JPH11253924A - Purification of soil polluted with heavy metal and electrolytic bath for purification - Google Patents

Purification of soil polluted with heavy metal and electrolytic bath for purification

Info

Publication number
JPH11253924A
JPH11253924A JP10062412A JP6241298A JPH11253924A JP H11253924 A JPH11253924 A JP H11253924A JP 10062412 A JP10062412 A JP 10062412A JP 6241298 A JP6241298 A JP 6241298A JP H11253924 A JPH11253924 A JP H11253924A
Authority
JP
Japan
Prior art keywords
cathode
soil
electrolytic cell
contaminated soil
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10062412A
Other languages
Japanese (ja)
Inventor
Miki Masuda
幹 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP10062412A priority Critical patent/JPH11253924A/en
Publication of JPH11253924A publication Critical patent/JPH11253924A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To purify/restore polluted soil by a method in which soil polluted with heavy metals which was subjected to solvent extraction is directly subjected to electrochemical treatment without being dewatered, and the heavy metals are removed economically at high treatment efficiency. SOLUTION: Polluted soil which was subjected to extraction with an acidic solvent is placed into a filter medium 2 arranged in an electrolytic cell 1, a cathode 3a arranged on the lower side of the electrolytic cell 1 is separated from the polluted soil to form a cathode part, soil particles in the polluted soil is precipitated, water is introduced from the filter medium 2 into the cathode part 3, and while water in the cathode part 3 being discharged, direct current voltage is applied between the cathode 3a and an anode 4a to perform electrochemical treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水に難溶性又は不
溶性の重金属で汚染された土壌、特に緩衝能力が高い細
粒部の重金属汚染土壌から重金属を除去する方法及びそ
の方法に用いる浄化用電解槽に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing heavy metals from soil contaminated with heavy metals which are hardly soluble or insoluble in water, in particular, from heavy metal contaminated soil in fine-grained parts having a high buffer capacity, and a purification method used in the method. It relates to an electrolytic cell.

【0002】[0002]

【従来の技術】最近では、市街地再開発に伴う調査によ
り、工場跡地や廃棄物処理場等の重金属汚染が判明する
事例が増加している。このような重金属による汚染土壌
の浄化処理対策としては、汚染物質の不溶化処理や遮水
工事、覆土工事等の周辺環境から汚染土壌を遮断する方
法が一般的である。しかし、これらの方法では、重金属
そのものが現場の土壌中に残るため、処置後も土地利用
に制限がある。
2. Description of the Related Art In recent years, there has been an increasing number of cases in which heavy metal contamination on factory sites, waste disposal sites, and the like has been found through investigations associated with urban redevelopment. As a countermeasure for the purification treatment of the contaminated soil by such heavy metals, a method of shielding the contaminated soil from the surrounding environment such as a process of insolubilizing the contaminant, a water shielding work, and a soil covering work is generally used. However, in these methods, since the heavy metals themselves remain in the soil at the site, there is a limitation on land use after the treatment.

【0003】そこで最近では、重金属で高濃度に汚染さ
れた土壌は現場から運び出して廃棄し、新しい土を入れ
替える処置も行われている。しかしながら、産業廃棄物
の最終処分場が近い将来不足することは明らかであるた
め、汚染土壌を廃棄せずに、汚染土壌中の重金属を除去
して浄化することが検討されている。
[0003] In recent years, therefore, measures have been taken to remove soil contaminated by heavy metals at a high concentration from the site and discard it, and replace it with new soil. However, it is clear that there will be a shortage of final disposal sites for industrial waste in the near future. Therefore, it has been studied to remove and contaminate heavy metals in contaminated soil without discarding the contaminated soil.

【0004】このような汚染土壌の浄化方法としては、
土壌洗浄法と電気化学的処理法とが知られている。土壌
洗浄法とは、水又は適当な溶媒を用いて汚染土壌から汚
染物質を物理的・化学的に抽出分離する方法である。具
体的には、汚染土壌を溶媒と共に混合して洗浄し、重金
属を高濃度に含有する粒子を除去し、得られた清浄な土
壌を汚染現場の埋め戻しに用いる。
[0004] As a method of purifying such contaminated soil,
Soil cleaning methods and electrochemical treatment methods are known. The soil washing method is a method of physically and chemically extracting and separating contaminants from contaminated soil using water or a suitable solvent. Specifically, the contaminated soil is mixed and washed with a solvent to remove particles containing a high concentration of heavy metals, and the obtained clean soil is used for backfilling the contaminated site.

【0005】この土壌洗浄法では、廃棄物となる汚染土
壌を減容化するので、供給された汚染土壌量に対して得
られた清浄な土壌量の割合が高いほど効果的な浄化方法
となる。また、水に難溶性や不溶性の重金属が主な汚染
源となっている場合、抽出溶媒として水や塩化カルシウ
ム等の塩溶液を用いても殆ど除去不可能であるため、こ
のような場合は溶媒として硝酸や塩酸などの酸性溶液が
用いられる。
In this soil washing method, the volume of contaminated soil that becomes waste is reduced. Therefore, the higher the ratio of the obtained clean soil amount to the supplied contaminated soil amount, the more effective the purification method. . In addition, when heavy metals that are hardly soluble or insoluble in water are the main contaminants, they are almost impossible to remove even using a salt solution such as water or calcium chloride as an extraction solvent. An acidic solution such as nitric acid or hydrochloric acid is used.

【0006】一方、電気化学的処理法は、汚染土壌中に
陰極と陽極を配置し、その電気間に直流電圧を印加する
ことによって、土壌中にイオン泳動作用と電圧浸透作用
を起こして汚染物質を濃縮し、回収する方法である。
[0006] On the other hand, in the electrochemical treatment method, a cathode and an anode are arranged in contaminated soil, and a direct current voltage is applied between the electricity to cause an iontophoretic action and a voltage osmotic action in the soil to cause pollutants. Is concentrated and recovered.

【0007】[0007]

【発明が解決しようとする課題】上記の土壌洗浄法で
は、難溶性や不溶性の重金属を除去する場合に溶媒とし
て酸性溶媒を使用し、洗浄後の土壌と汚染物質を抽出し
た酸性溶媒とを分離するために濾過・洗浄を必要とす
る。しかし、この濾過・洗浄工程において、酸性溶媒に
一旦溶解した重金属イオンが再び土壌に吸着するため、
除去効率が大きく低下するという問題があった。また、
酸性溶媒として硝酸等を使用した場合には、土壌中に硝
酸イオン等の有害な物質が残留するので、これを洗浄除
去するために更に多く工程とエネルギーを必要としてい
た。
In the above-mentioned soil washing method, an acidic solvent is used as a solvent for removing hardly soluble or insoluble heavy metals, and the soil after washing is separated from the acidic solvent from which contaminants are extracted. Requires filtration and washing. However, in this filtration / washing step, the heavy metal ions once dissolved in the acidic solvent are adsorbed to the soil again,
There is a problem that the removal efficiency is greatly reduced. Also,
When nitric acid or the like is used as the acidic solvent, harmful substances such as nitrate ions remain in the soil. Therefore, more steps and energy are required to wash and remove the harmful substances.

【0008】また、上記の電気化学的処理法では、土壌
の高緩衝力や低導電性等のために、特に水に難溶性や不
溶性の重金属で汚染された汚染土壌の場合には、その浄
化修復に要する期間が長期化するという問題があった。
Further, in the above-mentioned electrochemical treatment method, especially in the case of contaminated soil contaminated with heavy metals which are hardly soluble or insoluble in water, the soil is degraded due to the high buffering power and low conductivity of the soil. There was a problem that the time required for restoration was prolonged.

【0009】そこで、土壌洗浄法による溶媒抽出処理を
行った後、その溶媒抽出処理後の汚染土壌を更に電気化
学的処理法により処理することが考えられる。この方法
によれば、第1工程の溶媒抽出処理により汚染土壌のp
Hを低下させ、土壌の導電率を増加させることが可能と
なる。従って、第2工程として電気化学的処理を行う
と、汚染土壌中の溶解抽出された重金属イオンはイオン
泳動作用により陰極の方へ移動するため、重金属イオン
の土壌表面へ吸着を防止することができる。
Therefore, it is conceivable that after performing the solvent extraction treatment by the soil washing method, the contaminated soil after the solvent extraction treatment is further treated by the electrochemical treatment method. According to this method, the solvent extraction treatment in the first step allows the p
It is possible to lower H and increase the conductivity of the soil. Therefore, when the electrochemical treatment is performed as the second step, the heavy metal ions dissolved and extracted in the contaminated soil move toward the cathode by the iontophoretic action, so that the adsorption of the heavy metal ions to the soil surface can be prevented. .

【0010】しかしながら、溶媒抽出処理は汚染土壌に
酸性溶媒を添加して撹拌混合するため、処理後の汚染土
壌は多くの水分む含水率100%以上の泥水状であり、
そのまま電気化学的処理を施したのでは容積当たりの土
壌重量が極めて少なく、単位時間当たりの土壌処理量が
減少するため、処理効率が極めて悪いという欠点があっ
た。また、抽出溶媒処理と電気化学的処理の間に機械的
な脱水工程を設けることもできるが、その場合には余分
な工程とエネルギーの消費が増えるため、経済性を損な
うという問題があった。
However, in the solvent extraction treatment, an acidic solvent is added to the contaminated soil and the mixture is stirred and mixed. Therefore, the contaminated soil after the treatment is muddy having a large water content of 100% or more.
If the electrochemical treatment is performed as it is, the soil weight per volume is extremely small, and the amount of soil treated per unit time is reduced, resulting in a disadvantage that the treatment efficiency is extremely poor. Further, a mechanical dehydration step can be provided between the extraction solvent treatment and the electrochemical treatment. However, in that case, extra steps and energy consumption are increased, and thus there is a problem that economic efficiency is impaired.

【0011】本発明は、このような従来の事情に鑑み、
溶媒抽出処理した重金属汚染土壌に余分な脱水処理を行
うことなく、そのまま電気化学的処理を施すことがで
き、単位時間当たりの土壌処理量を増やして、処理効率
が高く経済的な重金属汚染土壌の浄化方法及びその装置
を提供することを目的とする。
The present invention has been made in view of such a conventional situation,
The heavy metal-contaminated soil that has been subjected to solvent extraction can be subjected to electrochemical treatment without performing extra dehydration treatment, increasing the amount of soil treatment per unit time and increasing the efficiency of economical heavy metal-contaminated soil. It is an object of the present invention to provide a purification method and an apparatus therefor.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するた
め、本発明が提供する重金属汚染土壌の浄化方法は、掘
削した汚染土壌に酸性溶媒を混合して、重金属を溶媒抽
出する第1工程と、溶媒抽出処理後の汚染土壌を入れた
電解槽内に配置した電極間に直流電圧を印加して、電気
化学的作用により重金属等のイオンを移動させて回収す
る第2工程とからなり、該第2工程の電解槽内に前記溶
媒抽出処理後の汚染土壌を入れる濾過材を配置し、電解
槽の下側に配置した陰極電極を該濾過材で汚染土壌から
分離して陰極部を形成し、前記汚染土壌中の土壌粒子を
沈降させ且つ水分を濾過材から陰極部内に流入させると
共に、陰極部内の水を排出しながら、陰極電極と陽極電
極の間に直流電圧を印加することを特徴とする。
In order to achieve the above object, a method for purifying heavy metal contaminated soil provided by the present invention comprises a first step of mixing an excavated contaminated soil with an acidic solvent and extracting heavy metal with a solvent. A second step of applying a DC voltage between electrodes arranged in an electrolytic cell containing the contaminated soil after the solvent extraction treatment, and moving and collecting ions such as heavy metals by electrochemical action. A filter material for putting the contaminated soil after the solvent extraction treatment is arranged in the electrolytic cell of the second step, and the cathode electrode disposed below the electrolytic cell is separated from the contaminated soil by the filter material to form a cathode portion. A method in which a DC voltage is applied between a cathode electrode and an anode electrode while sedimenting soil particles in the contaminated soil and allowing water to flow from the filter medium into the cathode portion, and discharging water from the cathode portion. I do.

【0013】また、上記重金属汚染土壌の浄化方法に使
用する重金属汚染土壌の浄化用電解槽は、内側に溶媒抽
出処理後の汚染土壌を入れる濾過材を備え、電解槽下側
で該濾過材により汚染土壌から分離した陰極部を形成
し、該陰極部内に配置した陰極電極と、該陰極電極に対
向して配置した陽極電極と、陰極部内の水を排水する排
水路とを備えることを特徴とする。
The electrolytic cell for purifying heavy metal-contaminated soil used in the above-described method for purifying heavy metal-contaminated soil is provided with a filter material for containing the contaminated soil after the solvent extraction treatment. Forming a cathode portion separated from the contaminated soil, comprising a cathode electrode disposed in the cathode portion, an anode electrode disposed to face the cathode electrode, and a drainage channel for draining water in the cathode portion. I do.

【0014】上記浄化用電解槽は、好ましい一形態とし
て、陰極電極が電解槽下側の側壁部に沿って配置され、
陽極電極が電解槽下側の中央部に陰極電極に対向して配
置されていて、該陽極電極を前記汚染土壌から分離して
陽極部を形成する第2の濾過材を備えている。この電解
槽においては、陰極部内に清浄水を給水する給水路と、
前記陽極部内に溶媒を給水し又は陽極部内の水を排水す
る給排水路を備えることが好ましい。
In a preferred form of the purifying electrolytic cell, a cathode electrode is arranged along a side wall portion below the electrolytic cell,
An anode electrode is disposed in the center of the lower part of the electrolytic cell so as to face the cathode electrode, and a second filtering material is provided for separating the anode electrode from the contaminated soil to form an anode portion. In this electrolytic cell, a water supply channel for supplying clean water into the cathode portion,
It is preferable to provide a water supply / drainage channel for supplying a solvent into the anode section or draining water in the anode section.

【0015】また、上記浄化用電解槽の別の好ましい形
態は、陰極電極が電解槽下側の底壁部に沿って配置さ
れ、複数の貫通孔部を有する陽極電極が電解槽の上下方
向ほぼ中央に陰極電極に対向して配置されている。この
電解槽においては、電解槽の上方に清浄水又は溶媒を給
水する給水手段を備えることが好ましい。
In another preferred embodiment of the purifying electrolytic cell, a cathode electrode is arranged along a bottom wall portion below the electrolytic cell, and an anode electrode having a plurality of through holes is provided substantially in the vertical direction of the electrolytic cell. It is arranged at the center so as to face the cathode electrode. In this electrolytic cell, it is preferable to provide a water supply means for supplying clean water or a solvent above the electrolytic cell.

【0016】[0016]

【発明の実施の形態】第1工程の溶媒抽出処理では、重
金属で汚染された土壌をシャベル等で掘削して溶媒抽出
槽に移し、酸性溶媒を加えて撹拌洗浄し、汚染土壌のp
Hを低下させて重金属が溶出しやすい土壌雰囲気にす
る。この処理により、汚染土壌中の重金属が酸性溶媒に
溶解抽出されるので、後の第2工程での電気化学的処理
に要する時間を低減させることができる。汚染土壌に添
加する酸性溶媒の種類や濃度は、汚染土壌の汚染物質及
びその濃度に依存する。通常、酸性溶媒としては硝酸や
塩酸等が利用でき、溶媒抽出槽内の汚染土壌のpHが2
〜3以下になるように添加すればよい。
BEST MODE FOR CARRYING OUT THE INVENTION In the solvent extraction treatment of the first step, soil contaminated with heavy metals is excavated with a shovel or the like, transferred to a solvent extraction tank, added with an acidic solvent, and stirred and washed.
H is lowered to provide a soil atmosphere in which heavy metals are easily eluted. By this treatment, heavy metals in the contaminated soil are dissolved and extracted in the acidic solvent, so that the time required for the electrochemical treatment in the subsequent second step can be reduced. The type and concentration of the acidic solvent added to the contaminated soil depend on the contaminant in the contaminated soil and its concentration. Usually, nitric acid or hydrochloric acid can be used as the acidic solvent, and the pH of the contaminated soil in the solvent extraction tank is 2 or less.
What is necessary is just to add so that it may be set to ~ 3 or less.

【0017】溶媒抽出処理された汚染土壌は、溶媒抽出
槽からそのまま第2工程の電解槽へと移される。電解槽
内には、少なくとも側壁部に沿い、必要に応じて底壁部
に沿って、濾過材が配置してあり、この濾過材内に溶媒
抽出処理後の汚染土壌を入れるようになっている。ま
た、電解槽の下側(上下方向のほぼ中央から下方)には
陰極電極と陽極電極が対向して配置され、少なくとも陰
極電極は濾過材によって汚染土壌から分離して形成され
た陰極部内に配置されている。
The contaminated soil subjected to the solvent extraction treatment is transferred from the solvent extraction tank to the electrolytic cell in the second step as it is. In the electrolytic cell, a filtering material is arranged at least along the side wall portion and, if necessary, along the bottom wall portion, and the contaminated soil after the solvent extraction treatment is put in the filtering material. . In addition, a cathode electrode and an anode electrode are arranged opposite to each other below the electrolytic cell (substantially from the center in the vertical direction), and at least the cathode electrode is arranged in a cathode portion formed separately from the contaminated soil by a filtering material. Have been.

【0018】第2工程の電気化学的処理では、陽極電極
と陰極電極の間に直流電圧を印可して通電することによ
り、電気浸透作用及びイオン泳動の作用によって、重金
属等の陽イオンは陰極部に移動して濃縮され、同時に陰
イオンは陽極部に移動する。汚染土壌中の土中水は、一
般的に土壌表面が負に帯電していることから、電気浸透
作用により陰極部側に移動する。従って、陰極部内の水
を排水することによって、濃縮された重金属等の汚染物
質を回収除去することができ、また陽極部からは同様に
有害な陰イオンを回収できる。尚、陽極部からの排水は
常時連続して行う必要はなく、必要に応じて又は一定時
間ごとに排水すれば良い。
In the electrochemical treatment of the second step, a dc voltage is applied between the anode electrode and the cathode electrode to energize, and cations such as heavy metals are removed by the electroosmotic action and the iontophoretic action. And anions move to the anode part at the same time. Soil water in contaminated soil generally moves to the cathode side due to electroosmosis because the soil surface is negatively charged. Therefore, by draining the water in the cathode part, contaminants such as concentrated heavy metals can be recovered and removed, and harmful anions can be similarly recovered from the anode part. The drainage from the anode section need not always be performed continuously, but may be performed as needed or at regular intervals.

【0019】本発明においては、溶媒抽出処理後の汚染
土壌を脱水することなく、そのまま電解槽の濾過材内に
入れるので、泥水状の汚染土壌中の土壌粒子が重力差に
よって自然に沈降し、次第に固相と液相に分離する。同
時に、泥水状の汚染土壌中の余分な水分は、重力により
濾過材を通って陰極部内に流入する。従って、陰極部か
らの排水によって液相面が次第に下降するので、必要に
応じて給水等により、電解槽下側の少なくとも土壌電解
部では一定の液相面を維持する。
In the present invention, since the contaminated soil after the solvent extraction treatment is directly put into the filter medium of the electrolytic cell without dehydration, the soil particles in the muddy contaminated soil naturally settle due to gravity difference, It gradually separates into a solid phase and a liquid phase. At the same time, excess water in the muddy contaminated soil flows into the cathode portion through the filter medium due to gravity. Therefore, since the liquid phase gradually lowers due to drainage from the cathode part, a constant liquid surface is maintained at least in the soil electrolysis part below the electrolytic tank by supplying water as necessary.

【0020】特に、電解槽の上側の液相が形成される固
液分離部には電極を配置せず、下側の土壌電解部にのみ
電極を配置することによって、電解槽の下側の土壌電解
部でのみ電極反応が起こるので、印加する電流を最小限
にすることができる。また、汚染土壌中の余分な水分が
自然に陰極部内に脱水されるので、第2工程に供する汚
染土壌を脱水して含水率を調整する必要がない。更に、
含水率の調整工程が省略できるため、第1工程の溶媒抽
出処理において、採用できる固液比の自由度が大きくな
り、適用できる土壌の種類が増加し、土壌の粘性が低下
して撹拌装置の負荷を低減させることが可能となる。
In particular, by disposing no electrode in the solid-liquid separation section where the liquid phase is formed on the upper side of the electrolytic cell, but disposing the electrode only in the lower soil electrolytic section, Since an electrode reaction occurs only in the electrolytic section, the applied current can be minimized. In addition, since excess water in the contaminated soil is naturally dehydrated in the cathode portion, there is no need to dehydrate the contaminated soil to be subjected to the second step and adjust the water content. Furthermore,
Since the step of adjusting the water content can be omitted, the degree of freedom of the solid-liquid ratio that can be employed in the solvent extraction treatment of the first step increases, the type of applicable soil increases, the viscosity of the soil decreases, and The load can be reduced.

【0021】しかも、第2工程の電気化学的処理では、
電気浸透作用により土壌中をイオン等が移動するために
水分が必要であるが、第1工程の溶媒抽出処理後の汚染
土壌中の余分な水分を脱水することなく、有効に利用す
ることができる。汚染土壌中の余分な水分が濾過材を通
って排水され、且つ陰極部からの排水によって、汚染土
壌中の水分が不足した場合には、陰極部や陽極部から清
浄水又は溶媒を逐次を補給すればよい。この場合に補給
する溶媒としては、酸や電解質又はキレート剤の水溶液
等が利用できる。
Moreover, in the electrochemical treatment of the second step,
Moisture is required for ions and the like to move in the soil by electroosmosis, but the excess water in the contaminated soil after the solvent extraction treatment in the first step can be effectively used without dehydrating. . If excess water in the contaminated soil is drained through the filter medium and the water in the contaminated soil is insufficient due to drainage from the cathode, replenish clean water or solvent sequentially from the cathode and anode. do it. In this case, an acid, an electrolyte, or an aqueous solution of a chelating agent can be used as a solvent to be replenished in this case.

【0022】尚、電極間に電圧を印加すると、水の電気
分解により水酸化物イオンが生成して陰極部付近のpH
が上昇するため、陰極部に移動した重金属イオンが沈澱
が沈澱して、その除去効率が減少しやすくなる。これに
対して、陰極部内の排水と同時に清浄水を吸水して、陰
極部内の水のpHを7.5以下に保持することによっ
て、重金属イオンの沈澱を防ぐことができる。
When a voltage is applied between the electrodes, hydroxide ions are generated by the electrolysis of water, and the pH around the cathode is reduced.
As a result, the heavy metal ions that have migrated to the cathode part precipitate and precipitate, and the removal efficiency tends to decrease. On the other hand, precipitation of heavy metal ions can be prevented by absorbing the clean water simultaneously with the drainage in the cathode part and maintaining the pH of the water in the cathode part at 7.5 or less.

【0023】陽極電極としては、カーボンやチタン等の
不活性電極材が好ましい。陰極電極は導電性材料であれ
ば良く、通常は鉄やステンレスが利用できる。また、濾
過材としては、水や重金属イオンが通過できる透水性の
材質であって、電極との電気的絶縁が容易な絶縁性物質
で作製することが好ましく、例えば不織布や多孔質プラ
スチックス等があげられる。
As the anode electrode, an inert electrode material such as carbon or titanium is preferable. The cathode electrode may be any conductive material, and usually iron or stainless steel can be used. Further, the filtering material is preferably a water-permeable material through which water or heavy metal ions can pass, and is preferably made of an insulating material that is easily electrically insulated from the electrode. For example, a nonwoven fabric or a porous plastic is preferably used. can give.

【0024】本発明が除去対象とする重金属の汚染物質
としては、鉛、カドミウム、クロム等があり、特に本発
明は水に難溶性又は不溶性の物質による汚染の処理に適
している。また、汚染土壌の粒度は限定されないが、特
に機械的脱水効果が低く、汚染物質が濃縮していて、且
つ土壌の緩衝能力が高い75μm以下の細粒質や、粘度
質の土壌処理に有効である。
The heavy metal contaminants to be removed by the present invention include lead, cadmium, chromium, and the like. In particular, the present invention is suitable for treating contamination by substances that are hardly soluble or insoluble in water. In addition, the particle size of the contaminated soil is not limited, but is particularly effective for fine granularity of 75 μm or less, which has a low mechanical dehydration effect, is concentrated in contaminants, and has a high soil buffering capacity, and is viscous. is there.

【0025】次に、第2工程の電気化学的処理に用いる
電解槽の好ましい形態について説明する。図1の電解槽
1は、全体が下側の土壌電解部1aと上側の固液分離部
1bの2つの部分からなり、内側に汚染土壌を入れるた
めの濾過材2が配置されている。電解槽1の下側の土壌
電解部1aには、電解槽1の側壁部に沿って陰極電極3
aが配置され、電解槽1の中央部には陰極電極3aに対
向して陽極電極4aが垂直方向に配置されている。
Next, a preferred embodiment of the electrolytic cell used for the electrochemical treatment in the second step will be described. The electrolytic cell 1 of FIG. 1 is entirely composed of two parts, a lower soil electrolytic part 1a and an upper solid-liquid separation part 1b, and a filter medium 2 for putting contaminated soil therein is disposed inside. A cathode electrode 3 is provided along the side wall of the electrolytic cell 1 on the soil electrolytic section 1a below the electrolytic cell 1.
a, and an anode electrode 4a is vertically arranged at the center of the electrolytic cell 1 so as to face the cathode electrode 3a.

【0026】陰極電極3aは板状であり、この陰極電極
3aを含むように濾過材2と電解槽1の側壁との間に陰
極部3が形成され、陰極部3は内部の水を排水するため
の排水路5に接続されている。排水路5から排水された
水は別に設けた浄水装置に供給され、含まれている重金
属等の汚染物質が除去される。また、陰極部3には、排
水路5とは別に、陰極部3内に清浄水又は溶媒を給水す
る給水路(図示せず)を設けることができる。この場
合、板状の陰極電極3aに複数の貫通孔を設け、この陰
極電極3aと電解槽1の側壁との間を排水路5に、及び
陰極電極3aと濾過材2との間を給水路にそれぞれ接続
すれば、給水が土壌中の水の流れに与える影響をなくす
ことができる。
The cathode electrode 3a is plate-shaped, and a cathode portion 3 is formed between the filtering material 2 and the side wall of the electrolytic cell 1 so as to include the cathode electrode 3a, and the cathode portion 3 drains water inside. Connected to the drainage channel 5. The water drained from the drainage channel 5 is supplied to a separately provided water purification device to remove contained pollutants such as heavy metals. In addition, a water supply channel (not shown) for supplying clean water or a solvent to the inside of the cathode portion 3 can be provided in the cathode portion 3 separately from the drainage channel 5. In this case, a plurality of through holes are provided in the plate-shaped cathode electrode 3a, and a water supply passage is provided between the cathode electrode 3a and the side wall of the electrolytic cell 1, and a water supply passage is provided between the cathode electrode 3a and the filter medium 2. Can eliminate the effect of water supply on the flow of water in the soil.

【0027】また、陽極電極4aは中空管からなり、こ
の陽極電極4aを汚染土壌から分離する第2の濾過材6
によって、その内側に陽極部4が形成されている。この
陽極電極4aは、電解槽1の下側にのみ配置されていて
も良いが、図示するように電解槽1の上方に突出して設
け、陽極部4内に溶媒を給水し又は陽極部4内の水を排
水する給排水路に接続して、陽極電極4aの中空管4を
給排水路として利用することができる。この場合の陽極
電極4aは、全体を通電部としても良いが、固液分離部
1bに位置する上側部分は電気絶縁性とすることが好ま
しい。
The anode electrode 4a is formed of a hollow tube, and a second filter material 6 for separating the anode electrode 4a from the contaminated soil.
Thereby, the anode part 4 is formed inside. The anode electrode 4a may be disposed only below the electrolytic cell 1, but is provided so as to protrude above the electrolytic cell 1 as shown in FIG. The hollow tube 4 of the anode electrode 4a can be used as a water supply / drainage channel by connecting to a water supply / drainage channel for draining water. In this case, the entirety of the anode electrode 4a may be a current-carrying portion, but the upper portion located at the solid-liquid separation portion 1b is preferably electrically insulative.

【0028】浄化用電解槽の好ましい別の形態として、
図2に示すものがある。この電解槽11では、内側に汚
染土壌を入れるための濾過材12が電解槽11の側壁部
及び底壁部に沿って水平に配置され、電解槽11の下側
の土壌電解部11aに配置した陽極電極13aと陰極電
極14aが上下方向に対向して構成されている。即ち、
電解槽11の底壁部と該底壁部に沿った濾過材12との
間に陰極部13が形成され、この陰極部13内に複数の
貫通孔を設けた板状の陰極電極3aがほぼ水平に配置し
てある。また、電解槽11の上下方向ほぼ中央には、土
壌粒子が通過できるように複数の貫通孔部を設けた陽極
電極14aが、陰極電極13aに対向してほぼ水平に配
置されている。
As another preferred form of the purifying electrolytic cell,
There is one shown in FIG. In this electrolytic cell 11, a filter material 12 for putting contaminated soil inside is disposed horizontally along the side wall and the bottom wall of the electrolytic cell 11, and is disposed in a soil electrolytic section 11 a below the electrolytic cell 11. The anode electrode 13a and the cathode electrode 14a are configured to be vertically opposed. That is,
A cathode portion 13 is formed between a bottom wall portion of the electrolytic cell 11 and a filter medium 12 along the bottom wall portion, and a plate-like cathode electrode 3a having a plurality of through holes in the cathode portion 13 is substantially formed. It is arranged horizontally. An anode electrode 14a provided with a plurality of through-holes so that soil particles can pass therethrough is disposed substantially horizontally at a substantially vertical center of the electrolytic cell 11 so as to face the cathode electrode 13a.

【0029】電解槽11の底部には、陰極部13内の水
を排水するための排水路15が接続されている。排水さ
れた水は別に設けた浄水装置に供給され、含まれている
重金属等の汚染物質が除去されるようになっている。ま
た、陰極部13には、排水路15とは別に、陰極部3内
に清浄水又は溶媒を給水する給水路(図示せず)を設け
ることができる。更に、電解槽11の上方には、汚染土
壌に清浄水又は溶媒を補給するための給水手段(図示せ
ず)が設けてある。
A drain 15 for draining water in the cathode 13 is connected to the bottom of the electrolytic cell 11. The drained water is supplied to a separately provided water purification device to remove contained contaminants such as heavy metals. In addition, a water supply channel (not shown) for supplying clean water or a solvent to the cathode portion 3 can be provided in the cathode portion 13 separately from the drainage channel 15. Further, a water supply means (not shown) for replenishing the contaminated soil with clean water or a solvent is provided above the electrolytic cell 11.

【0030】尚、図2のように電解槽に陰極電極と陽極
電極を上下に配置する場合、各電極の上下関係は特に限
定されないが、陰極電極側に移動した重金属等の汚染物
質を水と共に排水する排水路の形成のためには、陰極電
極13aを下にして電極槽の底壁部近くに配置すること
が好ましい。
When a cathode electrode and an anode electrode are vertically arranged in an electrolytic cell as shown in FIG. 2, the upper and lower relation of each electrode is not particularly limited, but contaminants such as heavy metals moved to the cathode electrode together with water. In order to form a drainage channel for draining water, it is preferable to dispose it near the bottom wall of the electrode tank with the cathode electrode 13a facing down.

【0031】[0031]

【実施例】主な汚染物質が酸化鉛であって、その鉛濃度
が約2000ppmである汚染土壌を準備し、この汚染
土壌0.1m3を溶媒抽出槽に充填した。次いで、汚染土
壌の1kgに対して酸性溶媒として1molの硝酸を添
加し、固液比を1:2とした。この状態で、汚染土壌の
pHは2.8であり、撹拌機により汚染土壌を20分間
撹拌して溶媒抽出した。この溶媒抽出処理した汚染土壌
を、脱水処理せずにそのまま、図1に示す電解槽1に移
した。
EXAMPLE A main contaminant was lead oxide, a contaminated soil having a lead concentration of about 2000 ppm was prepared, and 0.1 m 3 of the contaminated soil was filled in a solvent extraction tank. Next, 1 mol of nitric acid was added as an acidic solvent to 1 kg of the contaminated soil, and the solid-liquid ratio was set to 1: 2. In this state, the pH of the contaminated soil was 2.8, and the solvent was extracted by stirring the contaminated soil for 20 minutes using a stirrer. The contaminated soil subjected to the solvent extraction treatment was directly transferred to the electrolytic cell 1 shown in FIG. 1 without dehydration treatment.

【0032】図1の電解槽1では、陰極電極3aと陽極
電極4aの間隔を1mとし、両電極3a、4a間に直流
電圧を印加して1Aの電流を通電した。この電解処理の
間、汚染土壌の土壌粒子は次第に下方に沈降し、余分な
水分は濾過材2を通って次第に陰極部3及び陽極部4に
流入した。陰極部3内及び陽極部4内の水を排水路5等
を通してポンプで排水し、汚染土壌中に余分な水分がな
くなった後は、排水に合わせて陰極部3内に清浄水を給
水することにより、0.5リットル/minの循環速度
で陰極部3内の水を置換して、陰極部3内のpHを約
6.8以下に維持した。尚、陽極部4には水や溶媒を補
給しなかった。
In the electrolytic cell 1 of FIG. 1, the distance between the cathode electrode 3a and the anode electrode 4a was 1 m, and a DC voltage was applied between the electrodes 3a, 4a to supply a current of 1A. During this electrolytic treatment, the soil particles of the contaminated soil gradually settled downward, and excess water gradually flowed into the cathode part 3 and the anode part 4 through the filter medium 2. Pump the water in the cathode part 3 and the anode part 4 through the drainage channel 5 etc., and supply the clean water into the cathode part 3 in accordance with the drainage after the excess water in the contaminated soil is eliminated. Thus, the water in the cathode section 3 was replaced at a circulation rate of 0.5 liter / min to maintain the pH in the cathode section 3 at about 6.8 or less. The anode 4 was not supplied with water or solvent.

【0033】上記の電解処理を15日間実施したとこ
ろ、土壌中の鉛濃度は300mg/kg未満に低下し
た。また、土壌中の硝酸イオン濃度を測定したところ、
硝酸イオンは検出されなかった。
When the above electrolytic treatment was performed for 15 days, the lead concentration in the soil was reduced to less than 300 mg / kg. Also, when the nitrate ion concentration in the soil was measured,
Nitrate ions were not detected.

【0034】[0034]

【発明の効果】本発明によれば、重金属汚染土壌に酸性
溶媒による溶媒抽出処理を施した後、電気化学的処理を
施すことにより、汚染土壌中の難溶性又は不溶性の重金
属や有害なイオンを、効率良く短時間で除去することが
可能となった。また、溶媒抽出処理後の汚染土壌をその
まま電解槽に移して、電気化学的処理を行うことが可能
となり、余分な水分の脱水工程を省略でき、また余剰な
水分を有効に利用することができるため、重金属汚染土
壌の浄化処理をより一層効率的且つ経済的に行うことが
できる。
According to the present invention, a heavy metal-contaminated soil is subjected to a solvent extraction treatment with an acidic solvent and then to an electrochemical treatment to remove hardly soluble or insoluble heavy metals and harmful ions in the contaminated soil. Thus, it is possible to efficiently remove the particles in a short time. Further, the contaminated soil after the solvent extraction treatment can be transferred to the electrolytic cell as it is, and the electrochemical treatment can be performed, the step of dehydrating excess water can be omitted, and the excess water can be effectively used. Therefore, the purification treatment of the heavy metal contaminated soil can be performed more efficiently and economically.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる電解槽の具体例を示す概略の断
面図である。
FIG. 1 is a schematic cross-sectional view showing a specific example of an electrolytic cell according to the present invention.

【図2】本発明に係わる電解槽の別の具体例を示す概略
の断面図である。
FIG. 2 is a schematic sectional view showing another specific example of the electrolytic cell according to the present invention.

【符号の説明】[Explanation of symbols]

1、11 電解槽 1a、11a 土壌電極部 1b、11b 固液分離部 2、12 濾過材 3、13 陰極部 3a、13a 陰極電極 4、14 陽極部 4a、14a 陽極電極 5、15 排水路 6 第2の濾過材 1, 11 Electrolyzer 1a, 11a Soil electrode part 1b, 11b Solid-liquid separation part 2, 12 Filter material 3, 13 Cathode part 3a, 13a Cathode electrode 4, 14 Anode part 4a, 14a Anode electrode 5, 15 Drainage channel 6 2 filter media

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 掘削した汚染土壌に酸性溶媒を混合し
て、重金属を溶媒抽出する第1工程と、溶媒抽出処理後
の汚染土壌を入れた電解槽内に配置した陰極電極と陽極
電極の間に直流電圧を印加して、電気化学的作用により
重金属等のイオンを移動させて回収する第2工程とから
なり、 該第2工程の電解槽内に前記溶媒抽出処理後の汚染土壌
を入れる濾過材を配置し、電解槽の下側に配置した陰極
電極を該濾過材で汚染土壌から分離して陰極部を形成
し、前記汚染土壌中の土壌粒子を沈降させ且つ水分を濾
過材から陰極部内に流入させると共に、陰極部内の水を
排出しながら、陰極電極と陽極電極の間に直流電圧を印
加することを特徴とする重金属汚染土壌の浄化方法。
1. A first step of mixing an excavated contaminated soil with an acidic solvent to extract heavy metals as a solvent, and a step between a cathode electrode and an anode electrode arranged in an electrolytic cell containing the contaminated soil after the solvent extraction treatment. A second step of applying a DC voltage to the cells to move and collect ions such as heavy metals by an electrochemical action, and filtering the contaminated soil after the solvent extraction treatment into the electrolytic cell of the second step. The cathode material is disposed, and the cathode electrode disposed below the electrolytic cell is separated from the contaminated soil by the filtration material to form a cathode portion, the soil particles in the contaminated soil are settled, and moisture is removed from the filtration material inside the cathode portion. A method for purifying heavy metal contaminated soil, comprising applying a DC voltage between a cathode electrode and an anode electrode while allowing water to flow into the cathode and discharging water from the cathode.
【請求項2】 請求項1の第2工程に用いる電極槽であ
って、その内側に溶媒抽出処理後の汚染土壌を入れる濾
過材を備え、電解槽下側で該濾過材により汚染土壌から
分離した陰極部を形成し、該陰極部内に配置した陰極電
極と、該陰極電極に対向して電解槽下側に配置した陽極
電極と、陰極部内の水を排水する排水路とを備えること
を特徴とする重金属汚染土壌の浄化用電解槽。
2. The electrode tank used in the second step according to claim 1, further comprising a filter material for containing the contaminated soil after the solvent extraction treatment, wherein the filter material is separated from the contaminated soil below the electrolytic cell by the filter material. Forming a cathode portion, comprising a cathode electrode disposed in the cathode portion, an anode electrode disposed on the lower side of the electrolytic tank opposite to the cathode electrode, and a drainage channel for draining water in the cathode portion. Electrolyzer for purification of soil contaminated with heavy metals.
【請求項3】 前記陰極電極が電解槽下側の側壁部に沿
って配置され、陽極電極が電解槽下側の中央部に陰極電
極に対向して配置されていて、該陽極電極を前記汚染土
壌から分離して陽極部を形成する第2の濾過材を備える
ことを特徴とする、請求項2に記載の重金属汚染土壌の
浄化用電解槽。
3. The method according to claim 1, wherein the cathode electrode is disposed along a side wall portion below the electrolytic cell, and an anode electrode is disposed at a central portion below the electrolytic cell so as to face the cathode electrode. The electrolytic cell for purifying soil contaminated with heavy metals according to claim 2, further comprising a second filter medium that separates from the soil to form an anode portion.
【請求項4】 前記陰極部内に清浄水を給水する給水路
と、前記陽極部内に溶媒を給水し又は陽極部内の水を排
水する給排水路を備えることを特徴とする、請求項3に
記載の重金属汚染土壌の浄化用電解槽。
4. The water supply system according to claim 3, further comprising a water supply passage for supplying clean water into the cathode portion, and a water supply and drainage passage for supplying a solvent into the anode portion or draining water from the anode portion. Electrolyzer for purification of soil contaminated with heavy metals.
【請求項5】 前記陰極電極が電解槽下側の底壁部に沿
って配置され、複数の貫通孔部を有する陽極電極が電解
槽の上下方向ほぼ中央に陰極電極に対向して配置されて
いることを特徴とする、請求項2に記載の重金属汚染土
壌の浄化用電解槽。
5. The method according to claim 1, wherein the cathode electrode is disposed along a bottom wall portion below the electrolytic cell, and an anode electrode having a plurality of through holes is disposed substantially at the center in the vertical direction of the electrolytic cell so as to face the cathode electrode. The electrolytic cell for purifying heavy metal contaminated soil according to claim 2, wherein:
【請求項6】 電解槽の上方に清浄水又は溶媒を給水す
る給水手段を備えることを特徴とする、請求項5に記載
の重金属汚染土壌の浄化用電解槽。
6. The electrolytic cell for purifying heavy metal contaminated soil according to claim 5, further comprising a water supply means for supplying clean water or a solvent above the electrolytic cell.
JP10062412A 1998-03-13 1998-03-13 Purification of soil polluted with heavy metal and electrolytic bath for purification Pending JPH11253924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10062412A JPH11253924A (en) 1998-03-13 1998-03-13 Purification of soil polluted with heavy metal and electrolytic bath for purification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10062412A JPH11253924A (en) 1998-03-13 1998-03-13 Purification of soil polluted with heavy metal and electrolytic bath for purification

Publications (1)

Publication Number Publication Date
JPH11253924A true JPH11253924A (en) 1999-09-21

Family

ID=13199421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10062412A Pending JPH11253924A (en) 1998-03-13 1998-03-13 Purification of soil polluted with heavy metal and electrolytic bath for purification

Country Status (1)

Country Link
JP (1) JPH11253924A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007307432A (en) * 2006-03-24 2007-11-29 Nishimatsu Constr Co Ltd Removing method and apparatus for heavy metal, and cleaning method and apparatus for contaminated soil
JP2009056373A (en) * 2007-08-30 2009-03-19 Ebara Corp Method and apparatus for treating solid polluted material
CN110201992A (en) * 2019-05-16 2019-09-06 常熟理工学院 A kind of detoxification of chromium-polluted soil
CN112718842A (en) * 2020-11-18 2021-04-30 上海清宁环境规划设计有限公司 Supplementary chelant and device of quick processing soil heavy metal ion of power supply in coordination
JP7061244B1 (en) * 2020-12-24 2022-04-28 生態環境部南京環境科学研究所 Extraction / separation device for heavy metal cadmium in rice and wheat planting soil, and extraction / separation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007307432A (en) * 2006-03-24 2007-11-29 Nishimatsu Constr Co Ltd Removing method and apparatus for heavy metal, and cleaning method and apparatus for contaminated soil
JP2009056373A (en) * 2007-08-30 2009-03-19 Ebara Corp Method and apparatus for treating solid polluted material
CN110201992A (en) * 2019-05-16 2019-09-06 常熟理工学院 A kind of detoxification of chromium-polluted soil
CN112718842A (en) * 2020-11-18 2021-04-30 上海清宁环境规划设计有限公司 Supplementary chelant and device of quick processing soil heavy metal ion of power supply in coordination
JP7061244B1 (en) * 2020-12-24 2022-04-28 生態環境部南京環境科学研究所 Extraction / separation device for heavy metal cadmium in rice and wheat planting soil, and extraction / separation method

Similar Documents

Publication Publication Date Title
US4367132A (en) Method for removing liquid from chemically-precipitated sludge
US4755305A (en) Continuous dewatering method
JP4104157B2 (en) Method and apparatus for purifying contaminated objects by heavy metals
US6274028B1 (en) Electrolytic wastewater treatment method and apparatus
Ho et al. The application of lead dioxide-coated titanium anode in the electroflotation of palm oil mill effluent
CN106044965B (en) Device and method for recovering heavy metals in electroplating wastewater
JP2007326100A (en) Electrochemical system and method for removal of charged chemical species from contaminated liquid and solid waste
US3236757A (en) Method and apparatus for reclamation of water
CN110434166B (en) Double-ring vertical self-cleaning type in-situ dehydration pollution-reduction electric repair device and method
JP2000140819A (en) Method for cleaning heavy metal-contaminated soil
KR100319022B1 (en) Wastewater Treatment System Using Electrolytic Injury Method
JPH11253924A (en) Purification of soil polluted with heavy metal and electrolytic bath for purification
JPS6338435B2 (en)
KR100928065B1 (en) Remediation technique to remove heavy metals from soil using soil washing combined with electrokinetics
CN105731696A (en) Resourceful treatment process for silicon carbide pickling wastewater
JPH11221553A (en) Purifying method of heavy metal contamination soil
JPH11128901A (en) Method and apparatus for purifying polluted soil
CN209866960U (en) Autonomous controllable soil or sediment pollutant electric acidification dissociation device
KR20030062988A (en) Remediation and dewatering of dredged slurry and mine tailing with the vacuum method and electrokinetic phenomenon(Vacuum-electrokinetic dewatering and remediatin method)
JP2000334462A (en) Packed bed type electrochemical water treating device and method therefor
KR20060036813A (en) Remediation and dewatering of dredged slurry and mine tailing with the vacuum method and electrokinetic phenomenon and apparatus)
JPS586522B2 (en) Bentonite mud water separation method and device
JP2853797B2 (en) Soil purification apparatus and method
WO1993005203A1 (en) Electrolytic device and method having a porous stirring electrode
JPH10500620A (en) Method and apparatus for purifying heavy metal content