JP3178581B2 - How to clean contaminated soil - Google Patents

How to clean contaminated soil

Info

Publication number
JP3178581B2
JP3178581B2 JP21833095A JP21833095A JP3178581B2 JP 3178581 B2 JP3178581 B2 JP 3178581B2 JP 21833095 A JP21833095 A JP 21833095A JP 21833095 A JP21833095 A JP 21833095A JP 3178581 B2 JP3178581 B2 JP 3178581B2
Authority
JP
Japan
Prior art keywords
cathode
contaminated soil
anode
acidic solution
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21833095A
Other languages
Japanese (ja)
Other versions
JPH0947748A (en
Inventor
博 久保
和男 峠
純 光本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP21833095A priority Critical patent/JP3178581B2/en
Publication of JPH0947748A publication Critical patent/JPH0947748A/en
Application granted granted Critical
Publication of JP3178581B2 publication Critical patent/JP3178581B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Fire-Extinguishing Compositions (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、カドミウム、鉛、
銅、亜鉛、ニッケル、クロム等の重金属を含んだ汚染土
壌からこれらの重金属を除去して当該土壌を浄化する方
法に係り、特に、多量の汚染土壌を搬出運搬することな
く原位置で浄化する方法に関する。
The present invention relates to cadmium, lead,
The present invention relates to a method for removing contaminated soil containing heavy metals such as copper, zinc, nickel, and chromium by removing these heavy metals, and in particular, a method for purifying a large amount of contaminated soil in situ without carrying it out. About.

【0002】[0002]

【従来の技術】工場廃水、工場廃棄物、鉱山廃水などに
よって汚染された土壌には、カドミウム、鉛、銅、亜
鉛、ニッケル、クロム等の重金属が含まれていることが
あり、このような土壌をそのまま放置すると、当該土壌
内に含まれた重金属が地下水や生物サイクルを介して環
境に拡散する危険性がある。
2. Description of the Related Art Soil contaminated by industrial wastewater, industrial waste, mine wastewater and the like may contain heavy metals such as cadmium, lead, copper, zinc, nickel, and chromium. If left as is, there is a risk that heavy metals contained in the soil will diffuse into the environment via groundwater and biological cycles.

【0003】そのため、汚染された土壌は、これを掘削
除去して所定の処理を施し、しかる後に管理型あるいは
遮断型の処分地に廃棄処分する一方、掘削された孔内に
は通常の土を客土して原状復帰するのが一般的である。
For this reason, the contaminated soil is excavated and removed and subjected to a predetermined treatment. Thereafter, the contaminated soil is disposed of in a management type or cut-off type disposal site. It is common to return to the original state on the land.

【0004】ところが、かかる方法では、掘削の際に汚
染土を攪乱して二次汚染のおそれがあるとともに、汚染
土を大量に搬出、運搬しなければならないという問題
や、既存建築物の近接部や直下では掘削除去自体が困難
になるという問題が生じる。そのため、最近では、原位
置で浄化する技術が研究され始めており、その一つとし
て通電により汚染物質を回収する方法が特開平5-59716
号公報に開示されている。
[0004] However, such a method has a problem that contaminated soil is disturbed during excavation, which may cause secondary pollution. In addition, a large amount of contaminated soil must be carried out and transported. The problem that excavation removal itself becomes difficult directly underneath occurs. Therefore, recently, in-situ purification technology has begun to be studied, and as one of the methods, a method of recovering contaminants by energization has been disclosed in Japanese Patent Laid-Open No. 5-59716.
No. 6,086,045.

【0005】当該方法においては、まず、処理対象の地
盤範囲に止水壁を構築し、次いで、その地盤範囲に多数
の通水孔を有する中空管からなる陽極および陰極を挿入
し、次いで、当該地盤範囲に適宜散水してから電極間に
直流電圧を印加し、次いで、電気浸透現象によって陰極
側に集まった水を中空管を介して排水回収する。
[0005] In the method, first, a water blocking wall is constructed in a ground area to be treated, and then an anode and a cathode each formed of a hollow tube having a large number of water passage holes are inserted into the ground area, A DC voltage is applied between the electrodes after water is appropriately sprayed on the ground area, and then water collected on the cathode side by an electroosmosis phenomenon is drained and collected through a hollow tube.

【0006】かかる方法によれば、所定の汚染物質は、
電気浸透現象による水の流れに乗って陰極側に流れ込む
ので、これを排水回収することにより、当該汚染物質を
除去することができる。
According to such a method, the predetermined contaminants are:
The contaminants can be removed by collecting the waste water by flowing into the cathode side by riding on the flow of water caused by the electroosmosis phenomenon.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、本出願
人が行った詳細な実験によると、化学変化を起こさない
汚染物質については上述の方法で回収が可能であるが、
カドミウム、鉛、銅、亜鉛、ニッケル、クロム等の重金
属については、土壌pHが中性からアルカリ性に変化す
るあたりで荷電を失って水酸化物として沈殿してしま
い、その後いくら陽極側から水を供給しても電気的な引
力で陰極まで到達させることはできず、したがって、こ
れらの重金属を陰極側で回収することは不可能であるこ
とが判明した。
However, according to a detailed experiment conducted by the present applicant, pollutants that do not cause a chemical change can be recovered by the above-described method.
Heavy metals such as cadmium, lead, copper, zinc, nickel, and chromium lose their charge and precipitate as hydroxides when the soil pH changes from neutral to alkaline, and then water is supplied from the anode side However, it was found that it was impossible to reach the cathode by electric attraction, and it was impossible to recover these heavy metals on the cathode side.

【0008】本発明は、上述した事情を考慮してなされ
たもので、金属物質で汚染された土壌から当該金属物質
を回収することができる汚染土壌の浄化方法を提供する
ことを目的とする。
The present invention has been made in view of the above circumstances, and has as its object to provide a method for purifying contaminated soil that can recover the metal substance from the soil contaminated with the metal substance.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明の汚染土壌の浄化方法は請求項1に記載した
ように、金属を含む汚染土壌中に陽極および陰極からな
る一対の電極を配設し、次いで、該電極間に直流電圧を
印加するとともに前記陰極近傍に所定の酸性溶液を供給
し、次いで、該酸性溶液を前記陰極若しくはその近傍か
ら回収する汚染土壌の浄化方法であって、陽イオンの形
で土壌内に存在する前記金属が電気泳動によって上昇す
るように、前記陰極を地表面近傍に配設し、前記陽極を
地中に配設するものである。
In order to achieve the above object, a method for purifying contaminated soil according to the present invention comprises, as described in claim 1, forming a pair of electrodes consisting of an anode and a cathode in contaminated soil containing metal. Disposing, then applying a DC voltage between the electrodes and supplying a predetermined acidic solution to the vicinity of the cathode, and then recovering the acidic solution from the cathode or the vicinity thereof, the method for purifying contaminated soil. The cathode is disposed near the ground surface and the anode is disposed underground so that the metal present in the soil in the form of cations rises by electrophoresis.

【0010】また、本発明の汚染土壌の浄化方法は、前
記陽極を、実際に処理したい範囲の下限よりもさらに下
がった位置に設置するものである。
[0010] In the method for purifying contaminated soil according to the present invention, the anode is provided at a position further lower than the lower limit of the range to be actually treated.

【0011】また、本発明の汚染土壌の浄化方法は、杭
の先端に前記陽極を取り付けるとともに、該杭の頭部に
前記陰極を取り付け、かかる状態で前記杭を前記汚染土
壌に埋設するとともに、前記陰極を、通水孔を穿孔した
中空構造とし、該中空内部に回収管を挿入して構成した
ものである。
In the method for purifying contaminated soil according to the present invention, the anode is attached to the tip of a pile, the cathode is attached to the head of the pile, and the pile is buried in the contaminated soil in this state. The cathode has a hollow structure in which water holes are formed, and a collection tube is inserted into the hollow.

【0012】[0012]

【0013】また、本発明の汚染土壌の浄化方法は、前
記電極を通水孔を有する導電性の中空管で構成し、該中
空管を介して前記酸性溶液の供給若しくは回収を行うも
のである。
Further, the method for purifying contaminated soil according to the present invention comprises the above-mentioned conductive hollow tube having a water passage hole for supplying or recovering the acidic solution via the hollow tube. It is.

【0014】本発明の汚染土壌の浄化方法においては、
まず、所定の金属、特に、カドミウム、鉛、銅、亜鉛、
ニッケル、クロム等の重金属を含む汚染土壌中に陽極お
よび陰極からなる一対の電極を配設し、次いで、当該電
極間に直流電圧を印加するとともに、陰極近傍に所定の
酸性溶液を供給する。すると、陽イオンの形で土壌内に
存在する金属は、電気泳動によって陽極から陰極側に移
動し始めるが、陰極近傍では酸性溶液がOH- と中和し
ているため、OH- と反応して水酸化物となることな
く、陽イオンのまま陰極まで移動する。そして、酸性溶
液を陰極若しくはその近傍から回収すると、その溶液に
含まれる形で重金属が回収される。
In the method for purifying contaminated soil according to the present invention,
First, certain metals, especially cadmium, lead, copper, zinc,
A pair of electrodes consisting of an anode and a cathode is provided in contaminated soil containing heavy metals such as nickel and chromium, and then a DC voltage is applied between the electrodes and a predetermined acidic solution is supplied near the cathode. Then, the metal present in the soil in the form of cations, but starts to move from the anode to the cathode side by electrophoresis, near the cathode acidic solutions OH - because of the neutralization, OH - reacts with The ions move to the cathode as cations without becoming hydroxides. When the acidic solution is recovered from the cathode or its vicinity, heavy metals are recovered in a form contained in the solution.

【0015】ここで、陰極を地表面近傍に配設し、前記
陽極を所定の深さ位置に配設した場合、重金属イオン
は、上方に向かって移動し、地表面付近で酸性溶液とと
もに回収される。そのため、回収しきれずに土壌中に残
留し、該土壌を掘削除去する必要が生じたとしても、掘
削すべき範囲は比較的浅い範囲で済む。
When the cathode is disposed near the ground surface and the anode is disposed at a predetermined depth, the heavy metal ions move upward and are collected together with the acidic solution near the ground surface. You. Therefore, even if it remains in the soil without being completely collected and the soil needs to be excavated and removed, the area to be excavated can be a relatively shallow area.

【0016】また、本発明の汚染土壌の浄化方法におい
ては、上述した金属を含む汚染土壌中に陽極および陰極
からなる一対の電極を配設し、次いで、当該電極間に直
流電圧を印加するとともに、陽極若しくはその近傍に所
定の酸性溶液を供給する。すると、陽イオンの形で土壌
内に存在する金属は、酸性溶液とともに電気泳動によっ
て陽極から陰極側に移動し始めるが、陰極近傍に到達し
た酸性溶液は、OH-を中和する。そのため、金属は、
OH- と反応して水酸化物となることなく陽イオンのま
まで、あるいは水酸化物となった金属も再び陽イオンと
なって陰極まで移動する。そして、酸性溶液を陰極若し
くはその近傍から回収すると、その溶液に含まれる形で
重金属が回収される。
In the method for purifying contaminated soil according to the present invention, a pair of electrodes comprising an anode and a cathode are disposed in the above-mentioned contaminated soil containing a metal, and then a DC voltage is applied between the electrodes. A predetermined acidic solution is supplied to or near the anode. Then, the metal present in the soil in the form of cations, but with an acidic solution starts to move from the anode by electrophoresis on the cathode side, an acidic solution that has reached the cathode vicinity, OH - to neutralize. Therefore, metal
OH - Metal reacted remains cation without a hydroxide, or with a hydroxide and also moves to the cathode again a cation. When the acidic solution is recovered from the cathode or its vicinity, heavy metals are recovered in a form contained in the solution.

【0017】また、本発明の汚染土壌の浄化方法におい
ては、上述した金属を含む汚染土壌中に陽極および陰極
からなる一対の電極を配設し、次いで、当該電極間に直
流電圧を印加するとともに、陽極と陰極との間に所定の
酸性溶液を供給する。すると、陽イオンの形で土壌内に
存在する金属や電極間に供給された酸性溶液は、電気泳
動によって陽極から陰極側に移動し始めるが、陰極近傍
に到達した酸性溶液は、OH- を中和する。そのため、
金属は、OH- と反応して水酸化物となることなく陽イ
オンのままで、あるいは水酸化物となった金属も再び陽
イオンとなって陰極まで移動する。そして、酸性溶液を
陰極若しくはその近傍から回収すると、その溶液に含ま
れる形で重金属が回収される。
In the method for purifying contaminated soil according to the present invention, a pair of electrodes including an anode and a cathode are provided in the contaminated soil containing the metal described above, and then a DC voltage is applied between the electrodes. A predetermined acidic solution is supplied between the anode and the cathode. Then, the acid was supplied between the metal and the electrode present in the soil in the form of a cation solution is an anode by electrophoresis starts to move to the cathode side, an acidic solution that has reached the cathode vicinity, OH - medium to Sum up. for that reason,
Metals, OH - metal reacted remains cation without a hydroxide, or with a hydroxide and also moves to the cathode again a cation. When the acidic solution is recovered from the cathode or its vicinity, heavy metals are recovered in a form contained in the solution.

【0018】[0018]

【発明の実施の形態】以下、本発明に係る汚染土壌の浄
化方法の実施の形態について、添付図面を参照して説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for purifying contaminated soil according to the present invention will be described below with reference to the accompanying drawings.

【0019】(第1実施形態)図1(a) は、第1実施形
態に係る汚染土壌の浄化方法を実施する状況を示した概
略図である。同図でわかるように、本実施形態の汚染土
壌の浄化方法においては、まず、所定の金属、特に、カ
ドミウム、鉛、銅、亜鉛、ニッケル、クロム等の重金属
(図中、Mで示す)を含む汚染土壌1中に一対の電極2
a、2bを挿入し、これらを対向配置する。
(First Embodiment) FIG. 1 (a) is a schematic diagram showing a situation in which a method for purifying contaminated soil according to a first embodiment is performed. As can be seen from the figure, in the method of purifying contaminated soil according to the present embodiment, first, a predetermined metal, in particular, a heavy metal such as cadmium, lead, copper, zinc, nickel, and chromium (indicated by M in the figure). A pair of electrodes 2 in contaminated soil 1 containing
a and 2b are inserted, and these are arranged to face each other.

【0020】電極2aは、同図(b) に示すように、鉄等
の導電性材料で形成された中空管5aに通水孔4を多数
穿孔して構成してあり、電極2bも同様に、鉄等の導電
性材料で形成された中空管5bに通水孔4を多数穿孔し
て構成してある。また、中空管5a内には供給管6aを
挿入してあり、該供給管6aを介して酸性溶液を中空管
5a内に供給できるようになっている。一方、中空管5
b内には回収管6bを挿入してあり、該回収管6bを介
して中空管5b内の酸性溶液を回収できるようになって
いる。
As shown in FIG. 2 (b), the electrode 2a has a hollow tube 5a made of a conductive material such as iron and a plurality of water passage holes 4 formed in the hollow tube 5a. Further, a large number of water passage holes 4 are formed in a hollow tube 5b made of a conductive material such as iron. A supply pipe 6a is inserted into the hollow pipe 5a, so that the acidic solution can be supplied into the hollow pipe 5a via the supply pipe 6a. On the other hand, the hollow tube 5
A collecting tube 6b is inserted into the tube b, so that the acidic solution in the hollow tube 5b can be collected through the collecting tube 6b.

【0021】ここで、酸性溶液としては、たとえばpH
が2程度の塩酸、硫酸、有機酸等が使用可能であり、こ
れらを地上に設置されたタンク(図示せず)に貯留して
おけばよい。
Here, as the acidic solution, for example, pH
However, about 2 hydrochloric acid, sulfuric acid, organic acid and the like can be used, and these may be stored in a tank (not shown) installed on the ground.

【0022】次に、同図に示すように直流電源のプラス
側を電極2a(陽極)に、マイナス側を電極2b(陰
極)に接続し、当該電極間に直流電圧を印加する。する
と、陽イオンの形で土壌内に存在する金属M2+若しくは
3+は、図2(a) に示すように電気泳動によって陽極2
aから陰極2b側に移動し始める。
Next, as shown in the figure, the plus side of the DC power supply is connected to the electrode 2a (anode) and the minus side is connected to the electrode 2b (cathode), and a DC voltage is applied between the electrodes. Then, the metal M 2+ or M 3+ existing in the soil in the form of a cation is removed by electrophoresis as shown in FIG.
Start moving from a to the cathode 2b side.

【0023】また、かかる通電作業と同時に、酸性溶液
を供給管6aを介して電極2aの中空管5a内に供給す
る。すると、酸性溶液は、中空管5aの通水孔4を介し
て汚染土壌1中に拡散し、電気泳動によって金属イオン
とともに陰極2b側に移動する。
At the same time as the energizing operation, the acidic solution is supplied into the hollow tube 5a of the electrode 2a via the supply tube 6a. Then, the acidic solution diffuses into the contaminated soil 1 through the water holes 4 of the hollow tube 5a, and moves to the cathode 2b side together with metal ions by electrophoresis.

【0024】一方、陰極2b側ではOH- が発生してお
り、かかるOH- が金属M2+あるいはM3+と反応する
と、水酸化物となって土壌内に留まり、それ以上陰極2
b側に移動しなくなる。しかし、陽イオンとともに陰極
2b近傍に移動してきた酸性溶液がOH- を中和するの
で、陰極2b近傍は、アルカリ環境から中性ないしは酸
性の環境に変化する。そのため、金属は、陽イオンM2+
若しくはM3+のまま、あるいはすでに水酸化物となった
ものも再びイオン化して陰極2bまで移動し、通水孔4
を介して中空管5b内に集まる。図2(b) は、重金属の
溶解度とpHとの関係を示したグラフであり、酸性の環
境では、重金属の溶解度が非常に高いことを示してい
る。
On the other hand, OH - is generated on the side of the cathode 2b. When the OH-reacts with the metal M 2+ or M 3+ , the OH - becomes hydroxide and remains in the soil.
It does not move to the b side. However, acidic solution which has moved to the vicinity of the cathode 2b with cations OH - Since neutralize, near the cathode 2b is changed from alkaline environment neutral or acidic environment. Therefore, the metal is a cation M 2+
Alternatively, M 3+ , or already converted to hydroxide, is ionized again and moves to the cathode 2 b, and the water passage hole 4
And collects in the hollow tube 5b. FIG. 2 (b) is a graph showing the relationship between the solubility of heavy metals and pH, and shows that the solubility of heavy metals is extremely high in an acidic environment.

【0025】次に、図示しないポンプ等を用いて中空管
5b内の酸性溶液を回収し、次いで、これを水処理施設
に送って該溶液中の重金属を除去する。
Next, the acidic solution in the hollow tube 5b is recovered using a pump (not shown) or the like, and then sent to a water treatment facility to remove heavy metals in the solution.

【0026】このような酸性溶液の供給並びに通電を所
定時間継続して行い、汚染土壌1中の重金属を回収す
る。なお、回収しきれない重金属が陰極2b近傍に残留
するようであれば、バックホウやショベルなどで適宜掘
削除去すればよい。
The supply of the acidic solution and the energization are continuously performed for a predetermined time, and the heavy metals in the contaminated soil 1 are collected. If heavy metals that cannot be recovered remain in the vicinity of the cathode 2b, they may be appropriately excavated and removed with a backhoe or shovel.

【0027】次に、酸性溶液を供給しない場合の土壌内
のpH分布、重金属の蓄積状況等を実験によって調べた
ので、以下に説明する。
Next, the pH distribution in the soil when the acidic solution was not supplied, the accumulation state of heavy metals, and the like were examined by experiments, and will be described below.

【0028】図3は、実験装置11の斜視図である。同
図でわかるように、実験装置11は、幅15cm、長さ
100cm程度の容器15に重金属を含んだ汚染土壌1
6を入れ、該汚染土壌16の両端に電極13、電極14
を配設し、当該電極13、14を直流電源12のプラス
側、マイナス側にそれぞれ接続して25ボルト程度の直
流電圧を印加できるようになっている。なお、土壌の通
電性を確保するために汚染土壌16に適宜散水するが、
散水された水を排水するための排水口18を容器15の
側方に取り付けてある。また、電極13、14を挿入し
た近傍には珪砂17を入れてある。
FIG. 3 is a perspective view of the experimental apparatus 11. As can be seen from the figure, the experimental apparatus 11 has a container 15 having a width of about 15 cm and a length of about 100 cm in a contaminated soil 1 containing heavy metals.
6 and the electrodes 13 and 14 at both ends of the contaminated soil 16.
And the electrodes 13 and 14 are connected to the positive side and the negative side of the DC power supply 12, respectively, so that a DC voltage of about 25 volts can be applied. In addition, water is appropriately sprinkled on the contaminated soil 16 in order to secure electrical conductivity of the soil.
A drain port 18 for draining the sprinkled water is attached to the side of the container 15. Further, silica sand 17 is put in the vicinity where the electrodes 13 and 14 are inserted.

【0029】図4は、実験装置11によって得られた実
験結果のひとつであり、陽極13からの距離によって土
壌のpHがどのように変化するかを通電時間をパラメー
タとして描いたグラフである。
FIG. 4 is a graph showing one of the experimental results obtained by the experimental apparatus 11 and showing how the pH of the soil changes depending on the distance from the anode 13 using the energizing time as a parameter.

【0030】同図でわかるように、通電時間が2日程度
までは、どの位置においても土壌のpHはほぼ一定であ
る。一方、通電時間が7日になると、陽極に近い位置で
は酸性の傾向が強いが、陽極から少し離れるとすぐに中
性に変化し、逆に陰極近傍では急激にアルカリ性に変化
する。通電時間が15日になると、陽極付近の酸性化領
域は、通電時間7日の場合よりも拡大し、陽極から30
cm程度離れたあたりから中性に変化する。そして、8
0cmを越えるあたりから急激にアルカリ性に変化す
る。通電時間が30日に延びても、全体の傾向は15日
の場合とあまり変わらないが、陽極付近の酸性化領域は
さらに拡大する。かかる実験結果から、通電時間を30
日程度にした場合、陽極から40cmあたりまでは酸性
の状態、すなわち重金属が陽イオンの形で溶解して電気
泳動により移動しやすい状態になっていることを示唆す
る。
As can be seen from the figure, the soil pH is almost constant at any position until the energization time is about two days. On the other hand, when the energization time is 7 days, the acidity tends to be strong at the position near the anode, but changes to neutral as soon as it is slightly away from the anode, and conversely changes to alkaline near the cathode. When the energization time reaches 15 days, the acidified region near the anode expands more than when the energization time is 7 days, and the acidification region extends from the anode by 30 days.
It changes to neutral from around cm away. And 8
From around 0 cm, it rapidly changes to alkaline. Even if the energization time is extended for 30 days, the overall tendency is not so different from that for 15 days, but the acidified region near the anode is further expanded. Based on the results of this experiment, the energization time was set to 30
In the case of about a day, it is suggested that an area of about 40 cm from the anode is in an acidic state, that is, a state in which the heavy metal is dissolved in the form of a cation and easily moved by electrophoresis.

【0031】図5は、汚染土壌16に含まれている重金
属の量を銅を指標として描いたグラフである。この図か
ら、未だ通電していない状態(点線)では、陽極からの
位置に関わらず、銅は土壌内にほぼ均等に分布している
が、通電時間30日の場合には(実線)、陽極から50
cmまでの範囲、特に、陽極から20cm程度までの範
囲では、その含有量が通電していない場合よりも10分
の1程度に小さくなっているとともに、陽極から60c
mあまりのところでは逆に含有量が3倍程度になってい
ることがわかる。
FIG. 5 is a graph showing the amount of heavy metals contained in the contaminated soil 16 using copper as an index. From this figure, in the state where the power has not been supplied yet (dotted line), copper is almost evenly distributed in the soil regardless of the position from the anode. From 50
cm, in particular, in the range from the anode to about 20 cm, the content is about 1/10 smaller than when no current is supplied,
Conversely, it can be seen that the content is about three times higher than m.

【0032】これは、当初陽極付近に存在した銅が通電
によって陰極側に移動し、土壌のpHが酸性から中性に
変化しさらにアルカリ性に遷移していくあたりで水酸化
物として徐々に沈殿し、当該領域に濃縮したものと考え
ることができる。なお、さらに通電時間を長くすると、
集積位置はもう少し陰極側に移動するとともに、陽極側
での浄化範囲はさらに拡大し、曲線の立ち上がりはもっ
と急激になる。
[0032] This is because the copper initially present in the vicinity of the anode moves to the cathode side by energization, and gradually precipitates as hydroxide as the soil pH changes from acidic to neutral and further to alkaline. , Can be considered to be concentrated in the region. If the energization time is further increased,
The accumulation position moves a little further to the cathode side, the purifying range on the anode side further expands, and the rise of the curve becomes steeper.

【0033】これらの実験結果は、酸性溶液を供給した
場合の効果を直接裏付けるものではないが、酸性溶液を
供給しつつ通電を行ったならば、重金属が水酸化物とな
って蓄積されずに陰極まで移動するであろうと判断する
に足りる根拠となり得るものである。
The results of these experiments do not directly support the effect of supplying an acidic solution. However, if electricity is supplied while supplying an acidic solution, heavy metals will not be accumulated as hydroxides. This can be a sufficient basis to judge that it will move to the cathode.

【0034】以上説明したように、本実施形態の汚染土
壌の浄化方法によれば、汚染土壌内に電極を配設して通
電を行うとともに、陽極から酸性溶液を供給し陰極から
回収するようにしたので、汚染土壌内に含まれている重
金属が陰極近傍で水酸化物となるのを防止しながら、該
重金属を通電によって陰極まで移動させ、これを酸性溶
液とともに回収することができる。
As described above, according to the method for purifying contaminated soil according to the present embodiment, the electrodes are arranged in the contaminated soil to energize, and the acidic solution is supplied from the anode and collected from the cathode. Therefore, while preventing the heavy metal contained in the contaminated soil from becoming a hydroxide in the vicinity of the cathode, the heavy metal can be moved to the cathode by energization and recovered together with the acidic solution.

【0035】そのため、汚染土壌を掘削除去することな
く、重金属だけを汚染土壌から回収することが可能とな
り、掘削作業が不要になるのみならず、掘削された土砂
をダンプ等で搬出する手間やその後の固化処理等を省く
ことができる。
Therefore, it is possible to recover only heavy metals from the contaminated soil without excavating and removing the contaminated soil, which not only eliminates the need for excavation work, but also takes time and effort to carry out the excavated soil with a dump or the like. Can be omitted.

【0036】また、通水孔を設けた導電性の中空管を電
極とし、当該通水孔を介して酸性溶液の供給および回収
を行うようにしたので、電極と中空管とを別体とする場
合に比べて土壌内での配設作業が楽になる。
Further, since the conductive hollow tube provided with the water hole is used as an electrode and the supply and recovery of the acidic solution are performed through the water hole, the electrode and the hollow tube are separated. Installation work in the soil is easier than in the case of

【0037】また、酸性溶液を陽極側から供給するよう
にしたので、陰極近傍に到達した段階で該陰極近傍のO
- を中和する役割を果たすのみならず、汚染土壌内の
導電性が十分確保されていない場合には、これを確保す
るという役割も果たす。
Further, since the acidic solution is supplied from the anode side, when the acid solution reaches the vicinity of the cathode, the oxygen solution near the cathode is supplied.
H - not only serves to neutralize, if the conductivity of the contaminated soil is not sufficiently ensured, also serves of ensuring this.

【0038】本実施形態では、金属として、カドミウ
ム、鉛、銅、亜鉛、ニッケル、クロム等の重金属を対象
としたが、これ以外にもアルミニウム、マグネシウム、
カルシウム、チタン、マンガン、鉄、コバルト、ガリウ
ム、モリブテン、銀、錫、ビスマス等の金属も本実施形
態の浄化方法を用いて回収除去できることは言うまでも
ない。
In this embodiment, heavy metals such as cadmium, lead, copper, zinc, nickel, and chromium are used as metals.
It goes without saying that metals such as calcium, titanium, manganese, iron, cobalt, gallium, molybdenum, silver, tin, and bismuth can also be collected and removed using the purification method of the present embodiment.

【0039】また、本実施形態では、酸性溶液を陽極側
から供給するようにしたが、上述した実験でもわかる通
り、陽極側では金属はイオンの状態で存在しやすい環境
にある。したがって、図6(a) に示すように、陽極2a
からは土壌内の導電性を確保するための水だけを供給
し、酸性溶液は、例えば地上から散水するような方法で
陰極2b近傍に供給してもよい。かかる構成によれば、
酸性溶液は、周囲に拡散することなくOH- の中和に効
率的に寄与し、したがって、酸性溶液の供給量を節約す
ることが可能となる。
In this embodiment, the acidic solution is supplied from the anode side. However, as can be seen from the above-described experiment, the environment is such that the metal tends to exist in the ion state on the anode side. Therefore, as shown in FIG.
May supply only water for ensuring conductivity in the soil, and the acidic solution may be supplied to the vicinity of the cathode 2b by, for example, spraying water from the ground. According to such a configuration,
Acidic solution, OH without diffusing around - efficiently contribute neutralization of the, thus, it is possible to save the supply amount of the acid solution.

【0040】また、汚染土壌1が例えば地下水位以下で
あって、給水、散水等の処置を施さなくとも通電を確保
することができるのであれば、陽極については、図6
(b) に示すように、導電性の棒材21で構成し、給水機
能を省いた構造としてもよい。
If the contaminated soil 1 is below the groundwater level, for example, and if it is possible to secure the power supply without taking measures such as water supply and water sprinkling, the anode will be replaced with the one shown in FIG.
As shown in (b), the structure may be made of a conductive rod 21 without the water supply function.

【0041】また、酸性溶液を陽極と陰極との間に供給
するようにしてもよい。かかる構成においては、酸性溶
液を陰極に供給する場合と陽極に供給する場合との中間
的な使用形態として位置づけられるものであり、土壌内
における通電性の確保および酸性溶液の使用量の節約を
ある程度達成することができる。
Further, an acidic solution may be supplied between the anode and the cathode. In such a configuration, it is positioned as an intermediate usage between the case where the acidic solution is supplied to the cathode and the case where the acidic solution is supplied to the anode. Can be achieved.

【0042】また、特に図示しないが、供給用あるいは
回収用の中空管と電極とを必ずしも兼用とする必要はな
く、中空管を非導電性材料で形成し、電極は別途、鉄や
炭素棒で構成するようにしてもよい。
Although not particularly shown, the supply or recovery hollow tube and the electrode do not necessarily need to be shared, and the hollow tube is formed of a non-conductive material, and the electrode is separately made of iron or carbon. It may be constituted by a rod.

【0043】(第2実施形態)図7(a) は、本実施形態
に係る電極配置状況を示したものである。同図でわかる
ように、本実施形態においても第1実施形態と同様、重
金属Mを含む汚染土壌1内に電極32、33を配設して
直流電源のプラス側を電極32に、マイナス側を電極3
3に接続するが、電極33は地表面付近に、電極32は
所定の深さ位置に配置した点が異なる。また、電極32
は、鉄、炭素棒等で構成してあり、電極33は電極2b
と同様、導電性材料で形成した中空管5bに通水孔4を
多数穿孔して構成するとともに、その内部に回収管6b
を挿入してある。
(Second Embodiment) FIG. 7A shows an electrode arrangement according to the second embodiment. As can be seen from the figure, in this embodiment, similarly to the first embodiment, electrodes 32 and 33 are arranged in the contaminated soil 1 containing heavy metal M, and the positive side of the DC power supply is set to the electrode 32 and the negative side is set to the negative side. Electrode 3
3, except that the electrode 33 is arranged near the ground surface and the electrode 32 is arranged at a predetermined depth position. The electrode 32
Is made of iron, carbon rod, etc., and the electrode 33 is the electrode 2b
Similarly to the above, a large number of water passage holes 4 are formed in a hollow tube 5b made of a conductive material, and a collection tube 6b
Has been inserted.

【0044】ここで、汚染土壌1内の位置によって電流
密度に差があることに留意する必要がある。すなわち、
図7(b) に示す点aは、点bに比べて電流密度が小さ
く、したがって、点aに存在する重金属については、電
気泳動による移動効果があまり期待できないと思われ
る。そのため、電極32は、実際に処理したい範囲の下
限よりもさらにある程度下がった位置に設置するのがよ
い。具体的には、これらのことを考慮した上で、電極3
2を例えば地表から1乃至2m程度の深さに配置し、水
平方向には0.5乃至1m程度のピッチで配置する。
Here, it should be noted that there is a difference in the current density depending on the position in the contaminated soil 1. That is,
The current density at the point a shown in FIG. 7B is smaller than that at the point b. Therefore, it is considered that the heavy metal present at the point a cannot be expected to have much electrophoretic transfer effect. For this reason, it is preferable that the electrode 32 is provided at a position which is lower to some extent than the lower limit of the range to be actually processed. Specifically, taking these factors into consideration, the electrode 3
2 are arranged at a depth of about 1 to 2 m from the ground surface, for example, and are arranged at a pitch of about 0.5 to 1 m in the horizontal direction.

【0045】電極32、33を配設するにあたっては、
図8に示すように、まず、バックホウ等によって汚染土
壌1を掘削してトレンチ41を形成し、次いで、該トレ
ンチ内に電極32を落とし込んで土42で覆土し、次い
で地表面近傍に電極33を配置して土43で覆土するよ
うにすればよい。
In arranging the electrodes 32 and 33,
As shown in FIG. 8, first, the contaminated soil 1 is excavated with a backhoe or the like to form a trench 41, then the electrode 32 is dropped into the trench and covered with the soil 42, and then the electrode 33 is placed near the ground surface. What is necessary is just to arrange | position and cover it with the soil 43.

【0046】電極32、33を配置したならば、これら
の電極間に直流電圧を印加する。すると、陽イオンの形
で土壌内に存在する金属M2+若しくはM3+は、図7に示
したように電気泳動によって陽極32から陰極33側に
上昇し始める。
After the electrodes 32 and 33 are arranged, a DC voltage is applied between these electrodes. Then, the metal M 2+ or M 3+ existing in the soil in the form of a cation starts to rise from the anode 32 to the cathode 33 by electrophoresis as shown in FIG.

【0047】また、かかる通電作業と同時に、第1実施
形態で説明した酸性溶液を散水等の方法で地上から供給
する。すると、酸性溶液は、陰極33付近の汚染土壌1
中に拡散し、陰極33側で発生しているOH- を中和す
る。そして、第1実施形態で説明したと同様、陰極33
近傍がアルカリ環境から中性ないしは酸性の環境に変化
し、陰極33の近くまで移動してきた金属は、水酸化物
となることなく陽イオンM2+若しくはM3+のまま、ある
いはすでに水酸化物となったものも再びイオン化して陰
極33に到達し、通水孔4を介して中空管5b内に集ま
る。
At the same time as the energizing operation, the acidic solution described in the first embodiment is supplied from the ground by watering or the like. Then, the acidic solution becomes contaminated soil 1 near the cathode 33.
Neutralize - diffuse into, OH occurring at the cathode 33 side. Then, as described in the first embodiment, the cathode 33
The vicinity changes from an alkaline environment to a neutral or acidic environment, and the metal that has moved to the vicinity of the cathode 33 remains as a cation M 2+ or M 3+ without becoming a hydroxide, or is already a hydroxide. Is ionized again, reaches the cathode 33, and collects in the hollow tube 5b through the water passage hole 4.

【0048】次に、図示しないポンプ等を用いて中空管
5b内の酸性溶液を回収し、次いで、これを水処理施設
に送って該溶液中の重金属を除去する。
Next, the acidic solution in the hollow tube 5b is recovered using a pump (not shown) or the like, and then sent to a water treatment facility to remove heavy metals in the solution.

【0049】このような酸性溶液の供給並びに通電を所
定時間継続して行い、汚染土壌1中の重金属を回収す
る。なお、回収しきれない重金属が陰極33近傍に残留
するようであれば、バックホウやショベルなどで適宜掘
削除去すればよい。
The supply of such an acidic solution and the energization are continuously performed for a predetermined time, and the heavy metals in the contaminated soil 1 are collected. If heavy metals that cannot be recovered remain in the vicinity of the cathode 33, they may be appropriately excavated and removed with a backhoe or shovel.

【0050】以上説明したように、本実施形態の汚染土
壌の浄化方法によれば、第1実施形態と同様、汚染土壌
を掘削除去することなく、重金属だけを汚染土壌から回
収することが可能となるほか、これに加えて、たとえ回
収しきれなかった重金属が残留したとしても、かかる残
留箇所は地表面近くの浅い部分に限定されるので、これ
を容易に掘削除去することが可能であり、しかも掘削土
量は非常に少ない。
As described above, according to the method for purifying contaminated soil of the present embodiment, it is possible to recover only heavy metals from contaminated soil without excavating and removing the contaminated soil, as in the first embodiment. In addition, in addition to this, even if heavy metals that could not be recovered remain, such residual parts are limited to shallow parts near the ground surface, so it is possible to easily excavate and remove them. Moreover, the amount of excavated soil is very small.

【0051】本実施形態では特に言及しなかったが、適
用可能な金属の種類が多岐にわたる点は、第1実施形態
と同様である。
Although not particularly mentioned in the present embodiment, the applicable metal types are various as in the first embodiment.

【0052】また、本実施形態では、酸性溶液を地上か
ら散水等の方法で供給するようにしたが、図9に示すよ
うに、地表面近傍に中空管5bと同様の中空管51を埋
設し、かかる中空管51を介して陰極33の近傍に供給
するようにしてもよい。かかる構成においても、陰極3
3近傍のOH- を中和し、陰極33の近くまで移動して
きた金属を陽イオンM2+若しくはM3+のまま、あるいは
すでに水酸化物となったものも再びイオン化して陰極3
3に到達させ、さらに通水孔4を介して該陰極33の中
空管5b内に集めることができる。
In the present embodiment, the acidic solution is supplied from the ground by a method such as watering. However, as shown in FIG. 9, a hollow tube 51 similar to the hollow tube 5b is provided near the ground surface. It may be buried and supplied near the cathode 33 via the hollow tube 51. In such a configuration, the cathode 3
3 near the OH - to neutralize the cathode 3 to be ionized again those metals that have moved to the vicinity remains cations M 2+ or M 3+, or already a hydroxide of the cathode 33
3 and can be collected in the hollow tube 5b of the cathode 33 through the water hole 4.

【0053】(第3実施形態)第2実施形態では、長尺
状の電極32、33を水平に配置するようにしたが、本
発明は、かかる構成に限定されるものではなく、要は、
陰極を地表面近傍に、陽極を地中に配設すればよい。
(Third Embodiment) In the second embodiment, the elongated electrodes 32 and 33 are arranged horizontally. However, the present invention is not limited to such a configuration.
The cathode may be provided near the ground surface and the anode may be provided underground.

【0054】図10は、本実施形態における電極配置状
況を示したものである。本実施形態においては、同図で
わかるように、コンクリート等で形成された杭61の先
端に電極62を、頭部に電極63を取付け、これらを所
定のピッチで格子状に汚染土壌1内に埋設するととも
に、電極62、63にそれぞれ直流電源のプラス側、マ
イナス側を接続して構成してある。また、陰極63は、
図11に示すように、通水孔4を穿孔した中空構造と
し、該中空内部に回収管6bを挿入してある。
FIG. 10 shows the arrangement of electrodes in this embodiment. In the present embodiment, as can be seen in the figure, an electrode 62 is attached to the tip of a pile 61 made of concrete or the like, and an electrode 63 is attached to the head. In addition to being buried, the positive and negative sides of the DC power supply are connected to the electrodes 62 and 63, respectively. The cathode 63 is
As shown in FIG. 11, the water passage hole 4 has a hollow structure, and a recovery pipe 6b is inserted into the hollow.

【0055】本実施形態においても第2実施形態と同
様、電極62、63間に直流電圧を印加して金属M2+
しくはM3+を電気泳動によって陽極62から陰極63側
に上昇させるとともに、酸性溶液を散水等の方法で地上
から陰極63近傍に供給する。そして、陰極63の近く
まで移動してきた金属を陽イオンM2+若しくはM3+のま
ま、あるいはすでに水酸化物となったものも再びイオン
化させて陰極63に到達させ、通水孔4を介して中空内
部に集めるとともに、図示しないポンプ等を用いて中空
内部の酸性溶液を重金属とともに回収することができ
る。
In this embodiment, as in the second embodiment, a direct current voltage is applied between the electrodes 62 and 63 to raise the metal M 2+ or M 3+ from the anode 62 to the cathode 63 by electrophoresis. The acidic solution is supplied to the vicinity of the cathode 63 from the ground by watering or the like. Then, the metal that has moved to the vicinity of the cathode 63 remains as the cation M 2+ or M 3+ , or the metal that has already become a hydroxide is again ionized to reach the cathode 63, and is passed through the water hole 4. And the acidic solution inside the hollow can be collected together with heavy metals using a pump (not shown) or the like.

【0056】かかる実施形態においても、第2実施形態
とほぼ同様の効果が得られる他、杭の打込みによって自
動的に電極が配置されることとなり、電極配置作業が容
易になるという効果も奏する。
In this embodiment, substantially the same effects as those of the second embodiment can be obtained. In addition, the electrodes are automatically arranged by driving the stakes, so that the operation of arranging the electrodes becomes easy.

【0057】[0057]

【発明の効果】以上述べたように、本発明に係る汚染土
壌の浄化方法によれば、汚染土壌を掘削除去することな
く金属だけを回収することが可能となる。また、酸性溶
液の使用量を大幅に節約することができるという効果も
奏する。
As described above, according to the method for purifying contaminated soil according to the present invention, it is possible to recover only metal without excavating and removing contaminated soil. In addition, there is an effect that the amount of the acidic solution used can be greatly reduced.

【0058】[0058]

【0059】[0059]

【0060】[0060]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施形態に係る汚染土壌の浄化方法の実施状
況を示した図であり、(a) は全体概略図、(b)は電極構
造を詳細に示した側面図。
FIG. 1 is a view showing an implementation state of a method for purifying contaminated soil according to the present embodiment, where (a) is an overall schematic view and (b) is a side view showing an electrode structure in detail.

【図2】本実施形態の作用を示した説明図であり、(a)
は金属イオンの移動の様子を示した図、(b) は金属イオ
ンの溶解度とpHとの関係を示したグラフ。
FIG. 2 is an explanatory view showing the operation of the present embodiment, and FIG.
FIG. 3 is a diagram showing the movement of metal ions, and FIG. 4B is a graph showing the relationship between the solubility of metal ions and pH.

【図3】本実施形態に関する実験を行った装置を示した
斜視図。
FIG. 3 is a perspective view showing an apparatus in which an experiment according to the embodiment is performed.

【図4】図3に示した実験装置で得られた実験結果であ
り、陽極からの距離によって土壌のpHがどのように変
化するかを通電時間をパラメータとして描いたグラフ。
FIG. 4 is a graph showing experimental results obtained by the experimental apparatus shown in FIG. 3, illustrating how soil pH changes depending on a distance from an anode, with the energization time as a parameter.

【図5】汚染土壌に含まれている重金属の量を銅を指標
として描いたグラフ。
FIG. 5 is a graph depicting the amount of heavy metals contained in contaminated soil using copper as an index.

【図6】第1実施形態の変形例を示した概略図。FIG. 6 is a schematic diagram showing a modification of the first embodiment.

【図7】第2実施形態における電極配置状況を示した断
面図。
FIG. 7 is a sectional view showing the arrangement of electrodes in the second embodiment.

【図8】第2実施形態において電極を配置する施工手順
を示した断面図。
FIG. 8 is a cross-sectional view showing a procedure for arranging electrodes in the second embodiment.

【図9】第2実施形態の変形例およびその作用を示した
断面図。
FIG. 9 is a sectional view showing a modification of the second embodiment and its operation.

【図10】第3実施形態における電極配置状況を示した
図であり、(a)は平面図、(b)はA―A線に沿う断面図。
FIGS. 10A and 10B are diagrams showing the arrangement of electrodes in the third embodiment, where FIG. 10A is a plan view and FIG. 10B is a cross-sectional view along line AA.

【図11】第3実施形態で用いる電極の詳細断面図。FIG. 11 is a detailed sectional view of an electrode used in the third embodiment.

【符号の説明】[Explanation of symbols]

1 汚染土壌 2a、2b 電極 4 通水孔 5a、5b 中空管 21 電極 32、33 電極 51 中空管 62、63 電極 DESCRIPTION OF SYMBOLS 1 Contaminated soil 2a, 2b Electrode 4 Water hole 5a, 5b Hollow tube 21 Electrode 32, 33 Electrode 51 Hollow tube 62, 63 Electrode

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−218355(JP,A) 特開 平5−59716(JP,A) (58)調査した分野(Int.Cl.7,DB名) B09B 3/00 304 - 5/00 E02D 3/11 A62D 3/00 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-6-218355 (JP, A) JP-A-5-59716 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B09B 3/00 304-5/00 E02D 3/11 A62D 3/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属を含む汚染土壌中に陽極および陰極
からなる一対の電極を配設し、次いで、該電極間に直流
電圧を印加するとともに前記陰極近傍に所定の酸性溶液
を供給し、次いで、該酸性溶液を前記陰極若しくはその
近傍から回収する汚染土壌の浄化方法であって、陽イオ
ンの形で土壌内に存在する前記金属が電気泳動によって
上昇するように、前記陰極を地表面近傍に配設し、前記
陽極を地中に配設することを特徴とする汚染土壌の浄化
方法。
1. A pair of electrodes consisting of an anode and a cathode are disposed in contaminated soil containing a metal, and then a DC voltage is applied between the electrodes and a predetermined acidic solution is supplied near the cathode. A method for purifying contaminated soil by recovering the acidic solution from the cathode or the vicinity thereof, wherein the metal is present in the soil in the form of cations and rises by electrophoresis so that the cathode is located near the ground surface. And disposing the anode in the ground.
【請求項2】 前記陽極を、実際に処理したい範囲の下
限よりもさらに下がった位置に設置する請求項1記載の
汚染土壌の浄化方法。
2. The method for purifying contaminated soil according to claim 1, wherein the anode is provided at a position lower than a lower limit of a range to be actually treated.
【請求項3】 杭の先端に前記陽極を取り付けるととも
に、該杭の頭部に前記陰極を取り付け、かかる状態で前
記杭を前記汚染土壌に埋設するとともに、前記陰極を、
通水孔を穿孔した中空構造とし、該中空内部に回収管を
挿入して構成した請求項1記載の汚染土壌の浄化方法。
3. Attaching the anode to the tip of a stake, attaching the cathode to the head of the stake, burying the stake in the contaminated soil in this state,
2. The method for purifying contaminated soil according to claim 1, wherein the water passage hole has a hollow structure, and a collection pipe is inserted inside the hollow.
【請求項4】 前記電極を通水孔を有する導電性の中空
管で構成し、該中空管を介して前記酸性溶液の供給若し
くは回収を行う請求項1記載の汚染土壌の浄化方法。
4. The method for purifying contaminated soil according to claim 1, wherein the electrode is constituted by a conductive hollow tube having a water passage hole, and the acidic solution is supplied or recovered through the hollow tube.
JP21833095A 1995-08-04 1995-08-04 How to clean contaminated soil Expired - Fee Related JP3178581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21833095A JP3178581B2 (en) 1995-08-04 1995-08-04 How to clean contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21833095A JP3178581B2 (en) 1995-08-04 1995-08-04 How to clean contaminated soil

Publications (2)

Publication Number Publication Date
JPH0947748A JPH0947748A (en) 1997-02-18
JP3178581B2 true JP3178581B2 (en) 2001-06-18

Family

ID=16718170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21833095A Expired - Fee Related JP3178581B2 (en) 1995-08-04 1995-08-04 How to clean contaminated soil

Country Status (1)

Country Link
JP (1) JP3178581B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010088497A (en) * 2001-07-27 2001-09-28 김수삼 Injection of nutrients and TEAs for bioremediation by electrical field method
KR100406766B1 (en) * 2001-10-05 2003-11-21 주식회사 에코필 Method for decontamination of soil using electrokinetic
KR20030072052A (en) * 2002-03-05 2003-09-13 주식회사 에코필 dynamic galvanic
KR100473675B1 (en) * 2002-08-14 2005-03-10 김수삼 In-Situ immobilization of heavy-metal contaminated soil by electrokinetic phosphoric acid injection
KR100414771B1 (en) * 2003-07-14 2004-01-13 한국환경기술(주) Chemical oxidation method of petroleum-contaminated soil using electro-osmosis and apparatus thereof
JP4718585B2 (en) * 2008-07-07 2011-07-06 登坂 卓也 Treatment method of contaminated soil
US9022688B2 (en) * 2010-12-01 2015-05-05 Empire Technology Development Llc Subsurface induced pore clogging to prevent spill flow
US8992122B2 (en) * 2011-10-12 2015-03-31 Empire Technology Development Llc Electro-remediation
CN103639193B (en) * 2013-12-26 2015-07-22 江苏盖亚环境工程有限公司 Restoration method for organically polluted site soil through circular in-situ chemical oxidation
CN109811758B (en) * 2019-03-14 2024-01-16 宁波大学 Electroosmosis composite foundation and construction method thereof
CN111395349A (en) * 2020-03-24 2020-07-10 广东中科碧城环境技术有限公司 Method for cleaning and digging polluted soil at site boundary
CN115672962A (en) * 2022-09-28 2023-02-03 贵州梵瑞康药业有限公司 Soil remediation method for removing heavy metals

Also Published As

Publication number Publication date
JPH0947748A (en) 1997-02-18

Similar Documents

Publication Publication Date Title
US5589056A (en) Process for electroeclamation of soil material
JP3178581B2 (en) How to clean contaminated soil
US5584980A (en) Electric field method and apparatus for decontaminating soil
JP2006346567A (en) In-situ purification method of contaminated soil
CN110434166A (en) The bicyclic vertical self-cleaning type dehydrated in situ of one kind subtracts dirty electro reclamation device and method
KR100427692B1 (en) system of Electrokinetic soil remediation
JP3214600B2 (en) How to clean contaminated soil
JP3381764B2 (en) How to clean contaminated soil
US6228247B1 (en) Electric field method and apparatus for decontaminating soil
JPH115077A (en) Contaminated ground purification system
JP2006346519A (en) In-situ purification method of contaminated soil
JP3214607B2 (en) Electrode placement method for removal of anionic contaminants
JP3816438B2 (en) Treatment of contaminated groundwater and soil by electrode reduction method
JP3180313B2 (en) Anion contaminant removal equipment
KR100667465B1 (en) The clean-up and remediation equipment of contaminated ground mixed with cohesionless and cohesive soils by electro flushing reactive pile technology
Lageman et al. Electro-reclamation: State-of-the-art and future developments
JP3575544B2 (en) Electrode placement method for removal of anionic contaminants
JP3180312B2 (en) Concentration control method for removal of anionic contaminants
JP2002361227A (en) Method and device for treating soil
JP3149425B2 (en) Concentration control method for removal of anionic contaminants
JPH1034126A (en) Method and apparatus for purifying soil polluted with heavy metal
JP3214606B2 (en) How to remove anionic contaminants
JP3343662B2 (en) In-situ treatment method and apparatus for hydrous soil by electroosmosis
JP2002224657A (en) Restoration method for contaminated soil
KR0134078B1 (en) Device for solidifying solid polluted with heavy metals

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010315

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080413

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090413

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees