JPH0947748A - Polluted soil purifying method - Google Patents

Polluted soil purifying method

Info

Publication number
JPH0947748A
JPH0947748A JP7218330A JP21833095A JPH0947748A JP H0947748 A JPH0947748 A JP H0947748A JP 7218330 A JP7218330 A JP 7218330A JP 21833095 A JP21833095 A JP 21833095A JP H0947748 A JPH0947748 A JP H0947748A
Authority
JP
Japan
Prior art keywords
cathode
anode
acidic solution
contaminated soil
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7218330A
Other languages
Japanese (ja)
Other versions
JP3178581B2 (en
Inventor
Hiroshi Kubo
博 久保
Kazuo Toge
和男 峠
Jun Mitsumoto
純 光本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP21833095A priority Critical patent/JP3178581B2/en
Publication of JPH0947748A publication Critical patent/JPH0947748A/en
Application granted granted Critical
Publication of JP3178581B2 publication Critical patent/JP3178581B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Fire-Extinguishing Compositions (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To recover metal material from soil polluted with the metal material by arranging a pair of electrodes consisting of an anode and a cathode in polluted soil and applying DC voltage to between the electrodes and also feeding acidic solution to around the anode and then recovering the acidic solution from the cathode or from around it. SOLUTION: An anode 2 and a cathode 3 arranged opposite to each other in polluted soil 1 containing heavy metals M each are constituted of hollow pipes 5a, 5b formed of conductive material in which a lot of water passing holes 4 are made. A feeding pipe 6a and recovery pipe 6b are inserted into the hollow pipe 5a and into the hollow pipe 5b respectively. When DC voltage is applied between the anode 2a and the cathode 2b, metals M<2+> , M<3+> in the shape of a cation in soil start moving from the anode 2a to the cathode 2b side by electrophoresis. At the same time, acidic solution is fed into the hollow pipe 5a of the anode 2a through the feeding pipe 6a to move the metals to the cathode 2b as cations M<2+> , M<3+> , and is collected and recovered in the hollow pipe 5b through the passing holes 4, and is transferred to a water treatment facility to remove the heavy metals therein.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、カドミウム、鉛、
銅、亜鉛、ニッケル、クロム等の重金属を含んだ汚染土
壌からこれらの重金属を除去して当該土壌を浄化する方
法に係り、特に、多量の汚染土壌を搬出運搬することな
く原位置で浄化する方法に関する。
TECHNICAL FIELD The present invention relates to cadmium, lead,
The present invention relates to a method for removing heavy metals from a contaminated soil containing heavy metals such as copper, zinc, nickel and chromium to purify the soil, and in particular, a method for purifying a large amount of contaminated soil in-situ without carrying it out. Regarding

【0002】[0002]

【従来の技術】工場廃水、工場廃棄物、鉱山廃水などに
よって汚染された土壌には、カドミウム、鉛、銅、亜
鉛、ニッケル、クロム等の重金属が含まれていることが
あり、このような土壌をそのまま放置すると、当該土壌
内に含まれた重金属が地下水や生物サイクルを介して環
境に拡散する危険性がある。
2. Description of the Related Art Soil contaminated with industrial wastewater, industrial waste, mining wastewater, etc. may contain heavy metals such as cadmium, lead, copper, zinc, nickel and chromium. If left untouched, there is a risk that heavy metals contained in the soil will diffuse into the environment through groundwater and biological cycles.

【0003】そのため、汚染された土壌は、これを掘削
除去して所定の処理を施し、しかる後に管理型あるいは
遮断型の処分地に廃棄処分する一方、掘削された孔内に
は通常の土を客土して原状復帰するのが一般的である。
Therefore, the contaminated soil is excavated and removed, subjected to a predetermined treatment, and then disposed of at a management-type or blocking-type disposal site, while normal soil is excavated in the excavated hole. It is common to return to the original state after returning to the soil.

【0004】ところが、かかる方法では、掘削の際に汚
染土を攪乱して二次汚染のおそれがあるとともに、汚染
土を大量に搬出、運搬しなければならないという問題
や、既存建築物の近接部や直下では掘削除去自体が困難
になるという問題が生じる。そのため、最近では、原位
置で浄化する技術が研究され始めており、その一つとし
て通電により汚染物質を回収する方法が特開平5-59716
号公報に開示されている。
However, in such a method, there is a possibility that the contaminated soil may be disturbed during excavation to cause secondary pollution, and a large amount of the contaminated soil must be carried out and transported, and the proximity of existing buildings. There is a problem that the excavation and removal itself becomes difficult directly below. Therefore, recently, in-situ purification technology has begun to be researched, and one of them is a method of collecting pollutants by energization.
No. 6,086,045.

【0005】当該方法においては、まず、処理対象の地
盤範囲に止水壁を構築し、次いで、その地盤範囲に多数
の通水孔を有する中空管からなる陽極および陰極を挿入
し、次いで、当該地盤範囲に適宜散水してから電極間に
直流電圧を印加し、次いで、電気浸透現象によって陰極
側に集まった水を中空管を介して排水回収する。
In the method, first, a water blocking wall is constructed in the ground area to be treated, and then an anode and a cathode consisting of hollow tubes having a large number of water passage holes are inserted in the ground area, and then, A DC voltage is applied between the electrodes after water is appropriately sprayed on the ground area, and then the water collected on the cathode side by the electroosmosis phenomenon is drained and recovered through the hollow tube.

【0006】かかる方法によれば、所定の汚染物質は、
電気浸透現象による水の流れに乗って陰極側に流れ込む
ので、これを排水回収することにより、当該汚染物質を
除去することができる。
According to such a method, the predetermined pollutant is
Since the water flows due to the electroosmosis phenomenon and flows into the cathode side, the pollutant can be removed by collecting the waste water.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、本出願
人が行った詳細な実験によると、化学変化を起こさない
汚染物質については上述の方法で回収が可能であるが、
カドミウム、鉛、銅、亜鉛、ニッケル、クロム等の重金
属については、土壌pHが中性からアルカリ性に変化す
るあたりで荷電を失って水酸化物として沈殿してしま
い、その後いくら陽極側から水を供給しても電気的な引
力で陰極まで到達させることはできず、したがって、こ
れらの重金属を陰極側で回収することは不可能であるこ
とが判明した。
However, according to the detailed experiments conducted by the present applicant, the pollutants which do not cause a chemical change can be recovered by the above-mentioned method.
Heavy metals such as cadmium, lead, copper, zinc, nickel, and chromium lose their charge and precipitate as hydroxides when the soil pH changes from neutral to alkaline, and then supply water from the anode side. However, it was not possible to reach the cathode by electric attraction, and it was therefore impossible to collect these heavy metals on the cathode side.

【0008】本発明は、上述した事情を考慮してなされ
たもので、金属物質で汚染された土壌から当該金属物質
を回収することができる汚染土壌の浄化方法を提供する
ことを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for purifying a contaminated soil capable of recovering the metal substance from the soil contaminated with the metal substance.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明の汚染土壌の浄化方法は請求項1に記載した
ように、金属を含む汚染土壌中に陽極および陰極からな
る一対の電極を配設し、次いで、該電極間に直流電圧を
印加するとともに前記陰極近傍に所定の酸性溶液を供給
し、次いで、該酸性溶液を前記陰極若しくはその近傍か
ら回収するものである。
In order to achieve the above object, the method for purifying contaminated soil according to the present invention comprises, as described in claim 1, a pair of electrodes consisting of an anode and a cathode in contaminated soil containing metal. Then, a direct current voltage is applied between the electrodes and a predetermined acidic solution is supplied near the cathode, and then the acidic solution is recovered from the cathode or its vicinity.

【0010】また、本発明の汚染土壌の浄化方法は、前
記陰極を地表面近傍に配設し、前記陽極を所定の深さ位
置に配設するものである。
Further, in the method for purifying contaminated soil according to the present invention, the cathode is arranged near the ground surface, and the anode is arranged at a predetermined depth position.

【0011】また、本発明の汚染土壌の浄化方法は請求
項3に記載したように、金属を含む汚染土壌中に陽極お
よび陰極からなる一対の電極を配設し、次いで、該電極
間に直流電圧を印加するとともに前記陽極若しくはその
近傍に所定の酸性溶液を供給し、次いで、該酸性溶液を
前記陰極若しくはその近傍から回収するものである。
According to the third aspect of the present invention, there is provided a method for cleaning contaminated soil, wherein a pair of electrodes consisting of an anode and a cathode are arranged in a contaminated soil containing a metal, and then a direct current is applied between the electrodes. While applying a voltage, a predetermined acidic solution is supplied to the anode or its vicinity, and then the acidic solution is recovered from the cathode or its vicinity.

【0012】また、本発明の汚染土壌の浄化方法は請求
項4に記載したように、金属を含む汚染土壌中に陽極お
よび陰極からなる一対の電極を配設し、次いで、該電極
間に直流電圧を印加するとともに前記陽極と前記陰極と
の間に所定の酸性溶液を供給し、次いで、該酸性溶液を
前記陰極若しくはその近傍から回収するものである。
Further, according to the method for purifying contaminated soil of the present invention, as described in claim 4, a pair of electrodes consisting of an anode and a cathode are arranged in the contaminated soil containing metal, and then a direct current is applied between the electrodes. A voltage is applied and a predetermined acidic solution is supplied between the anode and the cathode, and then the acidic solution is recovered from the cathode or the vicinity thereof.

【0013】また、本発明の汚染土壌の浄化方法は、前
記電極を通水孔を有する導電性の中空管で構成し、該中
空管を介して前記酸性溶液の供給若しくは回収を行うも
のである。
Further, the method for purifying contaminated soil according to the present invention comprises a hollow conductive tube having water passage holes for supplying or recovering the acidic solution through the hollow tube. Is.

【0014】本発明の汚染土壌の浄化方法においては、
まず、所定の金属、特に、カドミウム、鉛、銅、亜鉛、
ニッケル、クロム等の重金属を含む汚染土壌中に陽極お
よび陰極からなる一対の電極を配設し、次いで、当該電
極間に直流電圧を印加するとともに、陰極近傍に所定の
酸性溶液を供給する。すると、陽イオンの形で土壌内に
存在する金属は、電気泳動によって陽極から陰極側に移
動し始めるが、陰極近傍では酸性溶液がOH- と中和し
ているため、OH- と反応して水酸化物となることな
く、陽イオンのまま陰極まで移動する。そして、酸性溶
液を陰極若しくはその近傍から回収すると、その溶液に
含まれる形で重金属が回収される。
In the method for cleaning contaminated soil according to the present invention,
First, certain metals, especially cadmium, lead, copper, zinc,
A pair of electrodes consisting of an anode and a cathode are arranged in a contaminated soil containing heavy metals such as nickel and chromium, and then a direct current voltage is applied between the electrodes and a predetermined acidic solution is supplied near the cathode. Then, the metal existing in the soil in the form of cations starts to move from the anode to the cathode side by electrophoresis, but since the acidic solution is neutralized with OH near the cathode, it reacts with OH −. It moves to the cathode as cations without becoming hydroxide. Then, when the acidic solution is recovered from the cathode or its vicinity, the heavy metal is recovered in the form contained in the solution.

【0015】ここで、陰極を地表面近傍に配設し、前記
陽極を所定の深さ位置に配設した場合、重金属イオン
は、上方に向かって移動し、地表面付近で酸性溶液とと
もに回収される。そのため、回収しきれずに土壌中に残
留し、該土壌を掘削除去する必要が生じたとしても、掘
削すべき範囲は比較的浅い範囲で済む。
Here, when the cathode is arranged near the ground surface and the anode is arranged at a predetermined depth position, the heavy metal ions move upward and are collected together with the acidic solution near the ground surface. It Therefore, even if the soil cannot be completely recovered and remains in the soil and the soil needs to be excavated and removed, the range to be excavated is relatively shallow.

【0016】また、本発明の汚染土壌の浄化方法におい
ては、上述した金属を含む汚染土壌中に陽極および陰極
からなる一対の電極を配設し、次いで、当該電極間に直
流電圧を印加するとともに、陽極若しくはその近傍に所
定の酸性溶液を供給する。すると、陽イオンの形で土壌
内に存在する金属は、酸性溶液とともに電気泳動によっ
て陽極から陰極側に移動し始めるが、陰極近傍に到達し
た酸性溶液は、OH-を中和する。そのため、金属は、
OH- と反応して水酸化物となることなく陽イオンのま
まで、あるいは水酸化物となった金属も再び陽イオンと
なって陰極まで移動する。そして、酸性溶液を陰極若し
くはその近傍から回収すると、その溶液に含まれる形で
重金属が回収される。
Further, in the method for cleaning contaminated soil according to the present invention, a pair of electrodes consisting of an anode and a cathode are arranged in the contaminated soil containing the metal, and then a DC voltage is applied between the electrodes. , A predetermined acidic solution is supplied to the anode or its vicinity. Then, the metal present in the soil in the form of cations starts to move from the anode to the cathode side by electrophoresis together with the acidic solution, but the acidic solution reaching the vicinity of the cathode neutralizes OH . Therefore, the metal is
The cation remains as a cation without reacting with OH to form a hydroxide, or the metal that has become a hydroxide again becomes a cation and moves to the cathode. Then, when the acidic solution is recovered from the cathode or its vicinity, the heavy metal is recovered in the form contained in the solution.

【0017】また、本発明の汚染土壌の浄化方法におい
ては、上述した金属を含む汚染土壌中に陽極および陰極
からなる一対の電極を配設し、次いで、当該電極間に直
流電圧を印加するとともに、陽極と陰極との間に所定の
酸性溶液を供給する。すると、陽イオンの形で土壌内に
存在する金属や電極間に供給された酸性溶液は、電気泳
動によって陽極から陰極側に移動し始めるが、陰極近傍
に到達した酸性溶液は、OH- を中和する。そのため、
金属は、OH- と反応して水酸化物となることなく陽イ
オンのままで、あるいは水酸化物となった金属も再び陽
イオンとなって陰極まで移動する。そして、酸性溶液を
陰極若しくはその近傍から回収すると、その溶液に含ま
れる形で重金属が回収される。
Further, in the method for purifying contaminated soil of the present invention, a pair of electrodes consisting of an anode and a cathode are arranged in the contaminated soil containing the metal described above, and then a DC voltage is applied between the electrodes. A predetermined acidic solution is supplied between the anode and the cathode. Then, the acid was supplied between the metal and the electrode present in the soil in the form of a cation solution is an anode by electrophoresis starts to move to the cathode side, an acidic solution that has reached the cathode vicinity, OH - medium to Harmonize for that reason,
The metal remains as a cation without reacting with OH to form a hydroxide, or the metal that becomes a hydroxide becomes a cation again and moves to the cathode. Then, when the acidic solution is recovered from the cathode or its vicinity, the heavy metal is recovered in the form contained in the solution.

【0018】[0018]

【発明の実施の形態】以下、本発明に係る汚染土壌の浄
化方法の実施の形態について、添付図面を参照して説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a method for purifying contaminated soil according to the present invention will be described below with reference to the accompanying drawings.

【0019】(第1実施形態)図1(a) は、第1実施形
態に係る汚染土壌の浄化方法を実施する状況を示した概
略図である。同図でわかるように、本実施形態の汚染土
壌の浄化方法においては、まず、所定の金属、特に、カ
ドミウム、鉛、銅、亜鉛、ニッケル、クロム等の重金属
(図中、Mで示す)を含む汚染土壌1中に一対の電極2
a、2bを挿入し、これらを対向配置する。
(First Embodiment) FIG. 1 (a) is a schematic view showing a situation in which the method for purifying contaminated soil according to the first embodiment is carried out. As can be seen in the figure, in the method for purifying contaminated soil according to the present embodiment, first, a predetermined metal, in particular, a heavy metal such as cadmium, lead, copper, zinc, nickel and chromium (indicated by M in the figure) is used. A pair of electrodes 2 in the contaminated soil 1 containing
Insert a and 2b and arrange them so as to face each other.

【0020】電極2aは、同図(b) に示すように、鉄等
の導電性材料で形成された中空管5aに通水孔4を多数
穿孔して構成してあり、電極2bも同様に、鉄等の導電
性材料で形成された中空管5bに通水孔4を多数穿孔し
て構成してある。また、中空管5a内には供給管6aを
挿入してあり、該供給管6aを介して酸性溶液を中空管
5a内に供給できるようになっている。一方、中空管5
b内には回収管6bを挿入してあり、該回収管6bを介
して中空管5b内の酸性溶液を回収できるようになって
いる。
As shown in FIG. 2 (b), the electrode 2a is constructed by forming a large number of water passage holes 4 in a hollow tube 5a formed of a conductive material such as iron, and the electrode 2b is also the same. In addition, a large number of water passage holes 4 are formed in a hollow tube 5b made of a conductive material such as iron. A supply pipe 6a is inserted into the hollow pipe 5a so that the acidic solution can be supplied into the hollow pipe 5a through the supply pipe 6a. On the other hand, hollow tube 5
A recovery pipe 6b is inserted in b, and the acidic solution in the hollow pipe 5b can be recovered through the recovery pipe 6b.

【0021】ここで、酸性溶液としては、たとえばpH
が2程度の塩酸、硫酸、有機酸等が使用可能であり、こ
れらを地上に設置されたタンク(図示せず)に貯留して
おけばよい。
Here, the acidic solution is, for example, pH.
It is possible to use hydrochloric acid, sulfuric acid, organic acid or the like having a pH of about 2, and these may be stored in a tank (not shown) installed on the ground.

【0022】次に、同図に示すように直流電源のプラス
側を電極2a(陽極)に、マイナス側を電極2b(陰
極)に接続し、当該電極間に直流電圧を印加する。する
と、陽イオンの形で土壌内に存在する金属M2+若しくは
3+は、図2(a) に示すように電気泳動によって陽極2
aから陰極2b側に移動し始める。
Next, as shown in the figure, the positive side of the DC power source is connected to the electrode 2a (anode) and the negative side is connected to the electrode 2b (cathode), and a DC voltage is applied between the electrodes. Then, the metal M 2+ or M 3+ present in the soil in the form of cations is electrophoresed on the anode 2 as shown in FIG. 2 (a).
Starting to move from a to the cathode 2b side.

【0023】また、かかる通電作業と同時に、酸性溶液
を供給管6aを介して電極2aの中空管5a内に供給す
る。すると、酸性溶液は、中空管5aの通水孔4を介し
て汚染土壌1中に拡散し、電気泳動によって金属イオン
とともに陰極2b側に移動する。
Simultaneously with the energizing operation, the acidic solution is supplied into the hollow tube 5a of the electrode 2a via the supply tube 6a. Then, the acidic solution diffuses into the contaminated soil 1 through the water passage holes 4 of the hollow tube 5a and moves to the cathode 2b side together with the metal ions by electrophoresis.

【0024】一方、陰極2b側ではOH- が発生してお
り、かかるOH- が金属M2+あるいはM3+と反応する
と、水酸化物となって土壌内に留まり、それ以上陰極2
b側に移動しなくなる。しかし、陽イオンとともに陰極
2b近傍に移動してきた酸性溶液がOH- を中和するの
で、陰極2b近傍は、アルカリ環境から中性ないしは酸
性の環境に変化する。そのため、金属は、陽イオンM2+
若しくはM3+のまま、あるいはすでに水酸化物となった
ものも再びイオン化して陰極2bまで移動し、通水孔4
を介して中空管5b内に集まる。図2(b) は、重金属の
溶解度とpHとの関係を示したグラフであり、酸性の環
境では、重金属の溶解度が非常に高いことを示してい
る。
On the other hand, OH is generated on the side of the cathode 2b, and when such OH reacts with the metal M 2+ or M 3+ , it becomes hydroxide and stays in the soil.
It will not move to the b side. However, since the acidic solution that has moved to the vicinity of the cathode 2b with cations neutralizes OH , the vicinity of the cathode 2b changes from an alkaline environment to a neutral or acidic environment. Therefore, the metal is the cation M 2+
Or, M 3+ as it is, or even hydroxide that has already become ionized again moves to the cathode 2 b, and the water passage hole 4
And gather in the hollow tube 5b through. FIG. 2 (b) is a graph showing the relationship between the solubility of heavy metals and pH, and shows that the solubility of heavy metals is extremely high in an acidic environment.

【0025】次に、図示しないポンプ等を用いて中空管
5b内の酸性溶液を回収し、次いで、これを水処理施設
に送って該溶液中の重金属を除去する。
Next, the acidic solution in the hollow tube 5b is recovered by using a pump or the like (not shown), and then sent to a water treatment facility to remove heavy metals in the solution.

【0026】このような酸性溶液の供給並びに通電を所
定時間継続して行い、汚染土壌1中の重金属を回収す
る。なお、回収しきれない重金属が陰極2b近傍に残留
するようであれば、バックホウやショベルなどで適宜掘
削除去すればよい。
The supply of such an acidic solution and the energization are continuously performed for a predetermined time, and the heavy metals in the contaminated soil 1 are recovered. If the heavy metal that cannot be collected remains in the vicinity of the cathode 2b, it may be appropriately excavated and removed with a backhoe or a shovel.

【0027】次に、酸性溶液を供給しない場合の土壌内
のpH分布、重金属の蓄積状況等を実験によって調べた
ので、以下に説明する。
Next, the pH distribution in the soil, the accumulation state of heavy metals, and the like in the case where the acidic solution was not supplied were examined by experiments, which will be described below.

【0028】図3は、実験装置11の斜視図である。同
図でわかるように、実験装置11は、幅15cm、長さ
100cm程度の容器15に重金属を含んだ汚染土壌1
6を入れ、該汚染土壌16の両端に電極13、電極14
を配設し、当該電極13、14を直流電源12のプラス
側、マイナス側にそれぞれ接続して25ボルト程度の直
流電圧を印加できるようになっている。なお、土壌の通
電性を確保するために汚染土壌16に適宜散水するが、
散水された水を排水するための排水口18を容器15の
側方に取り付けてある。また、電極13、14を挿入し
た近傍には珪砂17を入れてある。
FIG. 3 is a perspective view of the experimental apparatus 11. As can be seen from the figure, the experimental apparatus 11 has a container 15 having a width of 15 cm and a length of about 100 cm, and the contaminated soil 1 containing heavy metal
6 and put electrodes 13 and 14 on both ends of the contaminated soil 16.
Is provided and the electrodes 13 and 14 are connected to the positive side and the negative side of the DC power source 12, respectively, so that a DC voltage of about 25 V can be applied. In addition, in order to ensure the conductivity of the soil, water is appropriately sprayed on the contaminated soil 16,
A drain port 18 for draining the sprinkled water is attached to the side of the container 15. Further, silica sand 17 is put in the vicinity where the electrodes 13 and 14 are inserted.

【0029】図4は、実験装置11によって得られた実
験結果のひとつであり、陽極13からの距離によって土
壌のpHがどのように変化するかを通電時間をパラメー
タとして描いたグラフである。
FIG. 4 is one of the experimental results obtained by the experimental apparatus 11, and is a graph showing how the pH of the soil changes depending on the distance from the anode 13 with the energization time as a parameter.

【0030】同図でわかるように、通電時間が2日程度
までは、どの位置においても土壌のpHはほぼ一定であ
る。一方、通電時間が7日になると、陽極に近い位置で
は酸性の傾向が強いが、陽極から少し離れるとすぐに中
性に変化し、逆に陰極近傍では急激にアルカリ性に変化
する。通電時間が15日になると、陽極付近の酸性化領
域は、通電時間7日の場合よりも拡大し、陽極から30
cm程度離れたあたりから中性に変化する。そして、8
0cmを越えるあたりから急激にアルカリ性に変化す
る。通電時間が30日に延びても、全体の傾向は15日
の場合とあまり変わらないが、陽極付近の酸性化領域は
さらに拡大する。かかる実験結果から、通電時間を30
日程度にした場合、陽極から40cmあたりまでは酸性
の状態、すなわち重金属が陽イオンの形で溶解して電気
泳動により移動しやすい状態になっていることを示唆す
る。
As can be seen from the figure, the pH of the soil is almost constant at any position until the energization time is up to about 2 days. On the other hand, when the energization time is 7 days, the acidity tends to be strong at a position close to the anode, but immediately after a short distance from the anode, it changes to neutrality, and conversely, it rapidly changes to alkalinity near the cathode. When the energization time is 15 days, the acidified region near the anode expands more than that when the energization time is 7 days,
It changes to neutral from around cm. And 8
Around 0 cm, it rapidly changes to alkaline. Even if the energization time is extended to 30 days, the overall tendency is not much different from that of 15 days, but the acidified region near the anode is further expanded. From the experimental results, the energization time is 30
In the case of a day, it is suggested that up to about 40 cm from the anode, it is in an acidic state, that is, the heavy metal is dissolved in the form of a cation and easily moved by electrophoresis.

【0031】図5は、汚染土壌16に含まれている重金
属の量を銅を指標として描いたグラフである。この図か
ら、未だ通電していない状態(点線)では、陽極からの
位置に関わらず、銅は土壌内にほぼ均等に分布している
が、通電時間30日の場合には(実線)、陽極から50
cmまでの範囲、特に、陽極から20cm程度までの範
囲では、その含有量が通電していない場合よりも10分
の1程度に小さくなっているとともに、陽極から60c
mあまりのところでは逆に含有量が3倍程度になってい
ることがわかる。
FIG. 5 is a graph showing the amount of heavy metals contained in the contaminated soil 16 with copper as an index. From this figure, in the state where current is not applied yet (dotted line), copper is almost evenly distributed in the soil regardless of the position from the anode, but when the current is applied for 30 days (solid line), the anode is From 50
In the range up to cm, particularly in the range up to about 20 cm from the anode, the content is about one-tenth of that in the case of not energizing, and 60 c from the anode.
On the contrary, it can be seen that the content is about three times as large as m.

【0032】これは、当初陽極付近に存在した銅が通電
によって陰極側に移動し、土壌のpHが酸性から中性に
変化しさらにアルカリ性に遷移していくあたりで水酸化
物として徐々に沈殿し、当該領域に濃縮したものと考え
ることができる。なお、さらに通電時間を長くすると、
集積位置はもう少し陰極側に移動するとともに、陽極側
での浄化範囲はさらに拡大し、曲線の立ち上がりはもっ
と急激になる。
This is because the copper initially present in the vicinity of the anode moved to the cathode side by energization, and the pH of the soil gradually changed from acidic to neutral and further changed to alkaline, and gradually precipitated as hydroxide. , Can be considered to be concentrated in the area. If the energizing time is further increased,
The accumulation position moves a little further to the cathode side, the purification range on the anode side further expands, and the rise of the curve becomes sharper.

【0033】これらの実験結果は、酸性溶液を供給した
場合の効果を直接裏付けるものではないが、酸性溶液を
供給しつつ通電を行ったならば、重金属が水酸化物とな
って蓄積されずに陰極まで移動するであろうと判断する
に足りる根拠となり得るものである。
These experimental results do not directly support the effect of supplying the acidic solution, but if the current is supplied while the acidic solution is supplied, the heavy metal does not accumulate as a hydroxide and accumulate. It can be a sufficient basis for deciding that it will move to the cathode.

【0034】以上説明したように、本実施形態の汚染土
壌の浄化方法によれば、汚染土壌内に電極を配設して通
電を行うとともに、陽極から酸性溶液を供給し陰極から
回収するようにしたので、汚染土壌内に含まれている重
金属が陰極近傍で水酸化物となるのを防止しながら、該
重金属を通電によって陰極まで移動させ、これを酸性溶
液とともに回収することができる。
As described above, according to the method for purifying contaminated soil of the present embodiment, the electrodes are arranged in the contaminated soil to conduct electricity, and the acidic solution is supplied from the anode and recovered from the cathode. Therefore, while preventing the heavy metal contained in the contaminated soil from becoming a hydroxide in the vicinity of the cathode, the heavy metal can be moved to the cathode by energization and recovered together with the acidic solution.

【0035】そのため、汚染土壌を掘削除去することな
く、重金属だけを汚染土壌から回収することが可能とな
り、掘削作業が不要になるのみならず、掘削された土砂
をダンプ等で搬出する手間やその後の固化処理等を省く
ことができる。
Therefore, it is possible to recover only heavy metals from the contaminated soil without excavating and removing the contaminated soil, and not only excavation work becomes unnecessary, but also the trouble of carrying out the excavated earth and sand by a dump or the like and after that. Can be omitted.

【0036】また、通水孔を設けた導電性の中空管を電
極とし、当該通水孔を介して酸性溶液の供給および回収
を行うようにしたので、電極と中空管とを別体とする場
合に比べて土壌内での配設作業が楽になる。
Further, since the conductive hollow tube having the water passage hole is used as the electrode and the acidic solution is supplied and recovered through the water passage hole, the electrode and the hollow tube are separated from each other. The installation work in the soil becomes easier than the case.

【0037】また、酸性溶液を陽極側から供給するよう
にしたので、陰極近傍に到達した段階で該陰極近傍のO
- を中和する役割を果たすのみならず、汚染土壌内の
導電性が十分確保されていない場合には、これを確保す
るという役割も果たす。
Further, since the acidic solution is supplied from the anode side, when the vicinity of the cathode is reached, the O near the cathode is discharged.
It not only plays a role of neutralizing H , but also plays a role of securing conductivity in the contaminated soil when it is not secured sufficiently.

【0038】本実施形態では、金属として、カドミウ
ム、鉛、銅、亜鉛、ニッケル、クロム等の重金属を対象
としたが、これ以外にもアルミニウム、マグネシウム、
カルシウム、チタン、マンガン、鉄、コバルト、ガリウ
ム、モリブテン、銀、錫、ビスマス等の金属も本実施形
態の浄化方法を用いて回収除去できることは言うまでも
ない。
In this embodiment, heavy metals such as cadmium, lead, copper, zinc, nickel and chromium are used as the metals, but aluminum, magnesium,
It goes without saying that metals such as calcium, titanium, manganese, iron, cobalt, gallium, molybdenum, silver, tin and bismuth can also be recovered and removed by using the cleaning method of the present embodiment.

【0039】また、本実施形態では、酸性溶液を陽極側
から供給するようにしたが、上述した実験でもわかる通
り、陽極側では金属はイオンの状態で存在しやすい環境
にある。したがって、図6(a) に示すように、陽極2a
からは土壌内の導電性を確保するための水だけを供給
し、酸性溶液は、例えば地上から散水するような方法で
陰極2b近傍に供給してもよい。かかる構成によれば、
酸性溶液は、周囲に拡散することなくOH- の中和に効
率的に寄与し、したがって、酸性溶液の供給量を節約す
ることが可能となる。
In this embodiment, the acidic solution is supplied from the anode side. However, as can be seen from the above experiment, the anode side is in an environment where the metal is likely to exist in an ionic state. Therefore, as shown in FIG. 6 (a), the anode 2a
From the above, only water for ensuring conductivity in the soil may be supplied, and the acidic solution may be supplied to the vicinity of the cathode 2b by a method of spraying water from the ground, for example. According to this configuration,
The acidic solution effectively contributes to neutralization of OH without diffusing to the surroundings, and therefore, the supply amount of the acidic solution can be saved.

【0040】また、汚染土壌1が例えば地下水位以下で
あって、給水、散水等の処置を施さなくとも通電を確保
することができるのであれば、陽極については、図6
(b) に示すように、導電性の棒材21で構成し、給水機
能を省いた構造としてもよい。
If the contaminated soil 1 is, for example, below the groundwater level and electricity can be ensured without any treatment such as water supply or water sprinkling, the anode will be as shown in FIG.
As shown in (b), the structure may be made of a conductive bar member 21 and the water supply function may be omitted.

【0041】また、酸性溶液を陽極と陰極との間に供給
するようにしてもよい。かかる構成においては、酸性溶
液を陰極に供給する場合と陽極に供給する場合との中間
的な使用形態として位置づけられるものであり、土壌内
における通電性の確保および酸性溶液の使用量の節約を
ある程度達成することができる。
The acidic solution may be supplied between the anode and the cathode. In such a configuration, it is positioned as an intermediate use form between the case of supplying the acidic solution to the cathode and the case of supplying it to the anode, and it is possible to secure electric conductivity in the soil and save the amount of the acidic solution used to some extent. Can be achieved.

【0042】また、特に図示しないが、供給用あるいは
回収用の中空管と電極とを必ずしも兼用とする必要はな
く、中空管を非導電性材料で形成し、電極は別途、鉄や
炭素棒で構成するようにしてもよい。
Although not particularly shown, the hollow tube for supply or recovery does not necessarily have to serve as the electrode, and the hollow tube is made of a non-conductive material, and the electrode is separately made of iron or carbon. You may make it comprised with a stick.

【0043】(第2実施形態)図7(a) は、本実施形態
に係る電極配置状況を示したものである。同図でわかる
ように、本実施形態においても第1実施形態と同様、重
金属Mを含む汚染土壌1内に電極32、33を配設して
直流電源のプラス側を電極32に、マイナス側を電極3
3に接続するが、電極33は地表面付近に、電極32は
所定の深さ位置に配置した点が異なる。また、電極32
は、鉄、炭素棒等で構成してあり、電極33は電極2b
と同様、導電性材料で形成した中空管5bに通水孔4を
多数穿孔して構成するとともに、その内部に回収管6b
を挿入してある。
(Second Embodiment) FIG. 7A shows an electrode arrangement state according to this embodiment. As can be seen from the figure, also in the present embodiment, similarly to the first embodiment, the electrodes 32, 33 are arranged in the contaminated soil 1 containing the heavy metal M, and the positive side of the DC power source is the electrode 32 and the negative side is the same. Electrode 3
3, but the electrode 33 is arranged near the ground surface, and the electrode 32 is arranged at a predetermined depth position. Also, the electrode 32
Is made of iron, carbon rod, etc., and the electrode 33 is the electrode 2b.
Similarly to the above, the hollow pipe 5b made of a conductive material is formed with a large number of water passage holes 4, and the recovery pipe 6b is provided therein.
Has been inserted.

【0044】ここで、汚染土壌1内の位置によって電流
密度に差があることに留意する必要がある。すなわち、
図7(b) に示す点aは、点bに比べて電流密度が小さ
く、したがって、点aに存在する重金属については、電
気泳動による移動効果があまり期待できないと思われ
る。そのため、電極32は、実際に処理したい範囲の下
限よりもさらにある程度下がった位置に設置するのがよ
い。具体的には、これらのことを考慮した上で、電極3
2を例えば地表から1乃至2m程度の深さに配置し、水
平方向には0.5乃至1m程度のピッチで配置する。
It should be noted here that the current density varies depending on the position in the contaminated soil 1. That is,
The current density at the point a shown in FIG. 7 (b) is smaller than that at the point b, and therefore, it is considered that the migration effect by electrophoresis cannot be expected so much for the heavy metal existing at the point a. Therefore, it is preferable to install the electrode 32 at a position which is lower than the lower limit of the range to be actually processed by a certain degree. Specifically, in consideration of these things, the electrode 3
2 are arranged at a depth of about 1 to 2 m from the ground surface, for example, and are arranged at a pitch of about 0.5 to 1 m in the horizontal direction.

【0045】電極32、33を配設するにあたっては、
図8に示すように、まず、バックホウ等によって汚染土
壌1を掘削してトレンチ41を形成し、次いで、該トレ
ンチ内に電極32を落とし込んで土42で覆土し、次い
で地表面近傍に電極33を配置して土43で覆土するよ
うにすればよい。
When disposing the electrodes 32 and 33,
As shown in FIG. 8, first, the contaminated soil 1 is excavated by a backhoe or the like to form a trench 41, then the electrode 32 is dropped into the trench and covered with soil 42, and then the electrode 33 is placed near the ground surface. It may be arranged and covered with soil 43.

【0046】電極32、33を配置したならば、これら
の電極間に直流電圧を印加する。すると、陽イオンの形
で土壌内に存在する金属M2+若しくはM3+は、図7に示
したように電気泳動によって陽極32から陰極33側に
上昇し始める。
When the electrodes 32 and 33 are arranged, a DC voltage is applied between these electrodes. Then, the metal M 2+ or M 3+ existing in the soil in the form of cations starts to rise from the anode 32 to the cathode 33 side by electrophoresis as shown in FIG. 7.

【0047】また、かかる通電作業と同時に、第1実施
形態で説明した酸性溶液を散水等の方法で地上から供給
する。すると、酸性溶液は、陰極33付近の汚染土壌1
中に拡散し、陰極33側で発生しているOH- を中和す
る。そして、第1実施形態で説明したと同様、陰極33
近傍がアルカリ環境から中性ないしは酸性の環境に変化
し、陰極33の近くまで移動してきた金属は、水酸化物
となることなく陽イオンM2+若しくはM3+のまま、ある
いはすでに水酸化物となったものも再びイオン化して陰
極33に到達し、通水孔4を介して中空管5b内に集ま
る。
Simultaneously with the energizing work, the acidic solution described in the first embodiment is supplied from the ground by a method such as watering. Then, the acidic solution becomes the contaminated soil 1 near the cathode 33.
It diffuses in and neutralizes OH generated on the cathode 33 side. Then, similarly to the case described in the first embodiment, the cathode 33
The metal that has changed from an alkaline environment to a neutral or acidic environment in the vicinity and moved to the vicinity of the cathode 33 remains as a cation M 2+ or M 3+ without becoming a hydroxide, or is already a hydroxide. Those that have become ionized again reach the cathode 33 and collect in the hollow tube 5b through the water passage hole 4.

【0048】次に、図示しないポンプ等を用いて中空管
5b内の酸性溶液を回収し、次いで、これを水処理施設
に送って該溶液中の重金属を除去する。
Next, the acidic solution in the hollow tube 5b is recovered by using a pump or the like (not shown), and then sent to a water treatment facility to remove heavy metals in the solution.

【0049】このような酸性溶液の供給並びに通電を所
定時間継続して行い、汚染土壌1中の重金属を回収す
る。なお、回収しきれない重金属が陰極33近傍に残留
するようであれば、バックホウやショベルなどで適宜掘
削除去すればよい。
The supply of such an acidic solution and the energization are continuously performed for a predetermined time, and the heavy metal in the contaminated soil 1 is recovered. If the heavy metal that cannot be collected remains in the vicinity of the cathode 33, it may be appropriately excavated and removed by a backhoe or a shovel.

【0050】以上説明したように、本実施形態の汚染土
壌の浄化方法によれば、第1実施形態と同様、汚染土壌
を掘削除去することなく、重金属だけを汚染土壌から回
収することが可能となるほか、これに加えて、たとえ回
収しきれなかった重金属が残留したとしても、かかる残
留箇所は地表面近くの浅い部分に限定されるので、これ
を容易に掘削除去することが可能であり、しかも掘削土
量は非常に少ない。
As described above, according to the method for cleaning contaminated soil of the present embodiment, it is possible to recover only heavy metals from the contaminated soil without excavating and removing the contaminated soil, as in the first embodiment. In addition to this, even if heavy metal that could not be collected remains, it is possible to excavate and remove it easily because the remaining place is limited to the shallow part near the ground surface. Moreover, the amount of excavated soil is very small.

【0051】本実施形態では特に言及しなかったが、適
用可能な金属の種類が多岐にわたる点は、第1実施形態
と同様である。
Although not particularly mentioned in the present embodiment, a wide variety of applicable metals are the same as in the first embodiment.

【0052】また、本実施形態では、酸性溶液を地上か
ら散水等の方法で供給するようにしたが、図9に示すよ
うに、地表面近傍に中空管5bと同様の中空管51を埋
設し、かかる中空管51を介して陰極33の近傍に供給
するようにしてもよい。かかる構成においても、陰極3
3近傍のOH- を中和し、陰極33の近くまで移動して
きた金属を陽イオンM2+若しくはM3+のまま、あるいは
すでに水酸化物となったものも再びイオン化して陰極3
3に到達させ、さらに通水孔4を介して該陰極33の中
空管5b内に集めることができる。
Further, in this embodiment, the acidic solution is supplied from the ground by a method such as water sprinkling. However, as shown in FIG. 9, a hollow tube 51 similar to the hollow tube 5b is provided near the ground surface. It may be embedded and supplied to the vicinity of the cathode 33 through the hollow tube 51. Even in this configuration, the cathode 3
OH in the vicinity of 3 is neutralized, and the metal that has moved to the vicinity of the cathode 33 remains as the cation M 2+ or M 3+ , or the metal that has already become a hydroxide is ionized again and the cathode 3
3 through the water passage hole 4 and collect in the hollow tube 5b of the cathode 33.

【0053】(第3実施形態)第2実施形態では、長尺
状の電極32、33を水平に配置するようにしたが、本
発明は、かかる構成に限定されるものではなく、要は、
陰極を地表面近傍に、陽極を地中に配設すればよい。
(Third Embodiment) In the second embodiment, the long electrodes 32 and 33 are arranged horizontally, but the present invention is not limited to such a configuration, and the point is that
The cathode may be arranged near the ground surface and the anode may be arranged in the ground.

【0054】図10は、本実施形態における電極配置状
況を示したものである。本実施形態においては、同図で
わかるように、コンクリート等で形成された杭61の先
端に電極62を、頭部に電極63を取付け、これらを所
定のピッチで格子状に汚染土壌1内に埋設するととも
に、電極62、63にそれぞれ直流電源のプラス側、マ
イナス側を接続して構成してある。また、陰極63は、
図11に示すように、通水孔4を穿孔した中空構造と
し、該中空内部に回収管6bを挿入してある。
FIG. 10 shows the arrangement of electrodes in this embodiment. In the present embodiment, as can be seen in the figure, an electrode 62 is attached to the tip of a pile 61 formed of concrete or the like, and an electrode 63 is attached to the head, and these are arranged in a grid pattern in the contaminated soil 1 at a predetermined pitch. The electrodes 62 and 63 are both embedded and connected to the positive and negative sides of a DC power source, respectively. Further, the cathode 63 is
As shown in FIG. 11, a water passage hole 4 is bored to form a hollow structure, and a recovery pipe 6b is inserted inside the hollow structure.

【0055】本実施形態においても第2実施形態と同
様、電極62、63間に直流電圧を印加して金属M2+
しくはM3+を電気泳動によって陽極62から陰極63側
に上昇させるとともに、酸性溶液を散水等の方法で地上
から陰極63近傍に供給する。そして、陰極63の近く
まで移動してきた金属を陽イオンM2+若しくはM3+のま
ま、あるいはすでに水酸化物となったものも再びイオン
化させて陰極63に到達させ、通水孔4を介して中空内
部に集めるとともに、図示しないポンプ等を用いて中空
内部の酸性溶液を重金属とともに回収することができ
る。
In this embodiment, as in the second embodiment, a DC voltage is applied between the electrodes 62 and 63 to raise the metal M 2+ or M 3+ from the anode 62 to the cathode 63 side by electrophoresis. The acidic solution is supplied from the ground to the vicinity of the cathode 63 by a method such as sprinkling water. Then, the metal that has moved to the vicinity of the cathode 63 remains as the cation M 2+ or M 3+ , or the metal that has already become a hydroxide is ionized again to reach the cathode 63 and pass through the water passage hole 4. It is possible to collect the acid solution inside the hollow together with the heavy metal by using a pump (not shown) or the like.

【0056】かかる実施形態においても、第2実施形態
とほぼ同様の効果が得られる他、杭の打込みによって自
動的に電極が配置されることとなり、電極配置作業が容
易になるという効果も奏する。
In this embodiment as well, substantially the same effect as in the second embodiment is obtained, and in addition, the electrodes are automatically arranged by driving the piles, and the electrode arrangement work is facilitated.

【0057】[0057]

【発明の効果】以上述べたように、本発明の汚染土壌の
浄化方法は、金属を含む汚染土壌中に陽極および陰極か
らなる一対の電極を配設し、次いで、該電極間に直流電
圧を印加するとともに前記陰極近傍に所定の酸性溶液を
供給し、次いで、該酸性溶液を前記陰極若しくはその近
傍から回収するので、汚染土壌を掘削除去することなく
金属だけを回収することが可能となる。また、酸性溶液
の使用量を大幅に節約することができるという効果も奏
する。
As described above, the method for purifying contaminated soil according to the present invention comprises disposing a pair of electrodes consisting of an anode and a cathode in contaminated soil containing metal, and then applying a DC voltage between the electrodes. Since a predetermined acidic solution is supplied to the vicinity of the cathode while being applied and then the acidic solution is recovered from the cathode or the vicinity thereof, it is possible to recover only the metal without excavating and removing the contaminated soil. In addition, the amount of the acidic solution used can be greatly saved.

【0058】また、本発明の汚染土壌の浄化方法は、金
属を含む汚染土壌中に陽極および陰極からなる一対の電
極を配設し、次いで、該電極間に直流電圧を印加すると
ともに前記陽極若しくはその近傍に所定の酸性溶液を供
給し、次いで、該酸性溶液を前記陰極若しくはその近傍
から回収するので、汚染土壌を掘削除去することなく金
属だけを回収することができるほか、土壌内の通電性を
確保することができるという効果も奏する。
In the method for cleaning contaminated soil according to the present invention, a pair of electrodes consisting of an anode and a cathode are arranged in contaminated soil containing a metal, and then a DC voltage is applied between the electrodes and the anode or Since a predetermined acidic solution is supplied to the vicinity of the cathode and then the acidic solution is recovered from the cathode or the vicinity thereof, only the metal can be recovered without excavating and removing the contaminated soil, and the conductivity in the soil can be improved. There is also an effect that it is possible to secure.

【0059】また、本発明の汚染土壌の浄化方法は、金
属を含む汚染土壌中に陽極および陰極からなる一対の電
極を配設し、次いで、該電極間に直流電圧を印加すると
ともに前記陽極と前記陰極との間に所定の酸性溶液を供
給し、次いで、該酸性溶液を前記陰極若しくはその近傍
から回収するので、汚染土壌を掘削除去することなく金
属だけを回収することができるほか、酸性溶液の使用量
の節約並びに通電性の確保をある程度達成することがで
きる。
In the method for purifying contaminated soil according to the present invention, a pair of electrodes consisting of an anode and a cathode are arranged in a contaminated soil containing a metal, and then a direct current voltage is applied between the electrodes and the anode and the anode. A predetermined acidic solution is supplied between the cathode and the cathode, and then the acidic solution is recovered from the cathode or the vicinity thereof, so that only metal can be recovered without excavating and removing contaminated soil. It is possible to achieve a certain amount of saving of the amount of use and ensuring of electrical conductivity.

【0060】[0060]

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施形態に係る汚染土壌の浄化方法の実施状
況を示した図であり、(a) は全体概略図、(b)は電極構
造を詳細に示した側面図。
1A and 1B are diagrams showing an implementation situation of a method for purifying contaminated soil according to the present embodiment, in which FIG. 1A is an overall schematic view, and FIG. 1B is a side view showing in detail an electrode structure.

【図2】本実施形態の作用を示した説明図であり、(a)
は金属イオンの移動の様子を示した図、(b) は金属イオ
ンの溶解度とpHとの関係を示したグラフ。
FIG. 2 is an explanatory view showing the operation of the present embodiment, (a)
Is a diagram showing the movement of metal ions, and (b) is a graph showing the relationship between the solubility of metal ions and pH.

【図3】本実施形態に関する実験を行った装置を示した
斜視図。
FIG. 3 is a perspective view showing an apparatus on which an experiment related to the present embodiment was conducted.

【図4】図3に示した実験装置で得られた実験結果であ
り、陽極からの距離によって土壌のpHがどのように変
化するかを通電時間をパラメータとして描いたグラフ。
FIG. 4 is a graph showing the experimental results obtained by the experimental apparatus shown in FIG. 3 and showing how the pH of the soil changes depending on the distance from the anode, with the energization time as a parameter.

【図5】汚染土壌に含まれている重金属の量を銅を指標
として描いたグラフ。
FIG. 5 is a graph in which the amount of heavy metals contained in contaminated soil is drawn using copper as an index.

【図6】第1実施形態の変形例を示した概略図。FIG. 6 is a schematic diagram showing a modified example of the first embodiment.

【図7】第2実施形態における電極配置状況を示した断
面図。
FIG. 7 is a cross-sectional view showing how electrodes are arranged in the second embodiment.

【図8】第2実施形態において電極を配置する施工手順
を示した断面図。
FIG. 8 is a cross-sectional view showing a construction procedure for arranging electrodes in the second embodiment.

【図9】第2実施形態の変形例およびその作用を示した
断面図。
FIG. 9 is a sectional view showing a modified example of the second embodiment and its operation.

【図10】第3実施形態における電極配置状況を示した
図であり、(a)は平面図、(b)はA―A線に沿う断面図。
10A and 10B are diagrams showing an electrode arrangement state in a third embodiment, FIG. 10A is a plan view, and FIG. 10B is a sectional view taken along line AA.

【図11】第3実施形態で用いる電極の詳細断面図。FIG. 11 is a detailed sectional view of an electrode used in the third embodiment.

【符号の説明】[Explanation of symbols]

1 汚染土壌 2a、2b 電極 4 通水孔 5a、5b 中空管 21 電極 32、33 電極 51 中空管 62、63 電極 1 Contaminated soil 2a, 2b Electrode 4 Water passage hole 5a, 5b Hollow tube 21 Electrode 32, 33 Electrode 51 Hollow tube 62, 63 Electrode

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 金属を含む汚染土壌中に陽極および陰極
からなる一対の電極を配設し、次いで、該電極間に直流
電圧を印加するとともに前記陰極近傍に所定の酸性溶液
を供給し、次いで、該酸性溶液を前記陰極若しくはその
近傍から回収することを特徴とする汚染土壌の浄化方
法。
1. A pair of electrodes consisting of an anode and a cathode are arranged in a contaminated soil containing a metal, and then a direct current voltage is applied between the electrodes and a predetermined acidic solution is supplied in the vicinity of the cathode. A method for purifying contaminated soil, comprising recovering the acidic solution from the cathode or the vicinity thereof.
【請求項2】 前記陰極を地表面近傍に配設し、前記陽
極を所定の深さ位置に配設する請求項1記載の汚染土壌
の浄化方法。
2. The method for purifying contaminated soil according to claim 1, wherein the cathode is provided near the ground surface, and the anode is provided at a predetermined depth position.
【請求項3】 金属を含む汚染土壌中に陽極および陰極
からなる一対の電極を配設し、次いで、該電極間に直流
電圧を印加するとともに前記陽極若しくはその近傍に所
定の酸性溶液を供給し、次いで、該酸性溶液を前記陰極
若しくはその近傍から回収することを特徴とする汚染土
壌の浄化方法。
3. A pair of electrodes consisting of an anode and a cathode are arranged in a contaminated soil containing metal, and then a direct current voltage is applied between the electrodes and a predetermined acidic solution is supplied to the anode or its vicinity. Then, the method for purifying contaminated soil, which comprises recovering the acidic solution from the cathode or its vicinity.
【請求項4】 金属を含む汚染土壌中に陽極および陰極
からなる一対の電極を配設し、次いで、該電極間に直流
電圧を印加するとともに前記陽極と前記陰極との間に所
定の酸性溶液を供給し、次いで、該酸性溶液を前記陰極
若しくはその近傍から回収することを特徴とする汚染土
壌の浄化方法。
4. A pair of electrodes consisting of an anode and a cathode are arranged in a contaminated soil containing a metal, and then a direct current voltage is applied between the electrodes and a predetermined acidic solution is provided between the anode and the cathode. And then recovering the acidic solution from the cathode or the vicinity thereof, the method for purifying contaminated soil.
【請求項5】 前記電極を通水孔を有する導電性の中空
管で構成し、該中空管を介して前記酸性溶液の供給若し
くは回収を行う請求項1乃至請求項4のいずれか一に記
載の汚染土壌の浄化方法。
5. The electrode according to claim 1, wherein the electrode is formed of a conductive hollow tube having a water passage hole, and the acidic solution is supplied or recovered through the hollow tube. The method for cleaning contaminated soil according to.
JP21833095A 1995-08-04 1995-08-04 How to clean contaminated soil Expired - Fee Related JP3178581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21833095A JP3178581B2 (en) 1995-08-04 1995-08-04 How to clean contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21833095A JP3178581B2 (en) 1995-08-04 1995-08-04 How to clean contaminated soil

Publications (2)

Publication Number Publication Date
JPH0947748A true JPH0947748A (en) 1997-02-18
JP3178581B2 JP3178581B2 (en) 2001-06-18

Family

ID=16718170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21833095A Expired - Fee Related JP3178581B2 (en) 1995-08-04 1995-08-04 How to clean contaminated soil

Country Status (1)

Country Link
JP (1) JP3178581B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010088497A (en) * 2001-07-27 2001-09-28 김수삼 Injection of nutrients and TEAs for bioremediation by electrical field method
KR20030072052A (en) * 2002-03-05 2003-09-13 주식회사 에코필 dynamic galvanic
KR100406766B1 (en) * 2001-10-05 2003-11-21 주식회사 에코필 Method for decontamination of soil using electrokinetic
KR100414771B1 (en) * 2003-07-14 2004-01-13 한국환경기술(주) Chemical oxidation method of petroleum-contaminated soil using electro-osmosis and apparatus thereof
KR100473675B1 (en) * 2002-08-14 2005-03-10 김수삼 In-Situ immobilization of heavy-metal contaminated soil by electrokinetic phosphoric acid injection
JP2010012445A (en) * 2008-07-07 2010-01-21 Tosaka Takuya Method for treating contaminated soil
WO2012074525A1 (en) * 2010-12-01 2012-06-07 Empire Technology Development Llc Subsurface induced pore clogging to prevent spill flow
CN103639193A (en) * 2013-12-26 2014-03-19 江苏盖亚环境工程有限公司 Restoration method for organically polluted site soil through circular in-situ chemical oxidation
JP2014531978A (en) * 2011-10-12 2014-12-04 エンパイア テクノロジー ディベロップメント エルエルシー Electrical repair method
CN109811758A (en) * 2019-03-14 2019-05-28 宁波大学 Electric osmose composite foundation and its construction method
CN111395349A (en) * 2020-03-24 2020-07-10 广东中科碧城环境技术有限公司 Method for cleaning and digging polluted soil at site boundary
CN115672962A (en) * 2022-09-28 2023-02-03 贵州梵瑞康药业有限公司 Soil remediation method for removing heavy metals

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010088497A (en) * 2001-07-27 2001-09-28 김수삼 Injection of nutrients and TEAs for bioremediation by electrical field method
KR100406766B1 (en) * 2001-10-05 2003-11-21 주식회사 에코필 Method for decontamination of soil using electrokinetic
KR20030072052A (en) * 2002-03-05 2003-09-13 주식회사 에코필 dynamic galvanic
KR100473675B1 (en) * 2002-08-14 2005-03-10 김수삼 In-Situ immobilization of heavy-metal contaminated soil by electrokinetic phosphoric acid injection
KR100414771B1 (en) * 2003-07-14 2004-01-13 한국환경기술(주) Chemical oxidation method of petroleum-contaminated soil using electro-osmosis and apparatus thereof
JP4718585B2 (en) * 2008-07-07 2011-07-06 登坂 卓也 Treatment method of contaminated soil
JP2010012445A (en) * 2008-07-07 2010-01-21 Tosaka Takuya Method for treating contaminated soil
WO2012074525A1 (en) * 2010-12-01 2012-06-07 Empire Technology Development Llc Subsurface induced pore clogging to prevent spill flow
JP2014531978A (en) * 2011-10-12 2014-12-04 エンパイア テクノロジー ディベロップメント エルエルシー Electrical repair method
CN103639193A (en) * 2013-12-26 2014-03-19 江苏盖亚环境工程有限公司 Restoration method for organically polluted site soil through circular in-situ chemical oxidation
CN109811758A (en) * 2019-03-14 2019-05-28 宁波大学 Electric osmose composite foundation and its construction method
CN109811758B (en) * 2019-03-14 2024-01-16 宁波大学 Electroosmosis composite foundation and construction method thereof
CN111395349A (en) * 2020-03-24 2020-07-10 广东中科碧城环境技术有限公司 Method for cleaning and digging polluted soil at site boundary
CN115672962A (en) * 2022-09-28 2023-02-03 贵州梵瑞康药业有限公司 Soil remediation method for removing heavy metals

Also Published As

Publication number Publication date
JP3178581B2 (en) 2001-06-18

Similar Documents

Publication Publication Date Title
EP0312174B1 (en) A process for electroreclamation of soil material, an electric current system for application of the process, and an electrode housing for use in the electric current system
JPH0947748A (en) Polluted soil purifying method
JP2006346567A (en) In-situ purification method of contaminated soil
CN110434166B (en) Double-ring vertical self-cleaning type in-situ dehydration pollution-reduction electric repair device and method
KR101464878B1 (en) Remediation system for Multi-contaminated soils combining Chemical Oxidation and Soil Flushing and Electrokinetic Separation and Remediation method using the same
KR100427692B1 (en) system of Electrokinetic soil remediation
JP3381764B2 (en) How to clean contaminated soil
JPH115077A (en) Contaminated ground purification system
JP3214600B2 (en) How to clean contaminated soil
JPH1034126A (en) Method and apparatus for purifying soil polluted with heavy metal
JP2006346519A (en) In-situ purification method of contaminated soil
JP3816438B2 (en) Treatment of contaminated groundwater and soil by electrode reduction method
JP3214607B2 (en) Electrode placement method for removal of anionic contaminants
KR101297098B1 (en) Soil remediation system using electrokinetics
KR100667465B1 (en) The clean-up and remediation equipment of contaminated ground mixed with cohesionless and cohesive soils by electro flushing reactive pile technology
JP3343662B2 (en) In-situ treatment method and apparatus for hydrous soil by electroosmosis
JP3180312B2 (en) Concentration control method for removal of anionic contaminants
JP3180313B2 (en) Anion contaminant removal equipment
JP2002361227A (en) Method and device for treating soil
JP2002001298A (en) Electrode arranging method for anionic pollutant removal
JP3149425B2 (en) Concentration control method for removal of anionic contaminants
JP2002035736A (en) Treatment device for contaminated soil and method therefor
JP2003320363A (en) Electrochemical recovering method in soil
JP2005161171A (en) Soil pollution cleaning structure and method for the same
JP2002224657A (en) Restoration method for contaminated soil

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010315

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080413

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090413

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees