KR100767339B1 - Electrokinetic remediation of fluorine-contaminated soil - Google Patents

Electrokinetic remediation of fluorine-contaminated soil Download PDF

Info

Publication number
KR100767339B1
KR100767339B1 KR1020060111081A KR20060111081A KR100767339B1 KR 100767339 B1 KR100767339 B1 KR 100767339B1 KR 1020060111081 A KR1020060111081 A KR 1020060111081A KR 20060111081 A KR20060111081 A KR 20060111081A KR 100767339 B1 KR100767339 B1 KR 100767339B1
Authority
KR
South Korea
Prior art keywords
fluorine
soil
tank
anode
experiment
Prior art date
Application number
KR1020060111081A
Other languages
Korean (ko)
Inventor
백기태
김도형
최현덕
신민철
전칠성
고성환
송현주
심두섭
김용현
구본삼
정홍배
박재현
Original Assignee
금오공과대학교 산학협력단
주식회사 에코필
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금오공과대학교 산학협력단, 주식회사 에코필 filed Critical 금오공과대학교 산학협력단
Priority to KR1020060111081A priority Critical patent/KR100767339B1/en
Application granted granted Critical
Publication of KR100767339B1 publication Critical patent/KR100767339B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • B09C1/085Reclamation of contaminated soil chemically electrochemically, e.g. by electrokinetics
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/10Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation
    • A62D3/11Electrochemical processes, e.g. electrodialysis

Abstract

A method for purifying soil polluted with fluorine is provided to remove effectively the fluorine contained in the soil, by selecting an electrolyte for eluting the fluorine and using the relation between concentration of the electrolyte and current density of kinetic electricity. A current supply unit is prepared. An anode tank and a cathode tank are distanced from soil polluted with fluorine, wherein the soil is disposed between the anode tank and the cathode tank. An alkaline solution is inputted into the anode tank, which is connected to the current supply unit, using a circulation pump. An alkaline solution is inputted into the soil to elute fluorine while electric current is passed through the soil, thereby removing the eluted fluorine in the anode tank and the cathode tank by electro-migration and electrical osmosis.

Description

동전기를 이용한 불소 오염된 토양의 정화방법{ELECTROKINETIC REMEDIATION OF FLUORINE-CONTAMINATED SOIL}ELECOMTROKINETIC REMEDIATION OF FLUORINE-CONTAMINATED SOIL

도 1은 본 발명에 따른 불소 오염된 토양의 정화를 위한 동전기 정화 시스템의 개략도.1 is a schematic diagram of an electrokinetic purification system for the purification of fluorine contaminated soil according to the present invention.

도 2는 NaOH 전해질의 농도에 따른 불소 추출 및 제거 효율을 나타내는 그래프. 2 is a graph showing the fluorine extraction and removal efficiency according to the concentration of NaOH electrolyte.

도 3은 시간에 따른 전압의 변화를 나타내는 그래프. 3 is a graph showing a change in voltage over time.

도 4는 시간에 따른 축적된 전기삼투 흐름을 나타내는 그래프. 4 is a graph showing the accumulated electroosmotic flow over time.

도 5a 및 도 5b는 동전기 처리후의 수분 함량과 pH 변화를 나타내는 그래프. 5A and 5B are graphs showing water content and pH change after electrokinetic treatment.

도 6a 및 도 6b는 동전기 처리후의 토양중의 불소 농도 및 불소 제거율을 나타내는 그래프. 6A and 6B are graphs showing fluorine concentration and fluorine removal rate in soil after electrokinetic treatment.

본 발명은 불소로 오염된 토양에 대한 동전기를 이용한 토양정화방법에 관한 것이다. 더욱 상세하게는, 본 발명은 알칼리 용액, 바람직하게는 수산화나트 륨(NaOH) 또는 수산화칼륨(KOH) 전해질을 사용하여 불소 오염된 토양을 알칼리 조건으로 만들고, 동전기 기술을 이용하여 토양으로부터 불소를 제거하는 토양정화방법에 관한 것이다. The present invention relates to a soil purification method using electrokinetic for soil contaminated with fluorine. More specifically, the present invention utilizes alkaline solutions, preferably sodium hydroxide (NaOH) or potassium hydroxide (KOH) electrolytes to make fluorine contaminated soils in alkaline conditions, and uses kinetic techniques to remove fluorine from the soil. It relates to a soil purification method to remove.

최근 폐광산과 미군부대 부지 등에서의 중금속 오염이 사회적 문제가 되고 있다. 토양이 중금속으로 오염되면 복원하기가 어렵고 농작물의 피해뿐만 아니라 인간에게도 직접적으로 피해를 주는 여러 가지 문제가 발생하게 된다. 그 중 불소는 수돗물 사용 등 인간생활과 밀접한 관련이 있고 독성뿐 아니라 기준치 이상으로 섭취 시 뼈와 신경계의 손상을 야기하는 뼈 불소증의 원인이 되기도 하므로, 토양 및 지하수가 불소로 오염되면 복원할 필요성이 있다. 기존에 중금속으로 오염된 토양을 정화하는 방법인 펌핑 후 처리, 토양세척공법 등이 있는데 최근 혁신적인 기술로서 동전기 정화공법(Electrokinetic, EK)이 있다[문헌: Zhongming Li, et al. A new approach to electrokinetic remediation of soils polluted by heavy metals, Journal of Contaminant Hydrology, 22, pp. 241-253, 1996]. 동전기 정화를 이용한 복원기술은 유기물 및 중금속 제거에 가장 효과적으로 적용할 수 있는 기술로서 선진국 뿐 만 아니라 국내에서도 활발하게 연구가 진행되고 있다[문헌: K. R. Reddy, C. Y. Xu, Supraja. Chinthamreddy, Assesment of electrokinetic removal of heavy metals from soils by sequential extraction analysis, Journal of Hazardous Materials, B84, pp. 279-296, 2001]. 이 외에도 방사능 물질, 유기화합물, 무기물 등 다양한 물질의 제거에 적용할 수 있다[문헌: Y. B. Acar, et al. Electrokinetic remediation : Basics and technology status, Journal of Hazardous Materials, 40, pp. 117-137, 1995]. 이러한 오염물질을 제거하는 동전기 정화공법(EK)의 주된 제거기작은 이온이 이동하는 전기이동과 공극수가 이동하는 전기삼투가 있는데 이 두 가지 현상에 의해서 오염물질이 제거된다. 현장 처리에 있어서 EK는 기존의 처리방법에 비해 여러 가지 장점이 있어서 널리 사용되고 있다. EK의 장점으로는 유기물 및 무기물의 동시 제거가 가능하고, 여러 종류의 금속의 동시 제거가 가능하며, 짧은 처리시간에 비해 높은 제거효율을 얻을 수 있다[문헌: Jing-Yuan. Wang, Di-song. Zhang, Olena. Stabnikova, Joo-Hwa. Tay, Evaluation of electrokinetic removal of heavy metals from sewage sludge, Journal of Hazardous Materials, B124, pp. 139-146, 2005, and Ji-Hsing Chang, Zimin Qiang, Chin-Pao Huang, Remediation and stimulation of selected chlorinated organic solvents in unsaturated soil by a specific enhanced electrokinetics, Colloids and surfaces A :physicochem. Eng. Aspects, 2006]. 또한 불균일한 토양과 투수성이 낮은 점토질 토양에도 적용이 가능하고, 다른 방법에 비해 경제적이며, 생물학적 처리 등의 다른 방법과 함께 적용할 수 있다[문헌: Ching. Yuan, Chih-huang Weng, Sludge dewatering by electrokinetic technique: effect of processing time and potential gradient, Advances in environmental research, 7, pp. 727-732, 2003, and V. Pomes, A. Fernandez, N. Costarramone, B. Grano, D. Houi, Fluorine migration in a soil bed submitted to an electric field: influence of electric potential on fluorine removal, Colloids and surface A: physicochem. Eng. Aspects, 159, pp. 481-490, 1999]. 이런 장점이 있 는 반면 중요한 단점이 있는데 EK 적용 시 낮은 pH 환경과 전극사이에 급격한 pH의 변화가 발생하게 되는데, 이러한 현상은 EK 공정 중 양극과 음극에서 전기분해에 의한 산화ㆍ환원 반응이 발생하기 때문이다. 각각의 전극에서의 산화ㆍ환원반응은 다음과 같다[문헌: Jih-Hsing Chang, Ying-Chih Liao, The effect of critical operational parameters on the circulation-enhanced electrokinetic, Journal of Hazardous Materials, B129, pp. 186-193, 2006].In recent years, heavy metal contamination in abandoned mines and US military units has become a social problem. When soil is contaminated with heavy metals, there are many problems that are difficult to restore and directly damage not only crops but also humans. Among them, fluoride is closely related to human life such as the use of tap water, and it is not only toxic but also causes bone fluoride, which causes bone and nervous system damage when ingested above the standard value. There is this. There are existing methods of purifying soils contaminated with heavy metals, such as after-pumping and soil washing. Recently, innovative technologies include electrokinetic purification (EK) [Zhongming Li, et al. A new approach to electrokinetic remediation of soils polluted by heavy metals, Journal of Contaminant Hydrology, 22, pp. 241-253, 1996. Restoration technology using electrokinetic purification is the technology that can be most effectively applied to the removal of organic matter and heavy metals and is being actively researched not only in developed countries but also in Korea [K. R. Reddy, C. Y. Xu, Supraja. Chinthamreddy, Assesment of electrokinetic removal of heavy metals from soils by sequential extraction analysis, Journal of Hazardous Materials, B84, pp. 279-296, 2001]. In addition, it can be applied to the removal of various substances such as radioactive substances, organic compounds, inorganic matters [Y. B. Acar, et al. Electrokinetic remediation: Basics and technology status, Journal of Hazardous Materials, 40, pp. 117-137, 1995]. The main elimination mechanisms of the electrokinetic purification method (EK) to remove these pollutants include electrophoretic movements of ions and electroosmotic movements of pore water. In the field treatment, EK is widely used because of its advantages over conventional treatment methods. Advantages of EK include the simultaneous removal of organic and inorganic materials, the simultaneous removal of various metals, and high removal efficiencies compared to a short treatment time [Jing-Yuan. Wang, Di-song. Zhang, Olena. Stabnikova, Joo-Hwa. Tay, Evaluation of electrokinetic removal of heavy metals from sewage sludge, Journal of Hazardous Materials, B124, pp. 139-146, 2005, and Ji-Hsing Chang, Zimin Qiang, Chin-Pao Huang, Remediation and stimulation of selected chlorinated organic solvents in unsaturated soil by a specific enhanced electrokinetics, Colloids and surfaces A: physicochem. Eng. Aspects, 2006]. It is also applicable to heterogeneous soils and low permeability clay soils, which is more economical than other methods, and can be applied with other methods such as biological treatment [Ching. Yuan, Chih-huang Weng, Sludge dewatering by electrokinetic technique: effect of processing time and potential gradient, Advances in environmental research, 7, pp. 727-732, 2003, and V. Pomes, A. Fernandez, N. Costarramone, B. Grano, D. Houi, Fluorine migration in a soil bed submitted to an electric field: influence of electric potential on fluorine removal, Colloids and surface A: physicochem. Eng. Aspects, 159, pp. 481-490, 1999]. While there is such an advantage, there is an important disadvantage. When EK is applied, a rapid pH change occurs between the low pH environment and the electrode. This phenomenon causes oxidation and reduction reactions due to electrolysis at the anode and the cathode during the EK process. Because. The redox reactions at each electrode are as follows: Jih-Hsing Chang, Ying-Chih Liao, The effect of critical operational parameters on the circulation-enhanced electrokinetic, Journal of Hazardous Materials, B129, pp. 186-193, 2006].

1/21/2 HH 22 OO → H → H + + + 1/4+ 1/4 OO 22 + e + e - - (양극) (anode)

HH 22 OO + e + e - - OHOH - - + 1/2+ 1/2 OO 22 (음극)(cathode)

전기분해에 의해서 양극에서는 수소이온이 발생하고 음극에서는 수산이온이 발생하여 양극에서는 pH가 낮아지고 전극사이에서는 급격한 pH 차이가 발생하게 된다. 불소는 pH 가 높을수록 불소이온과 수산이온의 이온교환에 의해서 물에 대한 용해도가 높아지므로[문헌: Walter W. Wenzel, Winfried E. H. Blum, Fluorine speciation and mobility in F-contaminated soils, Soil Science Vol. 153, No.5, 1992, and M. A. Elrashidi, W. L. Lindsay, Chemical equilibria of fluorine in soils: A Theoretical development, Soil Science Vol.141, No4, 1986], EK를 이용 한 불소 제거 시 낮아진 pH를 잘 조절해야 높은 제거율을 얻을 수 있다. By electrolysis, hydrogen ions are generated at the positive electrode, hydroxyl ions are generated at the negative electrode, so that the pH is lowered at the positive electrode and a sharp pH difference is generated between the electrodes. As fluorine has a higher pH, solubility in water is increased by ion exchange between fluorine ions and hydroxy ions [Walter W. Wenzel, Winfried E. H. Blum, Fluorine speciation and mobility in F-contaminated soils, Soil Science Vol. 153, No. 5, 1992, and MA Elrashidi, WL Lindsay, Chemical equilibria of fluorine in soils: A Theoretical development, Soil Science Vol. 141, No 4, 1986]. High removal rates can be obtained.

본 발명에서는 불소 오염된 토양에 알칼리 용액, 바람직하게는 NaOH 또는 KOH 전해질을 주입시켜 토양 중의 불소를 용출시킨 다음, 특정의 전류밀도의 동전기를 가하여 불소를 제거하는 토양정화방법을 제공하고 있다. In the present invention, an alkali solution, preferably NaOH or KOH electrolyte, is injected into a fluorine contaminated soil to elute fluorine in the soil, and then a soil purification method is provided by removing a fluorine by adding a galvanic iron having a specific current density.

본 발명에서는 동전기를 이용한 토양정화방법에서 불소를 용출시키기 위한 특정의 전해질을 선택하고, 그러한 전해질의 농도와 동전기의 전류밀도 사이의 상호관계를 연구하여 적합한 조건을 선택함으로써 불소 오염됨 토양을 효율적으로 정화시키는 방법을 제공하고 있다. In the present invention, a specific electrolyte for eluting fluorine is selected in the soil purifying method using a voltaic cell, and the correlation between the concentration of the electrolyte and the current density of the galvanic phase is selected to select a suitable condition. It provides a method for efficient purification.

본 발명에서는 동전기 정화공법을 적용하여 불소 오염토양을 복원하는데 있어서 불소의 용해도를 높여주기 위해서 알칼리 용액, NaOH 또는 KOH 전해질을 사용하고 전류의 세기와 전해질의 농도에 따른 불소의 제거율에 대해 연구하여 효율적으로 불소 오염 토양을 복원하는 방법을 제공하고 있다.In the present invention, using an alkaline solution, NaOH or KOH electrolyte to increase the solubility of fluorine in restoring fluorine contaminated soil by applying the electrokinetic purification method, and to study the removal rate of fluorine according to the strength of the current and the concentration of the electrolyte It provides a way to efficiently restore fluorine contaminated soil.

바람직하게는, 본 발명은 전류공급기를 제공하는 단계, 불소 오염된 토양 사이에 소정의 거리로 양극과 음극이 각각 구비된 양극 탱크와 음극 탱크를 제공하는 단계, 순환펌프를 사용하여 전류공급기에 연결된 양극 탱크 쪽에 알칼리 용액을 주입하는 단계, 토양의 pH가 약 11 이상으로 유지되도록 알칼리 용액을 토양에 주입 하여 불소를 용출시키면서 전류를 통과시켜 용출된 불소를 음극과 양극 탱크에서 제거하는 단계를 포함하는 불소 오염된 토양을 정화시키는 방법을 제공한다. Preferably, the present invention provides a step of providing a current supply, providing a positive electrode and a negative electrode tank having a positive electrode and a negative electrode, respectively, a predetermined distance between the fluorine contaminated soil, connected to the current supply using a circulation pump Injecting an alkali solution into the anode tank, and injecting an alkaline solution into the soil to maintain the pH of the soil at about 11 or more, and passing current while eluting fluorine to remove the eluted fluorine from the cathode and anode tanks. Provides a method for purifying fluorine contaminated soil.

본 발명의 방법에서 토양에 공급하는 적합한 전류 밀도는 전력 소비량 및 불소 제거 효율 등을 고려할 때 약 0.01-10mA/cm2이다. Suitable current densities for feeding the soil in the method of the present invention are about 0.01-10 mA / cm 2 in consideration of power consumption, fluorine removal efficiency and the like.

본 발명의 방법에서 토양에 주입하는 알칼리 용액의 농도는 전력 소비량 및 불소 제거 효율 등을 고려할 때 약 0.01M-1.0M(OH-이온 기준)이다. In the method of the present invention, the concentration of the alkaline solution injected into the soil is about 0.01M-1.0M (OH-ion standard) in consideration of power consumption and fluorine removal efficiency.

본 발명의 방법에서 토양의 pH는 불소의 적합한 용출을 위해서 약 9-12로 유지되는 것이 적합하다. The pH of the soil in the process of the invention is suitably maintained at about 9-12 for proper elution of fluorine.

본 발명의 방법에서 양극 탱크와 음극 탱크 사이의 간격은 적절한 전류의 흐름을 위해서 0.5m 내지 5m이다. In the method of the present invention, the distance between the anode tank and the cathode tank is 0.5m to 5m for proper current flow.

본 발명에서 이용되고 있는 동전기 정화공정은 불소 오염된 토양내에 전극을 설치하여 낮은 DC 전류를 가함으로써 불소를 제거하는 현장내 토양정화기술이다. 직류전압공급기를 사용할 경우 0.1 V/cm - 10 V/cm의 전압경사를 사용할 수 있고, 직류전류공급기를 사용할 경우에는 0.01-10mA/cm2 의 전류밀도를 적용할 수 있다. 토양의 전기전도도에 차이가 크기 때문에 이 범위 내에서 현장 상황을 고려하여 적용할 수 있다. The electrokinetic purification process used in the present invention is an on-site soil purification technique that removes fluorine by applying a low DC current by installing electrodes in fluorine contaminated soil. In case of using DC voltage supply, voltage gradient of 0.1 V / cm-10 V / cm can be used. In case of using DC current supply, current density of 0.01-10mA / cm 2 can be applied. Due to the large difference in the electrical conductivity of the soil, it can be applied in consideration of the site situation within this range.

동전기 현상으로서, 전위차에 의해서 토양내 유체의 흐름이 형성되는 것은 전기삼투(electroosmosis)이라 하며, 금속이나 이온들이 반대 전극방향으로 이동하는 현상을 전기이동(electromigration)이라 하고, 콜로이드나 하전된 입자가 반대 전극방향으로 이동하는 현상을 전기영동(electrophoresis)라 한다. 상기 전기삼투란 토양과 같은 다공성 매질(porous media)에 전기장이 존재하면 매질내의 액체가 특정방향으로 이동하는 현상을 말한다. 전기삼투가 발생하는 이유는 일반적으로 대부분의 토양입자가 수분과 접촉하여 약한 음전하를 띠므로 입자사이의 공간에는 양전하 밀도가 큰 액체가 모이게 되어 전류를 흘리면 토양내 액체가 음극 방향으로 이동하는 현상이 생기기 때문이다. 토양내 전기삼투를 일으키기 위해서는 오염지역 주변에 양극과 음극을 설치하고, 이 전극들을 통하여 전원으로부터 오염지역에 전류를 공급하도록 한다. In the electrokinetic phenomenon, the flow of fluid in the soil by the potential difference is called electroosmosis, and the movement of metals or ions toward the opposite electrode is called electromigration, and colloid or charged particles Is moved in the direction of the opposite electrode is called electrophoresis. The electroosmotic refers to a phenomenon in which a liquid in the medium moves in a specific direction when an electric field is present in a porous medium such as soil. The reason for the occurrence of electroosmotic is that most soil particles come in contact with water and have a weak negative charge. Therefore, a liquid with a large positive charge density collects in the spaces between the particles. Because it occurs. In order to generate the electroosmotic in the soil, the anode and the cathode are installed around the polluted area, and the electrodes are supplied to supply the current to the polluted area from the power source.

본 발명의 바람직한 구체예에 의하면, 도 1에 기재된 바와 같이, 본 발명의 불소 정화방법은 전류 공급기를 제공하고, 불소 오염된 토양 사이에 소정의 거리로 양극과 음극이 각각 구비된 양극 탱크와 음극 탱크를 제공하며, 순환펌프를 사용하여 전류공급기에 연결된 양극 탱크 쪽에 알칼리 용액을 주입하고, 토양의 pH가 알칼리 상태(pH 9.0 - pH 12.0)로 유지되도록 알칼리 용액을 토양에 주입하여 불소를 용출시키면서 전류를 통과시켜서, 전기 삼투에 의해서 용출된 불소를 음극 탱크에서 제거하고 전기 이동에 의해서 용출된 불소를 알칼리 용액에 농축하여 최종적으로 제거하는 단계를 포함하여 불소 오염된 토양을 정화시키고 있다. According to a preferred embodiment of the present invention, as illustrated in FIG. 1, the fluorine purification method of the present invention provides a current supply and an anode tank and a cathode each provided with an anode and a cathode at a predetermined distance between fluorine-contaminated soil. A tank is provided, and an alkaline solution is injected into the anode tank connected to the current supply using a circulation pump, and an alkaline solution is injected into the soil so that the pH of the soil is kept in an alkaline state (pH 9.0-pH 12.0) while eluting fluorine. A current is passed to purify the fluorine contaminated soil, including the step of removing the fluorine eluted by electroosmotic from the cathode tank and concentrating and finally removing the fluorine eluted by electrophoresis in an alkaline solution.

이하 본 발명을 실시예를 통해서 보다 구체적으로 설명하고 있지만, 이러한 실시예는 본 발명을 단지 예시하기 위한 것이고 이로써 본 발명이 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to examples, but these examples are merely to illustrate the present invention, and thus the present invention is not limited thereto.

<< 실시예Example >>

불소 오염토양을 정화하는데 동전기 정화공법(Electrokinetic)을 적용하였다. 불소용출 실험을 통하여 불소가 알칼리 조건에서 쉽게 용출되는 것을 확인하였고, 토양으로부터 불소제거를 위해 전해질(NaOH)을 사용하여 알칼리 조건을 만들어 주었다. 토양중의 불소는 음극 쪽으로 공극수가 이동하는 전기삼투와 양극 쪽으로 이온이 이동하는 전기이동에 의하여 제거된다. 본 실험에서는 전해질의 농도, 전류의 세기의 조건을 달리하여 네 가지 EK실험을 14일동안 진행하였다. 실험 진행시 시간에 따른 전압의 변화, 전기삼투흐름(EOF)을 측정하였고, 실험종료 후 토양을 10등분하여 각각의 수분함량, pH, 잔류불소농도 및 제거율에 대해 연구하였다.Electrokinetic purification was applied to purify fluorine contaminated soil. It was confirmed that fluorine was easily eluted under alkaline conditions through fluorine dissolution experiments, and alkali conditions were made using electrolyte (NaOH) to remove fluorine from soil. Fluorine in the soil is removed by electroosmotic movement of pore water toward the cathode and electrophoretic movement of ions toward the anode. In this experiment, four EK experiments were conducted for 14 days under different conditions of electrolyte concentration and current intensity. The change of voltage and electroosmotic flow (EOF) over time were measured and the soil was divided into 10 parts after the end of the experiment to study the water content, pH, residual fluorine concentration and removal rate.

실험재료 및 장치Experimental Materials and Devices

실험에 사용된 토양은 불소 오염 지역에서 채취한 크기 2mm 이하의 것을 사용하였고 토양 중 불소의 평균농도는 약 414mg/kg 이었다. 토양의 초기 pH는 8.91 이였고, 수분함량은 15%로 하여 실험을 진행하였다. 전해질은 NaOH 용액을 사용하였다. The soil used in the experiment was collected from the fluorine contaminated area less than 2mm in size and the average concentration of fluorine in the soil was about 414mg / kg. The initial pH of the soil was 8.91 and the water content was 15%. As electrolyte, NaOH solution was used.

1. 불소 용출실험1. Fluorine dissolution test

전해질에 의해 불소의 용출 정도를 파악하기 위해 50ml 폴리에틸렌 병에 불소오염토양 3g을 넣고, NaOH를 0.001M, 0.01M, 0.1M, 0.5M, 1M 농도로 하여 각 30mL씩 넣은 후 24시간 혼합한 후 상등액을 채취하여 이온크로마토그래피(futex, Korea)를 사용하여 불소이온의 농도를 측정하였다.To determine the elution of fluorine by electrolyte, 3 g of fluorine contaminated soil was placed in a 50 ml polyethylene bottle, NaOH was added at a concentration of 0.001 M, 0.01 M, 0.1 M, 0.5 M, and 1 M, and then mixed for 30 hours. Supernatant was collected and ion concentration (futex, Korea) was used to measure the concentration of fluorine ion.

2. 2. EKEK 실험 Experiment

EK실험을 위하여 일정 전류공급기를 사용하였고, 순환펌프를 사용하여 양극 쪽에 NaOH 용액을 주입하면서 pH를 조절해 주었다. 전극은 탄소전극을 사용하였고, 크기는 (4×4)cm2 였다. 실험에 사용된 반응기의 크기는 (20×4×4)cm3 이었고, 아크릴 재질로 만들었다. EK의 실험조건은 표 1에 나타내었다. 적용된 전류는 2mA/cm2 - 5mA/cm2 이였고, 전해질 용액 농도는 0.1M-1.0M 로 하여 사용하였다. 실험이 진행되는 동안 전압의 변화를 측정하였고, 실험이 종료된 후에는 반응기 내의 토양을 10등분하여 각각의 pH, 수분함량, 불소농도를 분석하였으며, 토양 중 불소의 분석은 토양오염공정시험방법을 따랐다. A constant current supply was used for the EK experiment, and the pH was adjusted while injecting NaOH solution to the anode side using a circulation pump. As the electrode, a carbon electrode was used and the size was (4 × 4) cm 2 . The size of the reactor used in the experiment was (20 × 4 × 4) cm 3 and was made of acrylic material. The experimental conditions of EK are shown in Table 1. Applied Current is 2mA / cm 2 5 mA / cm 2 and the electrolyte solution concentration was used at 0.1M-1.0M. The change of voltage was measured during the experiment, and after the experiment was completed, the soil in the reactor was divided into 10 parts, and the respective pH, water content, and fluorine concentration were analyzed. Followed.

표 1. Table 1. EKEK 가동을 위한 실험 조건 Experimental Conditions for Operation

EKEK 실험. Experiment. 전류밀도 (Current density mAmA /Of cmcm 22 )) 전해질Electrolyte 가동기간(Uptime ( daysdays )) 실험 1Experiment 1 22 NaOHNaOH 0.1M 0.1M 1414 실험 2Experiment 2 33 NaOHNaOH 0.1M 0.1M 1414 실험 3Experiment 3 55 NaOHNaOH 0.1M 0.1M 1414 실험 4Experiment 4 22 NaOHNaOH 0.5M 0.5M 1414 실험 5Experiment 5 33 NaOHNaOH 0.5M 0.5M 1414 실험 6Experiment 6 55 NaOHNaOH 0.5M 0.5M 1414 실험 7Experiment 7 22 NaOHNaOH 1.0M 1.0M 1414 실험 8Experiment 8 33 NaOHNaOH 1.0M 1.0M 1414 실험 9Experiment 9 55 NaOHNaOH 1.0M 1.0M 1414

결과result

1. 불소 용출실험1. Fluorine dissolution test

도 에 전해질(NaOH) 농도에 따른 용출되는 불소의 농도 및 제거율을 나타2내 었다. NaOH의 농도가 높을수록 용출되는 불소의 농도와 제거율이 높아지는 것으로 나타났다. 본 실험을 통하여 EK 실험에서는 0.1M, 0.5M, 1.0M 의 NaOH를 전해질로 사용하였다.Figure 2 shows the concentration of fluorine and the removal rate according to the electrolyte (NaOH) concentration. The higher the concentration of NaOH, the higher the concentration of fluorine and the removal rate. In this experiment, 0.1 M, 0.5 M, 1.0 M NaOH was used as the electrolyte in the EK experiment.

2. 전압의 변화2. Change of voltage

도 3에 시간에 따른 전압의 변화를 나타내었다. 초기에는 전압이 조금 불안정하다가 점차 감소하면서 96시간 이후로 안정화 되는 경향을 보였다. V(전압)=I(전류)×R(저항)에서 전류가 일정한 가운데 전해질로 사용한 NaOH가 이온화 되면서 생기는 Na+ 이온의 영향으로 저항이 줄어들어 전압이 일정하게 유지 되는 것으로 보인다(도 2 및 도 3).Figure 3 shows the change in voltage over time. Initially, the voltage became slightly unstable and gradually decreased, and then stabilized after 96 hours. It seems that the voltage is kept constant by decreasing the resistance due to the effect of Na + ions generated by ionization of NaOH used as electrolyte while the current is constant at V (voltage) = I (current) × R (resistance) (FIGS. 2 and 3). ).

3. 전기삼투 흐름(3. Electroosmotic flow ( EOFEOF ))

도 4에 시간에 따른 전기삼투흐름을 나타내었다. 전류밀도와 전해질의 농도가 높을수록 EOF 가 많았다.4 shows the electroosmotic flow over time. The higher current density and electrolyte concentration, the higher the EOF.

4. 수분함량과 4. Water content and pHpH

도 5a 및 도 5b에 토양의 수분함량과 pH를 나타내었다. 14일 동안 실험을 진행한 후의 수분함량은 EOF 와 비슷한 경향을 보였다. pH는 11이상으로 전류밀도의 세기와 전해질의 농도에 따라 차이를 보였다. 5a and 5b show the soil water content and pH. Moisture content after 14 days of experiment showed a similar tendency to EOF. The pH was above 11, depending on the current density and electrolyte concentration.

5. 토양 중 불소농도5. Fluorine concentration in soil

도 6a 및 도 6b에 토양중의 불소농도와 제거율을 나타내었다. 토양 중의 불소농도는 불소가 음이온이기 때문에 전기이동과 전기삼투의 방향이 반대방향이므로 양극과 음극 근처에서 많이 제거되었고 전류밀도의 세기와 전해질의 농도가 높을수록 제거율이 높은 것으로 나타났다.6A and 6B show fluorine concentration and removal rate in soil. Since fluorine is an anion, the fluorine concentration in the soil is reversed in the direction of electrophoresis and electroosmosis, so it was removed near the anode and cathode, and the removal rate was higher as the current density and electrolyte concentration were higher.

6. 전력소비량6. Power Consumption

표 2에 본 연구의 EK실험의 결과들을 정리하였다. Table 2 summarizes the results of the EK experiments in this study.

표 2. Table 2.

EKEK 실험. Experiment. 제거율 평균 (%)Removal rate average (%) 전력소비량 (Power consumption KWhKWh /Of tonton )) 실험 1Experiment 1 51.851.8 564.9564.9 실험 2Experiment 2 50.850.8 12341234 실험 3Experiment 3 67.167.1 16641664 실험 4Experiment 4 64.464.4 406.2406.2 실험 5Experiment 5 75.675.6 337.9337.9 실험 6Experiment 6 79.479.4 982.4982.4 실험 7Experiment 7 65.165.1 442442 실험 8Experiment 8 72.572.5 564564 실험 9Experiment 9 76.776.7 671671

결과result

동전기 (EK) 공정을 사용하여 불소로 오염된 토양을 정화하는데 전해질의 농도와 전류의 세기를 달리하여 실험하였다. 세부적인 실험결과를 아래와 같이 요약하였다.The electrokinetic (EK) process was used to purify soils contaminated with fluorine using different concentrations of electrolyte and current. The detailed experimental results are summarized as follows.

- 불소 용출실험에서 토양 중에 오염된 불소의 용출 정도를 파악하기 위해 0.001M, 0.01M, 0.1M, 0.5M, 1M의 NaOH를 사용하였다. NaOH 1M 일 때 불소이온이 가장 많이 용출되었고, 불소의 용출정도는 NaOH 농도에 비례했다.-In the fluorine dissolution test, 0.001M, 0.01M, 0.1M, 0.5M, and 1M NaOH were used to determine the dissolution rate of fluorine contaminated in soil. In NaOH 1M, fluoride ions were most eluted, and the degree of fluorine dissolution was proportional to NaOH concentration.

- EOF 는 전류밀도 3mA/cm2, NaOH 0.5M일 때 3650mL로 가장 많았고, NaOH농도가 높을수록, 전류의 세기가 클수록 많아지는 경향을 보였다.-EOF was the highest at 3650mL at current density of 3mA / cm 2 and 0.5M NaOH. The higher the EOH concentration was, the higher the current intensity was.

- EK 실험을 14일 동안 진행한 후 토양을 10등분하여 반응기 내의 불소농도를 측정하여 제거율, 전력소비량, 제거효율을 구하였다. 전류밀도 3mA/cm2, NaOH 0.5M일 때 불소의 평균제거율이 75.6%로 가장 높았고, 전력소비량은 337.9 KWh/ton 이었다.-After 14 days of EK experiment, the soil was divided into 10 sections and the fluorine concentration in the reactor was measured to determine the removal rate, power consumption, and removal efficiency. When the current density was 3mA / cm 2 and 0.5M NaOH, the average removal rate of fluorine was 75.6%, and the power consumption was 337.9 KWh / ton.

본 발명의 토양 정화방법에 따라서 불소 오염된 토양을 정화시킨 결과 비용을 현저하게 절감시키면서도 효율적으로 불소를 토양으로부터 제거하였다.Purifying fluorine-contaminated soil according to the soil purification method of the present invention efficiently removed fluorine from the soil while significantly reducing costs.

Claims (5)

전류공급기를 제공하는 단계, 불소 오염된 토양 사이에 소정의 거리로 양극과 음극이 각각 구비된 양극 탱크와 음극 탱크를 제공하는 단계, 순환펌프를 사용하여 전류공급기에 연결된 양극 탱크 쪽에 알칼리 용액을 주입하는 단계, 토양의 pH가 알칼리 상태로 유지되도록 알칼리 용액을 토양에 주입하여 불소를 용출시키면서 전류를 통과시켜 각각 전기이동 및 전기삼투에 의해서 용출된 불소를 양극 및 음극탱크에서 펌프와 같은 장비를 이용하여 제거하는 단계를 포함하는 불소 오염된 토양을 정화시키는 방법.Providing a current supply, providing an anode tank and a cathode tank each equipped with an anode and a cathode at a predetermined distance between the fluorine-contaminated soil, and injecting alkaline solution into the anode tank connected to the current supply using a circulation pump In the step of injecting an alkaline solution into the soil to maintain the pH of the soil in an alkaline state, eluting fluorine and passing an electric current, the fluorine eluted by electrophoresis and electroosmotic is pumped in the anode and cathode tanks, respectively. Purifying the fluorine contaminated soil comprising the step of removing the same. 제 1항에 있어서, 토양에 공급하는 적합한 전류 밀도가 3mA/cm2이며 전압경사가 0.1-10 V/cm임을 특징으로 하는 방법.The method of claim 1 wherein the suitable current density for feeding the soil is 3 mA / cm 2 and the voltage gradient is 0.1-10 V / cm. 제 1항에 있어서, 알칼리 용액의 농도가 0.5M임을 특징으로 하는 방법.The method of claim 1 wherein the concentration of the alkaline solution is 0.5M. 제 1항에 있어서, 양극 탱크와 음극 탱크 사이의 간격이 0.1m 내지 5m임을 특징으로 하는 방법.The method of claim 1, wherein the distance between the anode tank and the cathode tank is 0.1m to 5m. 제 1항에 있어서, 알칼리 용액이 NaOH 또는 KOH 용액임을 특징으로 하는 방법.The method of claim 1 wherein the alkaline solution is a NaOH or KOH solution.
KR1020060111081A 2006-11-10 2006-11-10 Electrokinetic remediation of fluorine-contaminated soil KR100767339B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060111081A KR100767339B1 (en) 2006-11-10 2006-11-10 Electrokinetic remediation of fluorine-contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060111081A KR100767339B1 (en) 2006-11-10 2006-11-10 Electrokinetic remediation of fluorine-contaminated soil

Publications (1)

Publication Number Publication Date
KR100767339B1 true KR100767339B1 (en) 2007-10-17

Family

ID=38814844

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060111081A KR100767339B1 (en) 2006-11-10 2006-11-10 Electrokinetic remediation of fluorine-contaminated soil

Country Status (1)

Country Link
KR (1) KR100767339B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100856909B1 (en) 2008-05-29 2008-09-05 금오공과대학교 산학협력단 Remediation of tph-contaminated soil by combination of soil washing and electrokinetic technique
KR101096100B1 (en) 2011-09-23 2011-12-22 경상대학교산학협력단 A method and apparatus for remediation of soils contaminated with fluorine by using electrokinetic technology enhanced by 2-dimensional electrode configuration
KR101937106B1 (en) 2018-09-10 2019-04-09 (주)에스지알테크 Remediation system and method of soil contaminated by fluorine using sequential reactions with a difference of particle size
CN109848207A (en) * 2019-03-20 2019-06-07 衢州学院 A kind of landscape type in-situ combination restorative procedure of fluoride pollution soil
CN109908527A (en) * 2019-04-15 2019-06-21 武汉轻工大学 A kind of garbage flying ash processing unit and the method for handling garbage flying ash

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5616235A (en) 1996-06-03 1997-04-01 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Electrochemical stabilization of soils and other porous media
KR20010086551A (en) * 2000-03-02 2001-09-13 이기세 Method of purifying soil contaminated with oil and an apparatus thereof
JP2001347280A (en) 2000-06-08 2001-12-18 Ebara Corp Method for cleaning ground water polluted with halogenated organic compound
KR20030014054A (en) * 2001-08-10 2003-02-15 주식회사 에코필 Enhancement of Soil Bioremediation Using Electrokinetic
KR20040015855A (en) * 2002-08-14 2004-02-21 김수삼 In-Situ immobilization of heavy-metal contaminated soil by electrokinetic phosphoric acid injection

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5616235A (en) 1996-06-03 1997-04-01 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Electrochemical stabilization of soils and other porous media
KR20010086551A (en) * 2000-03-02 2001-09-13 이기세 Method of purifying soil contaminated with oil and an apparatus thereof
JP2001347280A (en) 2000-06-08 2001-12-18 Ebara Corp Method for cleaning ground water polluted with halogenated organic compound
KR20030014054A (en) * 2001-08-10 2003-02-15 주식회사 에코필 Enhancement of Soil Bioremediation Using Electrokinetic
KR20040015855A (en) * 2002-08-14 2004-02-21 김수삼 In-Situ immobilization of heavy-metal contaminated soil by electrokinetic phosphoric acid injection

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100856909B1 (en) 2008-05-29 2008-09-05 금오공과대학교 산학협력단 Remediation of tph-contaminated soil by combination of soil washing and electrokinetic technique
KR101096100B1 (en) 2011-09-23 2011-12-22 경상대학교산학협력단 A method and apparatus for remediation of soils contaminated with fluorine by using electrokinetic technology enhanced by 2-dimensional electrode configuration
KR101937106B1 (en) 2018-09-10 2019-04-09 (주)에스지알테크 Remediation system and method of soil contaminated by fluorine using sequential reactions with a difference of particle size
CN109848207A (en) * 2019-03-20 2019-06-07 衢州学院 A kind of landscape type in-situ combination restorative procedure of fluoride pollution soil
CN109908527A (en) * 2019-04-15 2019-06-21 武汉轻工大学 A kind of garbage flying ash processing unit and the method for handling garbage flying ash

Similar Documents

Publication Publication Date Title
Ryu et al. Pulsed electrokinetic removal of Cd and Zn from fine-grained soil
Puppala et al. Enhanced electrokinetic remediation of high sorption capacity soil
Kim et al. Electrokinetic remediation of fluorine-contaminated soil: conditioning of anolyte
Kim et al. Electrokinetic remediation of Zn and Ni-contaminated soil
Zhu et al. Removal of fluorine from red mud (bauxite residue) by electrokinetics
Kim et al. Evaluation of electrokinetic remediation of arsenic-contaminated soils
CN201454977U (en) Electrokinetic adsorbing and compounding remediation device for heavy metal polluted soil
Almeira et al. Simultaneous removal of cadmium from kaolin and catholyte during soil electrokinetic remediation
JP2007326100A (en) Electrochemical system and method for removal of charged chemical species from contaminated liquid and solid waste
Gao et al. Enhanced electrokinetic removal of cadmium from sludge using a coupled catholyte circulation system with multilayer of anion exchange resin
Cai et al. Improvement in electrokinetic remediation of Pb-contaminated soil near lead acid battery factory
CN105855285B (en) A kind of device and method that rotation migration joint PRB repairs trichloro ethylene contaminated soil
Xu et al. Ion exchange membranes enhance the electrokinetic in situ chemical oxidation of PAH-contaminated soil
KR100767339B1 (en) Electrokinetic remediation of fluorine-contaminated soil
Zhang et al. Assessment of acid enhancement schemes for electrokinetic remediation of Cd/Pb contaminated soil
Wieczorek et al. Electrokinetic remediation of an electroplating site: design and scale-up for an in-situ application in the unsaturated zone
Zhou et al. Pulse-enhanced electrokinetic remediation of fluorine-contaminated soil
CN109513741A (en) Device and restorative procedure for repairing polluted soil
US5865964A (en) Apparatus for stripping ions from concrete and soil
Beyrami Effect of different treatments on electrokinetic remediation of Zn, Pb and Cd from a contaminated calcareous soil
KR20120017867A (en) Electrode for electrokinetic soil remediation and soil remediation system using the same
KR100406766B1 (en) Method for decontamination of soil using electrokinetic
Yang et al. Enhanced Electrokinetic Remediation of Heavy-Metals Contaminated Soil in presence tetrasodium N, N-bis (carboxymethyl) glutamic acid (GLDA) as chelator
CN102091710B (en) Method and device for removing heavy metal pollutants in fly ash
KR101464878B1 (en) Remediation system for Multi-contaminated soils combining Chemical Oxidation and Soil Flushing and Electrokinetic Separation and Remediation method using the same

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120927

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20131101

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140925

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150921

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20161021

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170925

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180920

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20191007

Year of fee payment: 13