JPH11221553A - Purifying method of heavy metal contamination soil - Google Patents

Purifying method of heavy metal contamination soil

Info

Publication number
JPH11221553A
JPH11221553A JP10025482A JP2548298A JPH11221553A JP H11221553 A JPH11221553 A JP H11221553A JP 10025482 A JP10025482 A JP 10025482A JP 2548298 A JP2548298 A JP 2548298A JP H11221553 A JPH11221553 A JP H11221553A
Authority
JP
Japan
Prior art keywords
water
soil
solvent
cathode
contaminated soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10025482A
Other languages
Japanese (ja)
Inventor
Miki Masuda
幹 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP10025482A priority Critical patent/JPH11221553A/en
Publication of JPH11221553A publication Critical patent/JPH11221553A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an economical purification method of heavy metal contamination soil by which the heavy metal is removed from the soil contaminated with the heavy metals which are hardly soluble or insoluble, with high removal efficiency and in a short time. SOLUTION: This process comprises a first step of mixing the contaminated soil A with an acidic solvent and extracting heavy metals with the solvent and a second step by which a cathode part 6 and an anode part 7 separated electrodes 6a, 7a from the contamination soil A with a water-permeable member 8 are arranged in the contaminated soil A after the solvent-extraction treatment, and direct current voltage is impressed between the electrodes 6a, 7a to move ions of the heavy metals, etc., to recover the metal. In the second step, the water in the cathode part 6 is discharged and also clean water is fed, and pH in the cathode part 6 is maintained at <=7.5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水に難溶性又は不
溶性の重金属で汚染された土壌から重金属を除去して、
重金属汚染土壌を浄化する方法に関する。
TECHNICAL FIELD The present invention relates to a method for removing heavy metals from soil contaminated with heavy metals which are hardly soluble or insoluble in water,
The present invention relates to a method for purifying heavy metal contaminated soil.

【0002】[0002]

【従来の技術】最近では、市街地再開発に伴う調査によ
り、工場跡地や廃棄物処理場等の重金属汚染が判明する
事例が増加している。このような重金属による汚染土壌
の浄化処理対策としては、汚染物質の不溶化処理や遮水
工事、覆土工事等の周辺環境から汚染土壌を遮断する方
法が一般的である。しかし、これらの方法では、重金属
そのものが現場の土壌中に残るため、処置後も土地利用
に制限がある。
2. Description of the Related Art In recent years, there has been an increasing number of cases in which heavy metal contamination on factory sites, waste disposal sites, and the like has been found through investigations associated with urban redevelopment. As a countermeasure for the purification treatment of the contaminated soil by such heavy metals, a method of shielding the contaminated soil from the surrounding environment such as a process of insolubilizing the contaminant, a water shielding work, and a soil covering work is generally used. However, in these methods, since the heavy metals themselves remain in the soil at the site, there is a limitation on land use after the treatment.

【0003】そこで最近では、重金属で高濃度に汚染さ
れた土壌は現場から運び出して廃棄し、新しい土を入れ
替える処置も行われている。しかしながら、産業廃棄物
の最終処分場が近い将来不足することは明らかであるた
め、汚染土壌を廃棄せずに、汚染土壌中の重金属を除去
して浄化することが検討されている。
[0003] In recent years, therefore, measures have been taken to remove soil contaminated by heavy metals at a high concentration from the site and discard it, and replace it with new soil. However, it is clear that there will be a shortage of final disposal sites for industrial waste in the near future. Therefore, it has been studied to remove and contaminate heavy metals in contaminated soil without discarding the contaminated soil.

【0004】このような汚染土壌の浄化方法としては、
土壌洗浄法と電気化学的処理法とが知られている。土壌
洗浄法とは、水又は適当な溶媒を用いて汚染土壌から汚
染物質を物理的・化学的に抽出分離する方法である。具
体的には、汚染土壌を溶媒と共に混合して洗浄し、重金
属を高濃度に含有する粒子を除去し、得られた清浄な土
壌を汚染現場の埋め戻しに用いる。
[0004] As a method of purifying such contaminated soil,
Soil cleaning methods and electrochemical treatment methods are known. The soil washing method is a method of physically and chemically extracting and separating contaminants from contaminated soil using water or a suitable solvent. Specifically, the contaminated soil is mixed and washed with a solvent to remove particles containing a high concentration of heavy metals, and the obtained clean soil is used for backfilling the contaminated site.

【0005】この土壌洗浄法では、廃棄物となる汚染土
壌を減容化するので、供給された汚染土壌量に対して得
られた清浄な土壌量の割合が高いほど効果的な浄化方法
となる。また、水に難溶性や不溶性の重金属が主な汚染
源となっている場合、抽出溶媒として水や塩化カルシウ
ム等の塩溶液を用いても殆ど除去不可能であるため、こ
のような場合は溶媒として硝酸や塩酸などの酸性溶液が
用いられる。
In this soil washing method, the volume of contaminated soil that becomes waste is reduced. Therefore, the higher the ratio of the obtained clean soil amount to the supplied contaminated soil amount, the more effective the purification method. . In addition, when heavy metals that are hardly soluble or insoluble in water are the main contaminants, they are almost impossible to remove even using a salt solution such as water or calcium chloride as an extraction solvent. An acidic solution such as nitric acid or hydrochloric acid is used.

【0006】一方、電気化学的処理法は、汚染土壌中に
陰極と陽極を配置し、その電気間に直流電圧を印加する
ことによって、土壌中にイオン泳動作用と電圧浸透作用
を起こして汚染物質を濃縮し、回収する方法である。
[0006] On the other hand, in the electrochemical treatment method, a cathode and an anode are arranged in contaminated soil, and a direct current voltage is applied between the electricity to cause an iontophoretic action and a voltage osmotic action in the soil to cause pollutants. Is concentrated and recovered.

【0007】[0007]

【発明が解決しようとする課題】上記の土壌洗浄法で
は、難溶性や不溶性の重金属を除去する場合に溶媒とし
て酸性溶媒を使用し、洗浄後の土壌と汚染物質を抽出し
た酸性溶媒とを分離するために濾過・洗浄を必要とす
る。しかし、この濾過・洗浄工程において、酸性溶媒に
一旦溶解した重金属イオンが再び土壌に吸着するため、
除去効率が大きく低下するという問題があった。また、
酸性溶媒として硝酸等を使用した場合には、土壌中に硝
酸イオン等の有害な物質が残留するので、これを洗浄除
去するために更に多く工程とエネルギーを必要としてい
た。
In the above-mentioned soil washing method, an acidic solvent is used as a solvent for removing hardly soluble or insoluble heavy metals, and the soil after washing is separated from the acidic solvent from which contaminants are extracted. Requires filtration and washing. However, in this filtration / washing step, the heavy metal ions once dissolved in the acidic solvent are adsorbed to the soil again,
There is a problem that the removal efficiency is greatly reduced. Also,
When nitric acid or the like is used as the acidic solvent, harmful substances such as nitrate ions remain in the soil. Therefore, more steps and energy are required to wash and remove the harmful substances.

【0008】また、電気化学的処理法では、陰極で起こ
る水の電気分解によって水酸化物イオンが生成し、陰極
付近の土壌のpHが上昇することにより、鉛等の重金属
の沈澱が起こる。このため、陰極近辺での重金属の移動
力が次第に低下し、且つ時間の経過とともに印加電圧が
増大し、汚染物質の除去効率が減少して、浄化期間が長
期化するという問題があった。
[0008] In the electrochemical treatment method, hydroxide ions are generated by the electrolysis of water occurring at the cathode, and the pH of soil near the cathode rises, causing precipitation of heavy metals such as lead. For this reason, there has been a problem that the moving force of the heavy metal near the cathode gradually decreases, and the applied voltage increases with the elapse of time, the contaminant removal efficiency decreases, and the purification period becomes longer.

【0009】本発明は、このような従来に事情に鑑み、
難溶性や不溶性の重金属で汚染された土壌から、汚染物
質である重金属を高い除去効率で短期間に除去できる、
経済的な重金属汚染土壌の浄化方法を提供することを目
的とする。
The present invention has been made in view of such circumstances.
Highly efficient removal of heavy metals as contaminants from soil contaminated with hardly soluble or insoluble heavy metals in a short time.
It is an object of the present invention to provide an economical purification method of heavy metal contaminated soil.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
め、本発明が提供する重金属汚染土壌の浄化方法は、掘
削した汚染土壌に酸性溶媒を混合して、重金属を溶媒抽
出する第1工程と、溶媒抽出処理後の汚染土壌に透水性
部材で電極を該汚染土壌から分離した陰極部と陽極部と
を配置し、その電極間に直流電圧を印可して、電気化学
的作用により重金属等のイオンを移動させて回収する第
2工程とからなり、該第2工程において、陰極部内の水
を排水すると共に清浄水を陰極部内に給水して、陰極部
内のpHを7.5以下に保持することを特徴とする。
In order to achieve the above object, the present invention provides a method for purifying heavy metal-contaminated soil, comprising the steps of: mixing an excavated contaminated soil with an acidic solvent to extract heavy metals by solvent; And a cathode part and an anode part, in which an electrode is separated from the contaminated soil by a water-permeable member on the contaminated soil after the solvent extraction treatment, and a DC voltage is applied between the electrodes, and heavy metals or the like are applied by electrochemical action. A second step of transferring and recovering the ions of step (a). In the second step, water in the cathode section is drained and clean water is supplied into the cathode section to maintain the pH in the cathode section at 7.5 or less. It is characterized by doing.

【0011】[0011]

【発明の実施の形態】本発明においては、重金属で汚染
された土壌を最初に酸性溶媒での土壌洗浄法によって処
理した後、洗浄処理後の汚染土壌を更に電気化学的処理
法により処理する。従って、第1工程の土壌洗浄法によ
り酸性溶媒中に溶解抽出された汚染物質の重金属イオン
は、第2工程でのイオン泳動作用により陰極部に移動し
て濃縮されるため、土壌表面に再び吸着することを防止
できる。その結果、汚染物質の重金属を陰極部から効率
良く回収除去できると共に、洗浄処理後の汚染土壌の濾
過工程や洗浄工程を省略でき、又はこれらの工程が必要
な場合でも処理時間を大幅に削減することが可能とな
る。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, soil contaminated with heavy metals is first treated by a soil washing method using an acidic solvent, and the contaminated soil after the washing treatment is further treated by an electrochemical treatment method. Therefore, the heavy metal ions of the contaminants dissolved and extracted in the acidic solvent by the soil washing method in the first step move to the cathode part by the iontophoretic action in the second step and are concentrated, and thus are adsorbed on the soil surface again. Can be prevented. As a result, the heavy metals of the contaminants can be efficiently collected and removed from the cathode part, and the filtration step and the washing step of the contaminated soil after the washing treatment can be omitted, or the treatment time is greatly reduced even when these steps are required. It becomes possible.

【0012】本発明方法を図1を参照して具体的に説明
する。第1工程では、汚染現場からシャベル等で掘削し
た汚染土壌Aを撹拌機2とpHメータ3を備えた洗浄槽
1に移し、溶媒タンク4から酸性溶媒を加えて撹拌し、
汚染土壌AのpHを低下させて重金属が溶出しやすい土
壌雰囲気とする。この洗浄処理により、汚染土壌A中の
重金属が酸性溶媒に抽出されるので、第2工程での電気
化学的処理の時間を低減させることができる。
The method of the present invention will be specifically described with reference to FIG. In the first step, the contaminated soil A excavated with a shovel or the like from the contaminated site is transferred to a washing tank 1 equipped with a stirrer 2 and a pH meter 3, and an acidic solvent is added from a solvent tank 4 and stirred.
The pH of the contaminated soil A is lowered to provide a soil atmosphere in which heavy metals can be easily eluted. By this washing treatment, heavy metals in the contaminated soil A are extracted into the acidic solvent, so that the time of the electrochemical treatment in the second step can be reduced.

【0013】汚染土壌Aに添加する酸性溶媒の種類や濃
度は、汚染土壌の汚染物質及びその濃度に依存する。通
常、酸性溶媒としては硝酸や塩酸等が利用でき、洗浄槽
1内の汚染土壌AのpHが2〜3以下になるように添加
すればよい。また、洗浄槽1内の汚染土壌Aと酸性溶媒
の固液比も汚染土壌Aの状態に依存する。酸性溶媒の量
が多いと第2工程の電気化学的処理における一回当たり
の処理効率が低下するため、第2工程に移る前に脱水等
による含水率の調整が必要となる。逆に酸性溶媒が少な
いと撹拌機2の負荷が大きくなり、撹拌処理に支障をき
たす。通常の場合、汚染土壌Aに対して1〜1.5倍程
度の酸性溶媒を用いて処理すれば、後の脱水処理を省略
することができる。
The type and concentration of the acidic solvent added to the contaminated soil A depend on the contaminants in the contaminated soil and their concentrations. Normally, nitric acid, hydrochloric acid, or the like can be used as the acidic solvent, and it may be added so that the pH of the contaminated soil A in the washing tank 1 becomes 2 to 3 or less. Further, the solid-liquid ratio between the contaminated soil A and the acidic solvent in the washing tank 1 also depends on the state of the contaminated soil A. If the amount of the acidic solvent is large, the processing efficiency per one time in the electrochemical treatment in the second step is reduced. Therefore, it is necessary to adjust the water content by dehydration or the like before moving to the second step. Conversely, when the amount of the acidic solvent is small, the load on the stirrer 2 increases, which hinders the stirring process. In the normal case, if the contaminated soil A is treated with an acidic solvent about 1 to 1.5 times, the subsequent dehydration treatment can be omitted.

【0014】第1工程での酸性溶媒による洗浄処理を終
えた後、洗浄槽1内の汚染土壌Aは酸性溶媒と共に第2
工程の電解槽5に供給される。電解槽5には透水性部材
8で電極6a、7aを汚染土壌から分離した陰極部6と
陽極部7が配置してあり、その電極間に直流電圧を印可
することにより、重金属等の陽イオンは陰極部6に集ま
り、同時に陰イオンは陽極部7に移動する。尚、汚染土
壌A中の土中水は一般的に土壌表面が負に帯電している
ため、電気浸透により陰極部6側に移動する。従って、
陰極部6内の水を排水することにより、濃縮された重金
属等の汚染物質を回収除去することができ、また陽極部
7からは同様に有害な陰イオンを回収できる。
After completing the washing treatment with the acidic solvent in the first step, the contaminated soil A in the washing tank 1 is removed together with the acidic solvent in the second step.
It is supplied to the electrolytic cell 5 in the process. Cathode 6 and anode 7 in which electrodes 6a and 7a are separated from contaminated soil by a water-permeable member 8 are disposed in electrolytic bath 5, and a direct current voltage is applied between the electrodes to form cations such as heavy metals. Gather at the cathode section 6, and at the same time, the anions move to the anode section 7. The soil water in the contaminated soil A generally moves to the cathode 6 side by electroosmosis since the soil surface is negatively charged. Therefore,
By draining the water in the cathode section 6, contaminants such as concentrated heavy metals can be collected and removed, and harmful anions can be similarly collected from the anode section 7.

【0015】特に、第2工程では、陰極部6内の水を排
水すると共に清浄水を給水して置換することにより、陰
極部6内の水のpHを7.5以下に保持することが重要
である。これは、電極間に電圧を印加すると、水の電気
分解により生成した水酸化物イオンのために陰極部6近
傍のpHが上昇し、それに伴って陰極部6に移動した重
金属イオンの多くが沈澱して除去効率が大幅に減少する
のを防ぐためである。尚、電解の開始時には酸性溶媒で
の洗浄処理後の汚染土壌AのpHは低い状態にあるの
で、陰極部6内の水のpHが中性を越えた時点から上記
水の置換を行っても良い。
In particular, in the second step, it is important to maintain the pH of the water in the cathode portion 6 at 7.5 or less by draining the water in the cathode portion 6 and supplying clean water to replace the water. It is. This is because, when a voltage is applied between the electrodes, the pH in the vicinity of the cathode 6 increases due to hydroxide ions generated by the electrolysis of water, and as a result, much of the heavy metal ions that have migrated to the cathode 6 precipitate. This is to prevent the removal efficiency from significantly decreasing. At the start of the electrolysis, the pH of the contaminated soil A after the washing treatment with the acidic solvent is in a low state. good.

【0016】陰極部6内に給水する清浄水は、pHが中
性以下であって重金属や水酸化物イオン等を多量に含ま
ない通常の水、例えば水道水等であって良い。また、陰
極部6内から回収した重金属等を含む排水はイオン交換
樹脂等を利用した浄水装置で処理するが、この処理され
た後の浄化水を陰極部6内に給水することもできる。こ
の場合には、陰極部6から排水した水を、浄水装置を経
て繰り返し使用できるので、経済的にも有利である。
尚、陰極部6の水を給排水する速度(循環速度)は、印
加する電流値や電極の大きさ等に依存し、例えば電流値
が50mAの場合は20〜30ml/min程度の速度
で十分である。
The clean water supplied into the cathode section 6 may be ordinary water having a pH of neutral or less and not containing a large amount of heavy metals and hydroxide ions, for example, tap water. Further, wastewater containing heavy metals and the like collected from the inside of the cathode section 6 is treated by a water purification device using an ion exchange resin or the like, and purified water after the treatment can be supplied into the cathode section 6. In this case, the water drained from the cathode section 6 can be used repeatedly through the water purification device, which is economically advantageous.
The speed at which water is supplied to and drained from the cathode portion 6 (circulation speed) depends on the applied current value, the size of the electrode, and the like. For example, when the current value is 50 mA, a speed of about 20 to 30 ml / min is sufficient. is there.

【0017】また、この第2工程の電気化学的処理で
は、土中水が陽極部7側から陰極部6側に移動し、陽極
部7近傍の土壌中の含水率が低下してくる。土壌中の含
水率が低いと、重金属を除去する処理速度が低下するの
で、必要に応じて陽極部7に溶媒を給水することが好ま
しい。また、陽極部7の土壌に給水することによってp
Hの低下が速まり、土壌中の重金属のイオン化を促進す
る効果もある。この場合に給水する溶媒としては、水道
水等の清浄水のほか、酸、電解質若しくはキレート剤の
水溶液等であっても良い。
In the electrochemical treatment in the second step, soil water moves from the anode 7 to the cathode 6, and the water content in the soil near the anode 7 decreases. If the water content in the soil is low, the processing speed for removing heavy metals is reduced. Therefore, it is preferable to supply a solvent to the anode 7 as necessary. Also, by supplying water to the soil of the anode section 7, p
It also has the effect of accelerating the reduction of H and promoting the ionization of heavy metals in the soil. In this case, the solvent to be supplied may be clean water such as tap water, or an aqueous solution of an acid, an electrolyte, or a chelating agent.

【0018】上記陰極部6及び陽極部7は、それぞれ陰
極電極6a及び陽極電極7aと、これらの電極6a、7
aを汚染土壌Aから分離する透水性部材8とで構成され
る。陰極電極6aの材質は導電性材料であれば特に限定
されず、例えば鉄やステンレス等で作製することができ
る。また、陽極電極7aとしては、カーボンやチタン等
の不活性電極材料が好ましい。これらの電極を土壌と分
離する透水性部材8は、水や重金属イオンが通過できる
透水性の材質であり、電極との電気的絶縁が容易な電気
絶縁性の材料で作製することが好ましく、例えば不織布
や多孔質のプラスチック等を用いることができる。
The cathode section 6 and the anode section 7 are respectively composed of a cathode electrode 6a and an anode electrode 7a, and these electrodes 6a and 7a.
a from the contaminated soil A. The material of the cathode electrode 6a is not particularly limited as long as it is a conductive material, and can be made of, for example, iron or stainless steel. Further, as the anode electrode 7a, an inert electrode material such as carbon or titanium is preferable. The water-permeable member 8 that separates these electrodes from the soil is a water-permeable material through which water and heavy metal ions can pass, and is preferably made of an electrically insulating material that is easily electrically insulated from the electrodes. Nonwoven fabric, porous plastic, or the like can be used.

【0019】尚、陽極電極及び陰極電極の形状は特に限
定されず、例えば板状、棒状、筒状等であって良い。例
えば、これらの電極を複数の貫通孔を穿設した中空体で
構成すれば、中空体の内側に供給した水を貫通孔から透
水性部材の内側に給水することができ、電極のと透水性
部材の間から排水することができる。また、透水性部材
の形状も、電極と汚染土壌とを分離できればどのような
形状でも良い。
The shapes of the anode electrode and the cathode electrode are not particularly limited, and may be, for example, a plate, a rod, a tube, or the like. For example, if these electrodes are formed of a hollow body having a plurality of through holes, water supplied to the inside of the hollow body can be supplied from the through holes to the inside of the water-permeable member, and the water permeability of the electrodes can be improved. Water can be drained from between the members. The shape of the water-permeable member may be any shape as long as the electrode and the contaminated soil can be separated.

【0020】[0020]

【実施例】主な汚染物質が酸化鉛であり、その鉛濃度が
約2000ppmである汚染土壌Aを準備し、この汚染
土壌Aの0.1m3を図1に示す撹拌槽1に充填した。次
いで、溶媒タンク4から汚染土壌1kgに対して酸性溶
媒として1molの硝酸を添加し、固液比を1:1とし
た。この状態で、汚染土壌のpHは2.8であり、撹拌
機2により汚染土壌Aを10分間撹拌して溶媒抽出し
た。その後、上記洗浄処理後の汚染土壌Aを、脱水処理
せずにそのまま、図2に示す電解処理装置に供給した。
EXAMPLE A main contaminant was lead oxide, and a contaminated soil A having a lead concentration of about 2000 ppm was prepared, and 0.1 m 3 of the contaminated soil A was filled in a stirring tank 1 shown in FIG. Next, 1 mol of nitric acid was added as an acidic solvent to 1 kg of the contaminated soil from the solvent tank 4 to make the solid-liquid ratio 1: 1. In this state, the pH of the contaminated soil was 2.8, and the contaminated soil A was stirred by the stirrer 10 for 10 minutes to extract the solvent. Thereafter, the contaminated soil A after the above-mentioned cleaning treatment was supplied to the electrolytic treatment apparatus shown in FIG. 2 without dehydration treatment.

【0021】この電解処理装置は、電解槽5と陰極部6
及び陽極部7を備えている。陰極部6は、板状の陰極電
極6aと透水性部材8とで構成され、透水性部材8で汚
染土壌Aと分離された陰極部6内は板状の陰極電極6a
の片側が排水路9aに、反対側が清浄水の給水路10a
にそれぞれ接続されている。このように、陰極部6の給
水路10aを、汚染土壌Aと陰極6a及び排水路9aを
隔てて配置することで、給水路10aから給水される水
流が土中水の流れによる影響を最小限にすることができ
る。尚、板状の陰極電極6aには、排水路9a側と給水
路10a側を連通する複数の貫通孔6bが設けてある。
This electrolytic processing apparatus comprises an electrolytic cell 5 and a cathode 6
And an anode section 7. The cathode part 6 is composed of a plate-shaped cathode electrode 6a and a water-permeable member 8, and the inside of the cathode part 6 separated from the contaminated soil A by the water-permeable member 8 has a plate-shaped cathode electrode 6a.
On one side is a drainage channel 9a, and on the other side is a clean water supply channel 10a.
Connected to each other. In this way, by arranging the water supply channel 10a of the cathode unit 6 with the contaminated soil A separated from the cathode 6a and the drainage channel 9a, the flow of water supplied from the water supply channel 10a minimizes the influence of the flow of soil water. Can be The plate-like cathode electrode 6a is provided with a plurality of through holes 6b that communicate between the drain passage 9a and the water supply passage 10a.

【0022】一方、陽極部7は、中空筒状の陽極電極7
aと透水性部材8とで構成され、中空筒状の陽極電極7
aの内側が溶媒の給水路10bに、陽極電極7aの外側
と透水性部材8の間が排水路9bにそれぞれ接続されて
いる。尚、陽極部内の排水と給水は常時行う必要はな
く、一定時間毎で良いので、排水路と給水路を併用する
こともできる。例えば図2の陽極部7の場合、中空筒状
の陽極電極7aの内側又は外側のいずれかを、排水路9
bと給水路10bに共に接続しても良い。
On the other hand, the anode part 7 is a hollow cylindrical anode electrode 7.
a and a water-permeable member 8, and a hollow cylindrical anode electrode 7.
The inside of a is connected to the solvent water supply passage 10b, and the outside of the anode electrode 7a and the water permeable member 8 are connected to the drainage passage 9b. It is not necessary to constantly perform drainage and water supply in the anode part, and it is sufficient to perform the drainage and water supply at regular intervals. For example, in the case of the anode part 7 of FIG. 2, either the inside or the outside of the hollow cylindrical anode electrode 7a is
b and the water supply path 10b.

【0023】この陰極部6と陽極部7との間隔を1mに
設置し、陰極電極6a及び陽極電極7aと各透水性部材
8との間に水を満たして、その液面を一定に制御した。
この状態で陰極電極6aと陽極電極7aの間に直流電圧
を印加して1Aの電流を通電した。この電解処理の間、
陰極部6内の水を排水路9aからポンプで排水して浄水
装置11に供給すると共に、浄水装置11から清浄水を
給水路10aを通して給水することにより、陰極部6内
の水を0.5リットル/minの循環速度で置換して、
陰極部6内の水のpHを約6.8に維持した。
The distance between the cathode section 6 and the anode section 7 was set to 1 m, and water was filled between the cathode electrode 6a, the anode electrode 7a and each of the water-permeable members 8, and the liquid level was controlled to be constant. .
In this state, a DC voltage was applied between the cathode electrode 6a and the anode electrode 7a to supply a current of 1A. During this electrolytic treatment,
The water in the cathode part 6 is drained by a pump from the drainage channel 9a and supplied to the water purification device 11 while the purified water is supplied from the water purification device 11 through the water supply channel 10a, so that the water in the cathode part 6 is 0.5. Replace with a liter / min circulation rate,
The pH of the water in the cathode part 6 was maintained at about 6.8.

【0024】また、陽極部7内には、溶媒タンク12か
ら給水路10bを通して、溶媒である0.01N塩化ナ
トリウム溶液を逐次補給した。更に、この溶媒の補給に
合わせて、陽極電極7aと透水性部材8の間の水をポン
プで排水路9bから排水し、図示しない浄水装置に供給
した。
Further, inside the anode section 7, a 0.01N sodium chloride solution as a solvent was successively supplied from the solvent tank 12 through a water supply passage 10b. Further, in accordance with the replenishment of the solvent, the water between the anode electrode 7a and the water-permeable member 8 was drained from the drain passage 9b by a pump and supplied to a water purification device (not shown).

【0025】上記の電解処理を15日間実施したとこ
ろ、土壌中の鉛濃度は300mg/kg未満に低下し
た。また、土壌中の硝酸イオン濃度を測定したところ、
硝酸イオンは検出されなかった。
When the above electrolytic treatment was performed for 15 days, the lead concentration in the soil was reduced to less than 300 mg / kg. Also, when the nitrate ion concentration in the soil was measured,
Nitrate ions were not detected.

【0026】[0026]

【発明の効果】本発明によれば、重金属汚染土壌に酸性
溶媒による土壌洗浄処理を施した後、電気化学的処理を
施すことにより、汚染土壌中の難溶性又は不溶性の重金
属及び有害なイオンを、効率良く短時間で除去すること
が可能となった。また、電気化学的処理において、陰極
部のpHを7.5以下に保つことにより、更には陽極部
から溶媒を補給することによって、重金属イオンの沈澱
や土壌含水率の低下による処理効率の低下を防止し、よ
り一層短い時間で経済的に汚染土壌を浄化することが可
能となった。
According to the present invention, a heavy metal-contaminated soil is subjected to a soil washing treatment with an acidic solvent and then an electrochemical treatment to remove hardly soluble or insoluble heavy metals and harmful ions in the contaminated soil. Thus, it is possible to efficiently remove the particles in a short time. In addition, in the electrochemical treatment, the pH of the cathode part is maintained at 7.5 or less, and the supply of the solvent from the anode part further reduces the treatment efficiency due to the precipitation of heavy metal ions and the decrease in soil moisture content. Prevention and economical purification of contaminated soil in even less time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法の第1及び第2工程を示した概要の
説明図である。
FIG. 1 is a schematic explanatory view showing first and second steps of the method of the present invention.

【図2】本発明方法に用いる電解処理装置の具体例を示
す概略断面図である。
FIG. 2 is a schematic sectional view showing a specific example of an electrolytic treatment apparatus used in the method of the present invention.

【符号の説明】[Explanation of symbols]

1 洗浄槽 2 撹拌機 3 pHメータ 4 溶媒タンク 5 電解槽 6 陰極部 6a 陰極電極 7 陽極部 7a 陽極電極 8 透水性部材 9a、9b 排水路 10a、10b 給水路 11 浄水装置 12 溶媒タンク DESCRIPTION OF SYMBOLS 1 Washing tank 2 Stirrer 3 pH meter 4 Solvent tank 5 Electrolysis tank 6 Cathode part 6a Cathode electrode 7 Anode part 7a Anode electrode 8 Water-permeable member 9a, 9b Drainage channel 10a, 10b Water supply channel 11 Water purification device 12 Solvent tank

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 掘削した汚染土壌に酸性溶媒を混合し
て、重金属を溶媒抽出する第1工程と、溶媒抽出処理後
の汚染土壌に透水性部材で電極を該汚染土壌から分離し
た陰極部と陽極部とを配置し、その電極間に直流電圧を
印可して、電気化学的作用により重金属等のイオンを移
動させて回収する第2工程とからなり、該第2工程にお
いて、陰極部内の水を排水すると共に清浄水を陰極部内
に給水して、陰極部内のpHを7.5以下に保持するこ
とを特徴とする重金属汚染土壌の浄化方法。
1. A first step of mixing an acidic solvent with an excavated contaminated soil to extract a heavy metal as a solvent, and a cathode section in which an electrode is separated from the contaminated soil by a water-permeable member on the contaminated soil after the solvent extraction treatment. A second step of arranging an anode part, applying a DC voltage between the electrodes, and moving and collecting ions such as heavy metals by electrochemical action. In the second step, water in the cathode part is removed. Draining water and supplying clean water into the cathode section to maintain the pH in the cathode section at 7.5 or less.
【請求項2】 前記第2工程において、陽極部内に溶媒
を給水することを特徴とする、請求項1に記載の重金属
汚染土壌の浄化方法。
2. The method according to claim 1, wherein a solvent is supplied into the anode in the second step.
JP10025482A 1998-02-06 1998-02-06 Purifying method of heavy metal contamination soil Pending JPH11221553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10025482A JPH11221553A (en) 1998-02-06 1998-02-06 Purifying method of heavy metal contamination soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10025482A JPH11221553A (en) 1998-02-06 1998-02-06 Purifying method of heavy metal contamination soil

Publications (1)

Publication Number Publication Date
JPH11221553A true JPH11221553A (en) 1999-08-17

Family

ID=12167281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10025482A Pending JPH11221553A (en) 1998-02-06 1998-02-06 Purifying method of heavy metal contamination soil

Country Status (1)

Country Link
JP (1) JPH11221553A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007307432A (en) * 2006-03-24 2007-11-29 Nishimatsu Constr Co Ltd Removing method and apparatus for heavy metal, and cleaning method and apparatus for contaminated soil
JP2013003137A (en) * 2011-06-21 2013-01-07 Korea Atomic Energy Research Inst Composite dynamic electricity decontamination apparatus for decontaminating radionuclide
CN103586270A (en) * 2013-11-08 2014-02-19 中国科学院红壤生态实验站 Method for restoring heavy metal contaminated soil
CN108480385A (en) * 2018-03-06 2018-09-04 中国科学院沈阳应用生态研究所 A kind of strengthening repair method and device for biological heap
CN109731905A (en) * 2019-03-01 2019-05-10 长江水利委员会长江科学院 A kind of autonomous controllably soil or the electronic acidification device for dissociation of pollutants in sediments and method
JP7061244B1 (en) * 2020-12-24 2022-04-28 生態環境部南京環境科学研究所 Extraction / separation device for heavy metal cadmium in rice and wheat planting soil, and extraction / separation method
CN109731905B (en) * 2019-03-01 2024-06-11 长江水利委员会长江科学院 Autonomous controllable electric acidification dissociation device and method for soil or substrate sludge pollutants

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007307432A (en) * 2006-03-24 2007-11-29 Nishimatsu Constr Co Ltd Removing method and apparatus for heavy metal, and cleaning method and apparatus for contaminated soil
JP2013003137A (en) * 2011-06-21 2013-01-07 Korea Atomic Energy Research Inst Composite dynamic electricity decontamination apparatus for decontaminating radionuclide
CN103586270A (en) * 2013-11-08 2014-02-19 中国科学院红壤生态实验站 Method for restoring heavy metal contaminated soil
CN108480385A (en) * 2018-03-06 2018-09-04 中国科学院沈阳应用生态研究所 A kind of strengthening repair method and device for biological heap
CN109731905A (en) * 2019-03-01 2019-05-10 长江水利委员会长江科学院 A kind of autonomous controllably soil or the electronic acidification device for dissociation of pollutants in sediments and method
CN109731905B (en) * 2019-03-01 2024-06-11 长江水利委员会长江科学院 Autonomous controllable electric acidification dissociation device and method for soil or substrate sludge pollutants
JP7061244B1 (en) * 2020-12-24 2022-04-28 生態環境部南京環境科学研究所 Extraction / separation device for heavy metal cadmium in rice and wheat planting soil, and extraction / separation method

Similar Documents

Publication Publication Date Title
CA2364953C (en) Electrochemical processing
GB2344829A (en) Electrokinetic decontamination of radioactive soil
CN106424117A (en) Device for electro-kinetic remediation of heavy metal contaminated soil by utilizing copper salt reinforced cathode
CN110434166B (en) Double-ring vertical self-cleaning type in-situ dehydration pollution-reduction electric repair device and method
US7704373B2 (en) Waste fluid or waste water treatment method and its apparatus
KR101464878B1 (en) Remediation system for Multi-contaminated soils combining Chemical Oxidation and Soil Flushing and Electrokinetic Separation and Remediation method using the same
CN110947751A (en) Device and method for restoring cadmium-polluted soil through electric auxiliary leaching
JPH11221553A (en) Purifying method of heavy metal contamination soil
JPH0947748A (en) Polluted soil purifying method
JPH11128901A (en) Method and apparatus for purifying polluted soil
CN109304365B (en) Electric remediation method for antimony-polluted soil
JP3118793B2 (en) Separation method of toxic metals in sludge
JPS6338435B2 (en)
JPH11253924A (en) Purification of soil polluted with heavy metal and electrolytic bath for purification
JP4311811B2 (en) Treatment method of radioactive liquid waste
KR101034267B1 (en) The system and method for electrokinetic soil recovery using the ion filter
JP2853797B2 (en) Soil purification apparatus and method
JP3343662B2 (en) In-situ treatment method and apparatus for hydrous soil by electroosmosis
JP2001009440A (en) Method for electrochemically cleaning contaminated soil
CN114275984B (en) Electrochemical leaching lead recovery method for lead-containing sludge
JPH1034126A (en) Method and apparatus for purifying soil polluted with heavy metal
JP3457484B2 (en) Metal recovery method and recovery device
CN212069913U (en) A normal position prosthetic devices for heavy metal contaminated soil
EP2727663A1 (en) Process for purifying an earthy matrix contaminated by heavy metals
JPH10500620A (en) Method and apparatus for purifying heavy metal content