全体に均等な電気浸透による脱水作用を生じさせ、夫
々の中心電極側に移動した水分を排出して脱水を行うよ
うになされている。この場合電極組合せ体の横断面は含
水土壌の被処理域にすき間なく対応するようにたとえば
実施例に示すような正多角形とされる。この場合組立構
造の強度等の点で図2の正六角形が好ましいが、この他
正三角形または正四角形でももとより同様な効果が得ら
れる。
In this case, in order to collectively treat the soil in the area to be treated, it is necessary to uniformly supply power to the entire soil in the area to be treated. For this reason, in the present invention, a central electrode (cathode) and a plurality of peripheral electrodes (anodes) facing the central electrode at equal distances from each other are arranged at the respective vertices with the central electrode as a central point. A plurality of sets of electrode assemblies each having a regular polygonal cross section were used, and these were sequentially arranged adjacent to each other so as to correspond to the treatment area of hydrous soil, and a DC voltage was applied in parallel to each electrode assembly. In this way, a uniform dewatering action is caused by electro-osmosis in the entire soil in the treatment area, and water transferred to the respective center electrodes is discharged to perform dehydration. In this case, the cross section of the electrode
For example, to respond to the treated area of water soil without gaps
It is a regular polygon as shown in the embodiment. In this case, the assembly structure
The regular hexagon shown in FIG. 2 is preferable in terms of structural strength and the like.
The same effect can be obtained with an equilateral triangle or square.
It is.

【0020】一般に含水土壌の汚泥の脱水速度は電極間
の印加電圧に比例しかつ電極間距離に反比例するが、平
均的な汚泥を40〜50%程度に脱水する場合には、た
とえば半径1mの正六角形の中心に中心電極をまたその
各頂点に周辺電極を配置した組合せ体を用い、周辺電極
に約20Vの低電圧を印加すれば約10〜24時間程度
の通電時間で被処理域の汚泥に対して前記の所望の脱水
率が得られることが実験によって確認された。
Generally, the rate of dewatering of sludge in hydrous soil is proportional to the voltage applied between the electrodes and inversely proportional to the distance between the electrodes. When dewatering an average sludge to about 40 to 50%, for example, a radius of 1 m is used. Using a combination in which a central electrode is disposed at the center of a regular hexagon and a peripheral electrode is disposed at each vertex thereof, and when a low voltage of about 20 V is applied to the peripheral electrode, the sludge in the treated area can be energized for about 10 to 24 hours. It was confirmed by experiments that the above-mentioned desired dehydration rate was obtained.

【0021】実際の装置では、たとえば中心電極(陰
極)として中空管状の鋼管等を用い、その管腔部を吸引
排水路としてポンプ等の排水手段に接続し、一方周辺電
極(陽極)としては任意の導電性材料たとえば鉄筋など
を用いて電極組合せ体を簡単に構成することができる。
この場合土壌から脱水された水分は微細な土壌粒子間隙
を通して排出されるので土壌粒子自体がフィルタとして
作用し、排水は高度に浄化されるので放流に際してそれ
以上の濾過処理を必要としない。一方処理後の土壌は約
40〜50%に脱水減容されでおり、たとえばコンポス
ト化および焼却処理またはこれらの処理施設への運搬が
極めて容易となる。
In an actual apparatus, for example, a hollow tubular steel pipe or the like is used as a center electrode (cathode), and its lumen is connected to a drainage means such as a pump as a suction drainage channel, while the peripheral electrode (anode) is optional. The electrode assembly can be easily formed by using the above conductive material such as a reinforcing bar.
In this case, the water dehydrated from the soil is discharged through the fine soil particle gaps, so that the soil particles themselves act as a filter, and the wastewater is highly purified, so that no further filtration treatment is required for discharge. On the other hand, the soil after the treatment is dewatered and reduced in volume to about 40 to 50%, which makes it extremely easy to carry out composting and incineration treatment or to transport these to a treatment facility.

【0022】ここで電気浸透による脱水処理に際しては
陽陰極間で含水土壌成分を電解質とする電解を生じるた
め、被処理域のpHは中心電極(陰極)側で上昇してア
ルカリ性となり周辺電極(陽極)側では低下して酸性p
Hとなる。
Here, in the dehydration treatment by electroosmosis, electrolysis using a water-containing soil component as an electrolyte occurs between the positive and negative electrodes, so that the pH of the region to be treated increases on the center electrode (cathode) side and becomes alkaline, and the peripheral electrode (anode). ) Side, the acid p
H.

【0023】この場合特に酸性になった陽極側では金属
を溶出させ易い条件が生じるので、被処理土壌自体また
はその周辺の土壌等に含まれていた化合物から有害な金
属等がイオンとして溶出し、周囲の土壌や地下水を汚染
したりまたは隣接する岩盤および構築物自体に悪影響を
与えるおそれがある。
In this case, particularly on the acidic side of the anode, conditions are apt to elute metals, so that harmful metals and the like are eluted as ions from compounds contained in the soil to be treated itself or the surrounding soil and the like. It can contaminate the surrounding soil and groundwater or adversely affect the adjacent rock mass and the structure itself.

【0024】このため本発明においては、たとえば周辺
電極(陽極)の近傍にpH値を検出するpHセンサを設
置し、脱水工程の終了時に電源電圧の極性を反転して中
心電極(陰極)に正電圧を印加して両極間で脱水工程時
とは極性を逆向きにした状態で電解作用を生じさせ、そ
れによって周辺電極近傍の土壌のpH値を中性側に上昇
(回復)させる。このpH値が初期の値又は予め設定し
た値に達したときにpHセンサからの検出出力で通電を
停止し全体の処理工程を終了させる。
For this reason, in the present invention, for example, a pH sensor for detecting a pH value is provided near the peripheral electrode (anode), and the polarity of the power supply voltage is inverted at the end of the dehydration step to make the center electrode (cathode) positive. A voltage is applied to cause an electrolytic action between the two electrodes in a state where the polarity is opposite to that in the dehydration step, thereby increasing (recovering) the pH value of the soil near the peripheral electrode to the neutral side. When the pH value reaches an initial value or a preset value, the power supply is stopped by the detection output from the pH sensor, and the entire processing steps are terminated.

【0025】尚含水土壌の性状が一定で所望の脱水率に
達したときのpH値が予め予測できるような場合には、
脱水工程とpH調節工程との切換時点およびpH調節工
程の終了時点を決定する手段として水分計を用いてもよ
く、また場合によってはpH計と水分計とを併用しても
よい。
In the case where the properties of the hydrous soil are constant and the pH value when the desired dehydration rate is reached can be predicted in advance,
A moisture meter may be used as a means for determining the switching point between the dehydration step and the pH adjustment step and the end point of the pH adjustment step, and in some cases, a pH meter and a moisture meter may be used in combination.

【0026】このように本発明においては、含水土壌の
被処理域に設置される前記の簡単な構造の電極組合せ体
と、中心電極の吸引排水路に接続される吸引ポンプと、
pHセンサおよび制御回路付の電源のみからなる簡単な
構造のシステムを用いて容易に脱水処理が可能であり、
このため処理現場毎に処理装置を随時設置して作業を行
うことができる。したがって従来の発生源から脱水処理
施設までの運搬コストおよび前処理や圧搾処理に要して
いた設備費やそれらの運転、保守の労力を省略すること
ができ、処理を効果的に行うことができる。
As described above, according to the present invention, an electrode assembly having the above-described simple structure, which is installed in an area to be treated with hydrous soil, a suction pump connected to a suction drainage channel of a center electrode,
Dehydration can be easily performed using a system with a simple structure consisting only of a pH sensor and a power supply with a control circuit.
For this reason, the processing can be performed by installing a processing device at each processing site as needed. Therefore, it is possible to omit the conventional transportation cost from the source to the dehydration treatment facility, the equipment cost required for the pretreatment and the squeezing treatment, and the labor for operating and maintaining them, and the treatment can be performed effectively. .

【0027】このように、本発明の一つの重要な特色は
含水土壌をその処理現場において直接脱水できる点にあ
るが、そのために電気浸透による処理時には処理土壌自
体およびその周辺の土壌等にpH変化を生じるおそれが
ある。しかし本発明では前記脱水工程に引きつづくpH
調節工程によってpH値を当初の値もしくは所定値に回
復させているので、特に周辺電極(陽極)側のpHが酸
性に変化することによる重金属イオン等の溶出を防止し
て周辺の環境汚染の問題を回避することができる。
As described above, one important feature of the present invention is that water-containing soil can be directly dewatered at the treatment site. Therefore, during treatment by electroosmosis, pH change occurs in the treated soil itself and the surrounding soil. May occur. However, in the present invention, the pH following the dehydration step
Since the pH value is restored to the initial value or a predetermined value by the adjusting step, the elution of heavy metal ions and the like due to the change of the pH on the peripheral electrode (anode) side to acidic is prevented, thereby causing a problem of environmental pollution in the surrounding area. Can be avoided.

【0028】尚本発明は汚泥や残土の脱水処理のほか、
有害物質を含んだ土壌や高含水分の軟弱な土質の改良等
本来その場で行うことが必要な土壌処理に対しても適用
することができる。たとえば含水土壌中にクロム(6
価)その他の有害な重金属粒が含まれている場合でも、
これらの化合物は土壌水中に溶解している状態におい
て、又は電解作用中酸性pHとなった正極付近の土壌か
らの土壌水中への溶解によって、電気浸透処理による脱
水時に容易に陰極側に排出されるので、汚染土壌の無害
化処理にも有効である。尚汚染土壌の無害化には脱水し
た水を浄化して洗浄液として反復使用することが好まし
い。前記のように、本発明における土壌処理とは汚泥の
脱水、軟質土壌の改良、有害物質を含む土壌の再生等を
含む。
The present invention is not limited to dewatering sludge and soil,
The present invention can also be applied to soil treatment that should originally be performed in situ, such as improvement of soil containing harmful substances or soft soil having high moisture content. For example, chromium (6
Value) other harmful heavy metal particles,
These compounds are easily discharged to the cathode side during the dehydration by the electroosmosis treatment in the state of being dissolved in the soil water or by dissolving in the soil water from the soil near the positive electrode, which became acidic pH during the electrolytic action, in the soil water. Therefore, it is also effective in detoxifying contaminated soil. In order to render the contaminated soil harmless, it is preferable to purify the dehydrated water and use it repeatedly as a washing liquid. As described above, the soil treatment in the present invention includes dehydration of sludge, improvement of soft soil, regeneration of soil containing harmful substances, and the like.

【0029】[0029]

【実施例】以下本発明を実施例によって説明する。図1
は本発明の方法および装置を実用化するための実験装置
の概要を示す図、図2は本発明を実施する際の土壌処理
域中の電極組合せ体の配置を示す説明図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to embodiments. FIG.
FIG. 1 is a view showing an outline of an experimental apparatus for putting the method and apparatus of the present invention into practical use, and FIG. 2 is an explanatory view showing an arrangement of an electrode assembly in a soil treatment area when implementing the present invention.

【0030】[0030]

【実験例】本発明の方法における電気浸透脱水工程によ
る脱水およびかゝる工程の実施による電極周辺のpH変
化および逆極性電圧の印加によるpHの回復を確認する
ために前記図1の装置を用いて下記の予備実験を行っ
た。
EXPERIMENTAL EXAMPLE The apparatus shown in FIG. 1 was used to confirm the dehydration by the electroosmotic dehydration step in the method of the present invention and the change in pH around the electrode due to the execution of such a step and the recovery of pH by applying a reverse polarity voltage. The following preliminary experiment was conducted.

【0031】初期含水率49.8%、pH8.2の無機
汚泥11kgを含む脱水槽1中に吸引排水路を管腔部に
有する中心電極2Aとしての内径20mmφのステンレ
ス鋼管2Aおよびその周辺に250mmの距離で同一円
周上に配置した周辺電極2Bとしての径5mmの鉄筋か
らなる電極組合せ体2を汚泥の堆積深さ(155mm)
に対応して設け、中心電極2Aを負極および各周辺電極
2Bを正極として電源3から20VのDC電圧(初期電
流0.95A)を印加して電気浸透を実施した。その他
図中、2Cは中心電極2Aの管壁に穿設した吸引・排水
孔、2Dは管腔部を利用して形成した排水路、4は電源
3の出力極性の反転のための制御部、5は吸引ポンプ、
6はpHセンサである。
In a dehydration tank 1 containing 11 kg of inorganic sludge having an initial water content of 49.8% and a pH of 8.2, a stainless steel pipe 2A having an inner diameter of 20 mm and serving as a center electrode 2A having a suction drainage channel in the lumen and a periphery of 250 mm are provided. The electrode assembly 2 composed of a reinforcing rod having a diameter of 5 mm as the peripheral electrode 2B arranged on the same circumference at a distance of the sludge is deposited at a sludge deposition depth (155 mm).
And a 20 V DC voltage (initial current: 0.95 A) was applied from the power supply 3 using the center electrode 2A as a negative electrode and each peripheral electrode 2B as a positive electrode to perform electroosmosis. In the other figures, 2C is a suction / drainage hole formed in the tube wall of the center electrode 2A, 2D is a drainage channel formed using the lumen, 4 is a control unit for reversing the output polarity of the power supply 3, 5 is a suction pump,
Reference numeral 6 denotes a pH sensor.

【0032】7時間の通電中の電気浸透脱水量およびそ
れにともなう汚泥各部でのpH値の変化は表1に示す通
りである。
Table 1 shows the amount of electroosmotic dehydration during 7 hours of energization and the accompanying change in pH value in each part of the sludge.

【0033】[0033]

【表1】 初期値 2時間後 4時間後 7時間後 pH +側 8.2 6.1 5.7 5.2 pH −側 8.2 10.5 11.0 11.4 pH 中央部 8.2 8.2 8.2 8.4 電 流 (A) 0.95 0.9 0.7 0.5 電 圧 (V) 20 20 20 20 排 水 量 (ml) 0 300 200 250 排水pH ー 11.6 11.7 11.8 [Table 1] Initial value After 2 hours After 4 hours After 7 hours pH + side 8.2 6.1 5.7 5.2 pH-side 8.2 10.5 11.0 11.4 pH center 8.2 8.2 8.2 8.4 Current (A) 0.95 0.9 0.7 0.5 Voltage (V) 20 20 20 20 Wastewater volume (ml) 0 300 200 250 Wastewater pH ー 11.6 11.7 11.8

【0034】電気浸透処理により変化したpH、特に陽
極側の酸性pH値をほゞ初期の値まで回復させるため、
中心電極2Aおよび周辺電極2B間の印加電圧の極性を
反転させ4時間通電した。結果を表2に示す。
In order to restore the pH changed by the electroosmosis treatment, particularly the acidic pH value on the anode side to almost the initial value,
The polarity of the applied voltage between the center electrode 2A and the peripheral electrode 2B was reversed, and electricity was supplied for 4 hours. Table 2 shows the results.

【0035】[0035]

【表2】 初期値 2時間後 3時間後 4時間後 pH +側 11.4 9.5 9.2 8.5 pH −側 5.2 6.5 6.9 7.5 pH 中央部 8.4 8.2 8.2 8.2 電 流 (A) 0.6 0.6 0.6 0.6 電 圧 (V) 20 20 20 20 排 水 量 (ml) 0 100 100 120 排水pH ー 3.5 5.3 6.5 [Table 2] Initial value After 2 hours After 3 hours After 4 hours pH + side 11.4 9.5 9.2 8.5 pH-side 5.2 6.5 6.9 7.5 pH Central part 8.4 8.2 8.2 8.2 Current (A) 0.6 0.6 0.6 0.6 Voltage (V) 20 20 20 20 Wastewater volume (ml) 0 100 100 120 Wastewater pH-3.5 5.3 6.5

【0036】4時間の通電後、表2に示すように(−)
側(この場合周辺電極2B)のpH値は5.2から7.
5に上昇し、ほぼ当初のpH値に回復した。
After 4 hours of energization, as shown in Table 2, (-)
The pH value on the side (in this case, the peripheral electrode 2B) is 5.2 to 7.
5 and almost returned to the original pH value.

【0037】以下本発明を実際の各種汚泥等の発生源に
おいて直接適用して脱水を行った実施例によって説明す
る。装置の基本的な構成は図1に示すものと同様であ
る。各実施例においては中心電極(陰極)2Aと周辺電
極(陽極)2Bとからなる電極組合せ体2を図2に示す
ように正六角形状に構成し、各組合せ体の中心電極同志
および周辺電極同志を並列に接続し(各極間の接続は図
示を省略した)、これらを順次汚泥の処理域に隣接して
設置した。夫々の場合の各種汚泥の処理量は60,000k
g:処理面積は30m2 、深さは2mであった。
Hereinafter, the present invention will be described by way of an example in which dewatering is performed by directly applying the present invention to actual sources of various sludges and the like. The basic configuration of the device is the same as that shown in FIG. In each embodiment, the electrode combination 2 composed of the center electrode (cathode) 2A and the peripheral electrode (anode) 2B is formed in a regular hexagonal shape as shown in FIG. Were connected in parallel (connections between the respective poles were not shown), and these were sequentially installed adjacent to the sludge treatment area. 60,000k of sludge treatment amount in each case
g: The treated area was 30 m 2 and the depth was 2 m.

【0038】実施例1 含水分約82.2%の活性無機建設汚泥の(pH8.
6)の被処理域に、図2に示す複数の電極組合せ体2、
2、...を順次隣接させて配置した。本実施例におい
ては各中心電極2Aと周辺電極2Bとの距離を1mと
し、これら電極組合せ体に対する電源3からの脱水工程
における合計通電電流の初期値を10Aとした他は前記
実験例と同様な装置および条件を用いた。
Example 1 Activated inorganic construction sludge having a water content of about 82.2% (pH 8.
6), a plurality of electrode combination bodies 2 shown in FIG.
2,. . . Were sequentially arranged adjacent to each other. In the present embodiment, the distance between the center electrode 2A and the peripheral electrode 2B is 1 m, and the initial value of the total energizing current in the dehydration step from the power supply 3 for these electrode combinations is 10 A, except that it is the same as the experimental example. Equipment and conditions were used.

【0039】各電極組合せ体2の中心電極2Aに対して
電源3から夫々20VのDC電圧を印加し10時間通電
して脱水処理を行ない、次いで極性を反転して4時間p
H調節処理を行った。結果を表3に示す。表3に示すよ
うに汚泥の含水率は初期値82.2%から35.5%に
低下し減量、減容によって搬送コストが著しく減少し
た。また脱水処理時の陽性pHは4.5は低下したが、
pH調節処理によりほゞ当初の値に回復した。
A DC voltage of 20 V is applied to the center electrode 2A of each electrode assembly 2 from the power source 3 to supply electricity for 10 hours to perform dehydration treatment, and then reverse the polarity for 4 hours.
H adjustment processing was performed. Table 3 shows the results. As shown in Table 3, the water content of the sludge was reduced from the initial value of 82.2% to 35.5%, and the transportation cost was remarkably reduced due to weight reduction and volume reduction. In addition, the positive pH at the time of the dehydration treatment decreased by 4.5,
The pH was restored to almost the original value by the pH adjustment treatment.

【0040】実施例2 含水率82.0%の有機下水汚泥に対して、実施例1と
同様にして脱水処理を17時間行った。結果を表3に示
す。含水率は51.2%に低下し微生物処理によるコン
ポスト化に適した水分となった。
Example 2 Dehydration treatment was carried out on organic sewage sludge having a water content of 82.0% in the same manner as in Example 1 for 17 hours. Table 3 shows the results. The water content was reduced to 51.2%, making the water suitable for composting by microbial treatment.

【0041】実施例3 含水率80.8%の河川浚渫汚泥に対して実施例1と同
様にして脱水処理を12時間おこなった。結果を表3に
示す。処理後の含水率は41.6%に低下し、化学固化
剤を加えて支持力を増大させることにより埋め戻し等に
利用可能な状態となった。
Example 3 A dewatering treatment was performed on river dredged sludge having a water content of 80.8% in the same manner as in Example 1 for 12 hours. Table 3 shows the results. The water content after the treatment was reduced to 41.6%, and the supportability was increased by adding a chemical solidifying agent, so that it became usable for backfilling and the like.

【0042】実施例4 含水率82.6%の湖沼浚渫汚泥に対して、実施例1と
同様にして脱水処理を24時間おこなった。結果を表3
に示す。処理後の含水率は53.3%に低下した。尚前
記各実施例2〜4においても実施例1と同様なpH調節
処理を行った結果、陽極pHはいずれも夫々の当初値の
±0.2%の範囲まで回復された。
Example 4 Dehydration treatment was carried out on a dredged sludge with a water content of 82.6% in the same manner as in Example 1 for 24 hours. Table 3 shows the results
Shown in The water content after the treatment decreased to 53.3%. In each of Examples 2 to 4, the same pH adjustment treatment as in Example 1 was performed, and as a result, the anode pH was restored to the range of ± 0.2% of the initial value in each case.

【0043】[0043]

【表3】 実施例 脱水時間 初期 終期 pH値 含水分 含水分 初期 終期 (Hr) (%) (%) (陽極)(陰極) 1無機建設汚泥 10 82.2 35.5 8.6 4.5 9.3 2有機下水汚泥 17 82.0 51.2 6.9 3.8 8.9 3河川浚渫汚泥 12 80.8 41・6 7.2 4.2 8.8 4湖沼浚渫汚泥 24 82.6 53.3 7.4 5.5 9.4 実施例5 本発明による含水土壌処理は土壌もしくは水壌水中に有
害金属等が含有されている場合、電気浸透による脱水中
にこれらの有害金属をイオン状態として排水と共に除去
する土壌の無害化処理にも適用することができる。6価
クロムを含有する含水土壌に前記各実施例と同様な方法
を適用したところ、約48時間の脱水通電および逆極性
のpH調節通電によって含水率が低下すると共に、6価
クロムの含有量が当初の20.2ppmから0.01p
pm以下に低下したことが溶出試験によって確認され
た。
[Table 3] Example Dehydration time Initial end pH value Moisture content Moisture content Early termination (Hr) (%) (%) (Anode) (Cathode) 1 Inorganic construction sludge 10 82.2 35.5 8.6 4.5 9.3 2 Organic sewage sludge 17 82.0 51.2 6.9 3.8 8.9 3 River dredging sludge 12 80.8 41.6 7.2 4.2 8.8 4 Lake dredging sludge 24 82. 6 53.3 7.4 5.5 9.4 Example 5 In the case of the hydrated soil treatment according to the present invention, when harmful metals and the like are contained in the soil or the water or sewage, these harmful metals are removed during the dehydration by electroosmosis. The present invention can also be applied to detoxification of soil which is removed together with wastewater in an ionic state. When the same method as in each of the above examples was applied to the hydrous soil containing hexavalent chromium, the water content was reduced by the dehydration energization for about 48 hours and the pH adjustment energization of the opposite polarity, and the content of hexavalent chromium was reduced. 0.01p from the initial 20.2ppm
pm or less was confirmed by a dissolution test.

【0044】尚本発明については前記実施例に限ること
なく種々の変形や改良が可能である。たとえば本発明に
おいては、電極組合せ体において中心電極を陰極とし周
辺電極を陽極として用いることが効果的であるが、必要
によっては両電極の極性を逆にした組合せ体を用いるこ
ともできる。
It should be noted that the present invention is not limited to the above embodiment, and various modifications and improvements can be made. For example, in the present invention, it is effective to use the center electrode as the cathode and the peripheral electrode as the anode in the electrode combination, but if necessary, a combination in which the polarities of both electrodes are reversed may be used.

【0045】[0045]

【発明の効果】以上のように本発明によれば、たとえば
各種汚泥等の含水率を、運搬、焼却、コンポスト化等に
適した低含水分まで効率的に低下させることができる。
特に本発明においては従来提案されている機械的脱水手
段との組合せは全く採用されていないので設備が極めて
簡略化され、必要に応じて処理敷地に直接設置してその
場で脱水処理を行うことができる。またこの脱水処理に
よるpH変化はpH調節工程で初期値に回復され周囲に
環境汚染を生じさせるおそれが全くない。
As described above, according to the present invention, for example, the moisture content of various sludges can be efficiently reduced to a low moisture content suitable for transportation, incineration, composting and the like.
In particular, in the present invention, the combination with the conventionally proposed mechanical dewatering means is not adopted at all, so the equipment is extremely simplified, and if necessary, it is directly installed on the treatment site to perform the dehydration treatment on the spot Can be. Further, the pH change due to this dehydration treatment is restored to the initial value in the pH adjustment step, and there is no possibility that environmental pollution will occur in the surroundings.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施する実験的装置の概要を示す図で
ある。
FIG. 1 is a diagram showing an outline of an experimental apparatus for carrying out the present invention.

【図2】本発明の実施に用いる電極組合せ体の配置図で
ある。
FIG. 2 is a layout view of an electrode assembly used for carrying out the present invention.

【符号の説明】[Explanation of symbols]

1……脱水槽 2……電極組合せ体 2A…管状中心電極(陰極) 2B…周辺電極(陽極) 2C…吸引排水孔 2D…吸引排水路 3……電源、 4……制御部、 5……排水ポンプ、 6……pHセンサ DESCRIPTION OF SYMBOLS 1 ... Dehydration tank 2 ... Electrode combination body 2A ... Tubular center electrode (cathode) 2B ... Peripheral electrode (anode) 2C ... Suction drainage hole 2D ... Suction drainage channel 3 ... Power supply 4 ... Control part 5 ... Drain pump, 6 pH sensor

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭50−76657(JP,A) 特開 平1−189311(JP,A) 特開 平5−4100(JP,A) 特開 昭62−125811(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 11/12 ZAB ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-50-76657 (JP, A) JP-A-1-189931 (JP, A) JP-A-5-4100 (JP, A) JP-A-62 125811 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C02F 11/12 ZAB

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 土壌の被処理域に対向して設けた電極間
に通電して土壌の水分含有率を電気浸透によって低下さ
せる含水土壌の処理方法において、 中心電極とこの中心電極に対して等距離の位置に夫々配
置される複数の周辺電極とからなり前記中心電極を中心
点に前記各周辺電極を各頂点に配した横断面が正多角形
の電極組合せ体を現場土壌の被処理域に対応するように
順次隣接させて複数設置し、 前記中心電極と前記各周辺電極との間に前記各周辺電極
から前記中心電極又は前記中心電極から前記周辺電極に
向う電流を生じさせるような極性の直流電圧を前記各電
極組合せ体に対して並列に印加して前記被処理域の土壌
中の水分を電気浸透により前記中心電極側に移行させて
排水する脱水工程と、 前記脱水工程に引続いて前記中心電極と前記各周辺電極
との間に前記脱水工程における電流の方向を逆転させる
ような極性の電圧を印加し、前記脱水工程中の通電によ
って低下した前記周辺電極側のpH値を所定の値に回復
させるpH調節工程とを含むことを特徴とする含水土壌
のその場処理方法。
1. A method for treating water-containing soil in which electricity is supplied between electrodes provided opposite to a treated area of soil to reduce the water content of the soil by electroosmosis. Consisting of a plurality of peripheral electrodes respectively arranged at distance positions, and centered on the central electrode.
The cross section of each peripheral electrode at each vertex at a point is a regular polygon
The electrode assembly to match the area to be treated in the field soil
A plurality of the DC electrodes are sequentially arranged adjacent to each other, and a DC voltage having a polarity such that a current flows from the peripheral electrode to the central electrode or from the central electrode to the peripheral electrode between the central electrode and the peripheral electrodes. A dehydration step of applying water in parallel to each electrode combination to transfer water in soil in the treatment area to the center electrode side by electroosmosis and draining the water, A voltage having a polarity that reverses the direction of the current in the dehydration step is applied between each of the peripheral electrodes, and the pH value of the peripheral electrode side, which has been reduced by energization during the dehydration step, is restored to a predetermined value. a method for in-situ treatment of hydrous soil, comprising a pH adjusting step.
【請求項2】 前記電極組合せ体の横断面が正六角形で2. A cross section of the electrode assembly having a regular hexagonal shape.
ある請求項1記載のその場処理方法。The in-situ treatment method according to claim 1.
【請求項3】 内部に吸引排水路を有する中空管状の中
心電極と、この中心電極から夫々等距離の位置に配置さ
れる複数の周辺電極とからなり前記中心電極を中心点に
前記各周辺電極を各頂点に配した横断面が正多角形の電
極組合せ体が、現場土壌の被処理域に対応するように順
次隣接して設置される複数の電極組合せ体と、 前記中心電極の吸引排水路に接続される排水手段と、 夫々の中心電極および夫々の周辺電極を互いに並列に接
続する部分と、 前記電極組合せ体の中心電極と各周辺電極との間に前記
周辺電極から中心電極に向かう直流電圧を印加する電源
と、 前記被処理域の土壌のpH値を測定するpHセンサと、 前記電源の直流電圧の極性を前記pHセンサによって測
定される土壌のpH値にしたがって反転させる手段を少
なくとも含む供電制御装置とを備えていることを特徴と
する含水土壌のその場処理装置。
3. A central electrode having a hollow tubular shape having a suction drainage passage therein and a plurality of peripheral electrodes arranged at equal distances from the central electrode.
A cross section in which the peripheral electrodes are arranged at each vertex and whose cross section is a regular polygon.
Make sure that the pole assemblies correspond to the treated area of the field soil.
A plurality of electrode combination bodies installed next to each other, drainage means connected to the suction drainage channel of the center electrode, a portion connecting each center electrode and each peripheral electrode in parallel with each other, and the electrode combination A power supply for applying a DC voltage from the peripheral electrode to the central electrode between the central electrode of the body and each peripheral electrode, a pH sensor for measuring a pH value of soil in the treatment area, and a DC voltage of the power supply. A power supply control device including at least means for inverting the polarity in accordance with the pH value of the soil measured by the pH sensor.
【請求項4】 前記電極組合せ体の横断面が正六角形で4. A cross section of the electrode assembly having a regular hexagonal shape.
ある請求項3記載のその場処理装置。The in-situ treatment device according to claim 3.
JP4219793A 1993-02-06 1993-02-06 In-situ treatment method and apparatus for hydrous soil by electroosmosis Expired - Fee Related JP3343662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4219793A JP3343662B2 (en) 1993-02-06 1993-02-06 In-situ treatment method and apparatus for hydrous soil by electroosmosis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4219793A JP3343662B2 (en) 1993-02-06 1993-02-06 In-situ treatment method and apparatus for hydrous soil by electroosmosis

Publications (2)

Publication Number Publication Date
JPH06226300A JPH06226300A (en) 1994-08-16
JP3343662B2 true JP3343662B2 (en) 2002-11-11

Family

ID=12629288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4219793A Expired - Fee Related JP3343662B2 (en) 1993-02-06 1993-02-06 In-situ treatment method and apparatus for hydrous soil by electroosmosis

Country Status (1)

Country Link
JP (1) JP3343662B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5340054B2 (en) * 2009-06-25 2013-11-13 アタカ大機株式会社 Operation method of electroosmotic dehydrator
CN109987818A (en) * 2019-04-11 2019-07-09 浙江广川工程咨询有限公司 A kind of mud modification-reparation integrated system and application based on electrochemical treatments
CN110000199B (en) * 2019-04-16 2021-04-02 吕敦玉 Soil pollution emergency pumping and injecting prevention and control method
CN115318821B (en) * 2022-08-10 2023-08-18 东南大学 Microbial electrochemical device and method for removing composite heavy metals in soil

Also Published As

Publication number Publication date
JPH06226300A (en) 1994-08-16

Similar Documents

Publication Publication Date Title
CN106424117A (en) Device for electro-kinetic remediation of heavy metal contaminated soil by utilizing copper salt reinforced cathode
CN110947751B (en) Device and method for restoring cadmium-polluted soil through electric auxiliary leaching
CN110434166B (en) Double-ring vertical self-cleaning type in-situ dehydration pollution-reduction electric repair device and method
US5865964A (en) Apparatus for stripping ions from concrete and soil
JP3343662B2 (en) In-situ treatment method and apparatus for hydrous soil by electroosmosis
KR100934929B1 (en) Regenerative Electrochemical Polishing Decontamination of metallic Radioactive Wastes and Decontamination Liquid Waste Treatment by Electro-sorption and Electro-deposition
JP2000140819A (en) Method for cleaning heavy metal-contaminated soil
CN112605117A (en) Device and method for repairing heavy metal-organic compound contaminated soil through electrochemistry and electromotion cooperation
CN112605115B (en) Heavy metal contaminated soil remediation device and method
Lageman et al. Electro-reclamation: State-of-the-art and future developments
JP3816438B2 (en) Treatment of contaminated groundwater and soil by electrode reduction method
JPH115077A (en) Contaminated ground purification system
JPH11221553A (en) Purifying method of heavy metal contamination soil
CN211419856U (en) Waste water treatment device
JPH1034126A (en) Method and apparatus for purifying soil polluted with heavy metal
JPH11128901A (en) Method and apparatus for purifying polluted soil
CN107827210B (en) Sewage treatment method based on plate-frame type filter pressing electrolysis integrated special sewage treatment equipment
EP0760718B1 (en) Apparatus for the decontamination of heavy metals containing soil
JP3214607B2 (en) Electrode placement method for removal of anionic contaminants
JP3457484B2 (en) Metal recovery method and recovery device
JP4782904B2 (en) Electrochemical purification method for contaminated ground
JP2002035736A (en) Treatment device for contaminated soil and method therefor
JP3149425B2 (en) Concentration control method for removal of anionic contaminants
JP3180312B2 (en) Concentration control method for removal of anionic contaminants
JP3214600B2 (en) How to clean contaminated soil

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080830

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees