JPH09215975A - Method for arranging electrode in removing anion contaminant - Google Patents

Method for arranging electrode in removing anion contaminant

Info

Publication number
JPH09215975A
JPH09215975A JP8048322A JP4832296A JPH09215975A JP H09215975 A JPH09215975 A JP H09215975A JP 8048322 A JP8048322 A JP 8048322A JP 4832296 A JP4832296 A JP 4832296A JP H09215975 A JPH09215975 A JP H09215975A
Authority
JP
Japan
Prior art keywords
anode
water
cathode
soil
contaminants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8048322A
Other languages
Japanese (ja)
Other versions
JP3214607B2 (en
Inventor
Takeshi Kawachi
武 川地
Hiroshi Kubo
博 久保
Jun Mitsumoto
純 光本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP04832296A priority Critical patent/JP3214607B2/en
Publication of JPH09215975A publication Critical patent/JPH09215975A/en
Application granted granted Critical
Publication of JP3214607B2 publication Critical patent/JP3214607B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To efficiently recover anionic contaminants from a soil by a method wherein an anode and cathodes are approximately vertically arranged in a soil contg. anionic contaminants and a plurality of the cathodes are arranged around the anode. SOLUTION: An anode 2 and cathode 3 are approximately vertically buried in a soil contg. anionic contaminants and a plurality of the cathodes 3 are arranged around the anode 2. Then, while water is appropriately supplied into the contaminated soil and a DC voltage is applied between the anode 2 and the cathodes 3 to energize electricity and the supplied water is drained from the anode 2 side to recover the anionic contaminants. Then, the water recovered is treated by using an ion exchange resin etc., while it is kept under acidic environment to separate and remove the anionic contaminants and the water after separation and removal is recycled for supplying water. It is possible. thereby to recover efficiently the anionic contaminants from the soil.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、CrO4 2-、Cr
2O7 2-、AsO4 3-、AsO3 3-、SeO4 2-、SeO3 2-、CN-、PbO2 2-
等の陰イオン汚染物を土壌内から除去する方法に関す
る。
TECHNICAL FIELD The present invention relates to CrO 4 2− , Cr
2 O 7 2-, AsO 4 3- , AsO 3 3-, SeO 4 2-, SeO 3 2-, CN -, PbO 2 2-
The present invention relates to a method for removing anionic pollutants such as the like from the soil.

【0002】[0002]

【従来の技術】工場廃水、工場廃棄物、鉱山廃水などに
よって汚染された土壌には、カドミウム、鉛、銅、亜
鉛、砒素、セレン、ニッケル、クロム等の汚染物質が含
まれていることがあり、このような土壌をそのまま放置
すると、かかる物質が地下水や生物サイクルを介して環
境に拡散する危険性がある。
2. Description of the Related Art Soil contaminated by factory wastewater, factory waste, mining wastewater, etc., may contain pollutants such as cadmium, lead, copper, zinc, arsenic, selenium, nickel and chromium. If such soil is left as it is, there is a risk that such substances will diffuse into the environment through groundwater or biological cycles.

【0003】そのため、汚染された土壌は、これを掘削
除去して所定の処理を施し、しかる後に管理型あるいは
遮断型の処分地に廃棄処分する一方、掘削された孔内に
は通常の土を客土して原状復帰するのが一般的である。
Therefore, the contaminated soil is excavated and removed, subjected to a predetermined treatment, and then disposed of at a management-type or blocking-type disposal site, while normal soil is excavated in the excavated hole. It is common to return to the original state after returning to the soil.

【0004】ところが、かかる方法では、掘削の際に汚
染土を攪乱して二次汚染のおそれがあるとともに、汚染
土を大量に搬出、運搬しなければならないという問題
や、既存建築物の近接部や直下では掘削除去自体が困難
になるという問題が生じる。そのため、最近では、原位
置で浄化する技術が研究され始めており、その一つとし
て通電により汚染物質を回収する方法が特開平5-59716
号公報に開示されている。
However, in such a method, there is a possibility that the contaminated soil may be disturbed during excavation to cause secondary pollution, and a large amount of the contaminated soil must be carried out and transported, and the proximity of existing buildings. There is a problem that the excavation and removal itself becomes difficult directly below. Therefore, recently, in-situ purification technology has begun to be researched, and one of them is a method of collecting pollutants by energization.
No. 6,086,045.

【0005】当該方法においては、まず、処理対象の地
盤範囲に止水壁を構築し、次いで、その地盤範囲に多数
の通水孔を有する中空管からなる陽極および陰極を挿入
し、次いで、当該地盤範囲に適宜散水してから電極間に
直流電圧を印加し、次いで、電気浸透現象によって陰極
側に集まった水を中空管を介して排水回収する。
In the method, first, a water blocking wall is constructed in the ground area to be treated, and then an anode and a cathode consisting of hollow tubes having a large number of water passage holes are inserted in the ground area, and then, A DC voltage is applied between the electrodes after water is appropriately sprayed on the ground area, and then the water collected on the cathode side by the electroosmosis phenomenon is drained and recovered through the hollow tube.

【0006】かかる方法によれば、所定の汚染物質は、
電気浸透現象による水の流れに乗って陰極側に流れ込む
ので、これを排水回収することにより、当該汚染物質を
除去することができる。
According to such a method, the predetermined pollutant is
Since the water flows due to the electroosmosis phenomenon and flows into the cathode side, the pollutant can be removed by collecting the waste water.

【0007】[0007]

【発明が解決しようとする課題】一方、クロム、砒素、
セレン、シアン、鉛などは、それぞれCrO4 2-、Cr
2O7 2-、AsO4 3-、AsO3 3-、SeO4 2-、SeO3 2-、CN-、PbO2 2-
(アルカリ性下) 等の陰イオンの形で土壌に含まれて
いる。そして、これら陰イオン汚染物は、通電を行う
と、陰極に移動する水の流れに逆らいながら電気泳動に
よって陽極方向に力を受けるので、陰極側ではほとんど
回収できないことが本出願人が行った実験で判明した。
そのため、陰イオン汚染物を回収するには、陽極付近に
集まったものを土とともに除去するしかないが、土の掘
削、運搬、客土など一連の作業が必要となり、その除去
効率はきわめて悪い。
On the other hand, chromium, arsenic,
For selenium, cyanide, lead, etc., CrO 4 2- and Cr, respectively
2 O 7 2-, AsO 4 3- , AsO 3 3-, SeO 4 2-, SeO 3 2-, CN -, PbO 2 2-
(Under alkaline) It is contained in soil in the form of anions such as. And, when these anionic contaminants are energized, they are subjected to a force in the direction of the anode by electrophoresis against the flow of water moving to the cathode, so that the cathode side can hardly recover them. Found out.
Therefore, in order to collect the anion contaminants, the material collected in the vicinity of the anode must be removed together with the soil, but a series of operations such as soil excavation, transportation, and soil for the soil are required, and the removal efficiency is extremely poor.

【0008】本発明は、上述した事情を考慮してなされ
たもので、陰イオン汚染物を効率よく土壌内から回収可
能な陰イオン汚染物の除去における電極配置方法を提供
することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an electrode arrangement method for removing anionic contaminants that enables efficient recovery of anionic contaminants from the soil. .

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明の陰イオン汚染物の除去における電極配置方
法は請求項1に記載したように、陰イオン汚染物を含む
土壌内に陽極および陰極をほぼ鉛直に埋設し、次に、前
記土壌に適宜給水するとともに前記陽極および前記陰極
間に直流電圧を印加して通電を行い、給水された水を前
記陽極側からのみ排水する方法であって、前記陰極を前
記陽極の周囲に多数配設するものである。
In order to achieve the above object, the method for arranging electrodes in the removal of anion contaminants according to the present invention is, as described in claim 1, an anode and an anode in soil containing anion contaminants. It is a method of burying the cathode almost vertically, then supplying water to the soil as appropriate and applying a DC voltage between the anode and the cathode to conduct electricity, and draining the supplied water only from the anode side. Then, a large number of the cathodes are arranged around the anode.

【0010】また、本発明に係る陰イオン汚染物の除去
における電極配置方法は請求項2に記載したように、陰
イオン汚染物を含む土壌内に陽極および陰極をほぼ鉛直
に埋設し、次に、前記土壌に適宜給水するとともに前記
陽極および前記陰極間に直流電圧を印加して通電を行
い、給水された水を前記陽極側からのみ排水する方法で
あって、前記陽極を千鳥状に配置するとともに前記陰極
を前記各陽極の周囲に多数配設するものである。
Further, according to the method for arranging electrodes for removing anionic contaminants according to the present invention, as described in claim 2, the anode and the cathode are buried almost vertically in the soil containing the anionic contaminants. A method of supplying water to the soil and applying a DC voltage between the anode and the cathode to conduct electricity, and discharging the supplied water only from the anode side, the anodes are arranged in a staggered pattern. In addition, a large number of the cathodes are arranged around each of the anodes.

【0011】また、本発明に係る陰イオン汚染物の除去
における電極配置方法は請求項3に記載したように、陰
イオン汚染物を含む土壌内に陽極および陰極をほぼ鉛直
に埋設し、次に、前記土壌に適宜給水するとともに前記
陽極および前記陰極間に直流電圧を印加して通電を行
い、給水された水を前記陽極側からのみ排水する方法で
あって、前記陽極を所定の間隔でほぼ直線状に配置し、
該陽極の両側に前記陰極をほぼ平行配置するものであ
る。
Further, according to the third aspect of the present invention, there is provided an electrode disposing method for removing anion contaminants, wherein an anode and a cathode are buried substantially vertically in soil containing anion contaminants, and then, , A method of supplying water to the soil as appropriate and applying a direct current voltage between the anode and the cathode to conduct electricity, and draining the supplied water only from the anode side, and the anode is almost at a predetermined interval. Arranged in a straight line,
The cathodes are arranged in parallel on both sides of the anode.

【0012】また、本発明に係る陰イオン汚染物の除去
における電極配置方法は請求項4に記載したように、陰
イオン汚染物を含む土壌内に陽極および陰極を該陰極が
上段になるようにほぼ水平に埋設し、次に、前記陰極近
傍から前記土壌に適宜給水するとともに前記陽極および
前記陰極間に直流電圧を印加して通電を行い、給水され
た水を前記陽極側からのみ排水するものである。
Further, according to the method for arranging electrodes in removing anionic contaminants according to the present invention, as described in claim 4, the anode and the cathode are placed in the soil containing the anionic contaminants so that the cathode is in the upper stage. It is buried almost horizontally, and then water is appropriately supplied to the soil from the vicinity of the cathode, and a direct current voltage is applied between the anode and the cathode to conduct electricity, and the supplied water is drained only from the anode side. Is.

【0013】本発明に係る陰イオン汚染物の除去におけ
る電極配置方法においては、陰極側を非排水とすること
で電気浸透による陰極への水の移動を阻止しておき、か
かる状態で土壌中の水を陽極側から排水する。
In the method of arranging electrodes for removing anionic contaminants according to the present invention, the cathode side is made non-drained to prevent water from moving to the cathode due to electroosmosis, and in such a state, Drain the water from the anode side.

【0014】すると、陰イオン汚染物は、電気浸透によ
る陰極への水の移動にあえて逆らうことなく、電気泳動
によって自然に陽極に集まり、水とともに回収される。
しかも、陽極に近づくほど酸性度が上昇して陰イオン汚
染物の溶解度が高くなるので、より効率的に回収され
る。
Then, the anionic contaminants naturally collect on the anode by electrophoresis and are collected together with the water, without intentionally countering the migration of water to the cathode by electroosmosis.
Moreover, the closer to the anode, the higher the acidity and the higher the solubility of the anionic contaminants, so that the more efficient recovery is achieved.

【0015】[0015]

【発明の実施の形態】以下、本発明に係る陰イオン汚染
物の除去における電極配置方法の実施の形態について、
添付図面を参照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of an electrode placement method for removing anionic contaminants according to the present invention will be described below.
This will be described with reference to the accompanying drawings.

【0016】(第1実施形態)図1は、本実施形態に係
る陰イオン汚染物の除去における電極配置方法の手順を
示したフローチャートである。本実施形態の除去におけ
る電極配置方法においては、まず図2(a) に示すよう
に、CrO4 2-、Cr2O7 2-、AsO4 3-、AsO3 3-、SeO4 2-、SeO3
2-、CN-、PbO2 2-等の陰イオン汚染物を含む土壌1内に
陽極2および陰極3をほぼ鉛直方向に埋設する(図1、
ステップ101)。
(First Embodiment) FIG. 1 is a flow chart showing the procedure of an electrode placement method for removing anionic contaminants according to the present embodiment. In the electrode arrangement method for removal of the present embodiment, first, as shown in FIG. 2A, CrO 4 2− , Cr 2 O 7 2− , AsO 4 3− , AsO 3 3− , SeO 4 2− , SeO 3
2-, CN -, embedded in a substantially vertical direction an anode 2 and a cathode 3 in the soil 1 containing anionic contaminants PbO 2 2-like (Fig. 1,
Step 101).

【0017】ここで、陽極2は例えば炭素棒で構成し、
陰極3は鉄筋棒で構成するのがよい。なお、陽極2は、
中空管に多数の孔を設けたストレーナ管4の中に配設し
てあり、該ストレーナ管4との間に図示しないホースを
挿入して給水やポンプアップによる排水を行うことがで
きるようになっている。
Here, the anode 2 is composed of, for example, a carbon rod,
The cathode 3 is preferably composed of a reinforcing bar. The anode 2 is
It is arranged in a strainer pipe 4 in which a large number of holes are provided in a hollow pipe, and a hose (not shown) is inserted between the strainer pipe 4 and the strainer pipe 4 so that water can be supplied or drained by pumping up. Has become.

【0018】これら陽極2および陰極3の平面配置例を
図3および図4に示す。まず、図3(a) は、多数の陰極
3を陽極2を取り囲むようにして配設したものである。
また、図3(b) は、陽極2を千鳥状に配置するとともに
陰極3を各陽極2の周囲に多数配設したものである。ま
た、図4は、汚染土壌1内にトレンチ5を形成し、該ト
レンチ内に陽極2およびストレーナ管4を所定の間隔で
ほぼ直線状に配置してその間を砕石6で充填するととも
に、トレンチ5の両側に鋼矢板で形成した陰極3をほぼ
平行に打ち込んで構成してある。なお、鋼矢板に代えて
鉄筋を格子状に組んだものなどを使用してもよい。
An example of the plane arrangement of the anode 2 and the cathode 3 is shown in FIGS. 3 and 4. First, in FIG. 3A, a large number of cathodes 3 are arranged so as to surround the anode 2.
Further, in FIG. 3B, the anodes 2 are arranged in a staggered manner and a large number of cathodes 3 are arranged around each anode 2. In addition, FIG. 4 shows that a trench 5 is formed in the contaminated soil 1, the anode 2 and the strainer pipe 4 are arranged in a substantially straight line at a predetermined interval in the trench 5, and the space between them is filled with crushed stones 6. The cathodes 3 formed of steel sheet piles are driven substantially parallel to both sides of the above. It should be noted that instead of the steel sheet pile, one in which reinforcing bars are assembled in a lattice shape may be used.

【0019】このように電極を配置した後、図2(b) に
示すように、陽極2の側、例えばストレーナ管4を介し
て土壌1内に給水するとともに、陽極2および陰極3の
間に直流電圧を印加して通電し、給水した水を陽極2の
側から排水して陰イオン汚染物を回収する(ステップ1
02)。陽極2付近の水位は、陰極3側の水位が地表面
に達することがない程度に適宜調整する。
After arranging the electrodes in this way, as shown in FIG. 2 (b), water is supplied into the soil 1 through the side of the anode 2, for example, the strainer pipe 4, and the space between the anode 2 and the cathode 3 is provided. A direct current voltage is applied to turn on the power, and the supplied water is drained from the anode 2 side to collect anion contaminants (step 1
02). The water level near the anode 2 is appropriately adjusted so that the water level on the cathode 3 side does not reach the ground surface.

【0020】ここで、陰極3側は通電中をはじめ終始非
排水とし、電気浸透による陰極3への水の移動を阻止し
ておく。すなわち、土壌中の水は、電気浸透によって陰
極3へ移動しようとするが、陰極側で非排水としておけ
ば、陰極3へ移動しようとする力と陰極付近の水位の上
昇による圧力とが平衡し、水は移動しなくなる。
Here, the cathode 3 side is not drained from beginning to beginning during energization to prevent water from moving to the cathode 3 due to electroosmosis. That is, the water in the soil tries to move to the cathode 3 by electroosmosis, but if the water is not drained on the cathode side, the force to move to the cathode 3 and the pressure due to the rise of the water level near the cathode are in equilibrium. , Water will not move.

【0021】かかる状態で通電を行えば、陰イオン汚染
物は、従来のように電気浸透による陰極3への水の移動
にあえて逆らうことなく、電気泳動によって自然に陽極
2に集まる。しかも、陽極2に近づくほど酸性度が上昇
して陰イオン汚染物の溶解度が高くなるので、より効率
的な回収が可能となる。
When electricity is applied in such a state, the anion contaminants naturally collect on the anode 2 by electrophoresis, without having to counter the movement of water to the cathode 3 due to electroosmosis as in the conventional case. Moreover, the closer to the anode 2, the higher the acidity and the higher the solubility of the anionic contaminants, so that more efficient recovery is possible.

【0022】なお、図3(b) のように電極を千鳥配置に
する場合、すべての電極に同時に通電するのではなく、
たとえば奇数番目だけを一定日数通電し、その後、偶数
番目を通電するというように通電を交互に行うことによ
り、中間に位置する陰イオン汚染物がいずれの側にも移
動しないということがないようにする。
When the electrodes are arranged in a zigzag manner as shown in FIG. 3 (b), all electrodes are not energized at the same time.
For example, by energizing only the odd number for a certain number of days and then energizing the even number so that the anion contaminants in the middle do not move to either side. To do.

【0023】次に、陽極から回収された水を酸性環境の
ままイオン交換樹脂等を用いて水処理を行い、該水中の
陰イオン汚染物を分離除去する(ステップ103)。次
いで、陰イオン汚染物が除去された後の処理水を給水用
にリサイクルする(ステップ104)。
Next, the water recovered from the anode is subjected to water treatment using an ion exchange resin or the like in an acidic environment to separate and remove anionic contaminants in the water (step 103). Next, the treated water from which the anionic contaminants have been removed is recycled for water supply (step 104).

【0024】陽極側で回収された水は酸性度が高い。し
たがって、これをアルカリにして一般的な水処理を行う
よりも、酸性環境をそのまま生かして陰イオン汚染物を
分離処理し、処理された後の処理水を給水用にリサイク
ルするようにすれば、陰イオン汚染物を溶解させやすい
水を土壌中に給水することができる。
The water recovered on the anode side has a high acidity. Therefore, rather than making this an alkali and performing general water treatment, if the acidic environment is used as it is to separate the anion contaminants and the treated water after treatment is recycled for water supply, Water capable of dissolving anionic contaminants can be supplied to the soil.

【0025】なお、陰イオン汚染物が分離除去された排
水は、工事終了後はpH処理して下水に放流する。
The wastewater from which the anionic contaminants have been separated and removed is subjected to pH treatment after the completion of construction and discharged into sewage.

【0026】以上説明したように、本実施形態に係る陰
イオン汚染物の除去における電極配置方法によれば、陰
極側を非排水とし陽極側からのみ排水するようにしたの
で、CrO4 2-、Cr2O7 2-、AsO4 3-、AsO3 3-、SeO4 2-、SeO3
2-、CN-、PbO2 2-などの陰イオン汚染物は、電気浸透に
よる水の流れに邪魔されることなく、電気泳動によって
スムーズに陽極に到達し、かくして、陰イオン汚染物を
効率よく陽極に集めてこれを回収することが可能とな
る。
As described above, according to the electrode arrangement method for removing anionic contaminants according to the present embodiment, since the cathode side is not drained and only the anode side is drained, CrO 4 2− , Cr 2 O 7 2- , AsO 4 3- , AsO 3 3- , SeO 4 2- , SeO 3
2-, CN -, PbO 2 2- anion contaminants, such as, without being disturbed by the flow of water by electroosmosis, smoothly reach the anode by electrophoresis, thus efficiently anion contaminants It becomes possible to collect this by collecting it at the anode.

【0027】また、陽極に近づくほど陰イオン汚染物の
溶解度が高くなるので該陽極付近を効率よく除染するこ
とができる。特に、多数の陰極を陽極の周囲に配置した
場合、陽極を中心とした広い範囲を除染することが可能
となる。さらに、これを千鳥状に配置すれば、広い範囲
にわたってくまなく除染することができる。また、トレ
ンチを形成してその中に陽極を直線状に配置し、その両
側に陰極を配置するようにすれば、汚染領域が帯状に拡
がっている場合に有効な電極配置方法となる。
Further, the closer to the anode, the higher the solubility of the anionic contaminant, so that the vicinity of the anode can be efficiently decontaminated. In particular, when a large number of cathodes are arranged around the anode, it is possible to decontaminate a wide range around the anode. Furthermore, if they are arranged in a staggered pattern, it is possible to decontaminate all over a wide area. If a trench is formed and the anode is linearly arranged in the trench and the cathodes are arranged on both sides of the trench, the electrode arrangement method is effective when the contaminated region spreads in a band shape.

【0028】また、陰極非排水としたことによって電気
浸透による水の移動がなくなり、その分、給排水の量や
位置によって土壌中の水の流れを制御できるようにな
る。
Further, since the cathode is not drained, the movement of water due to electroosmosis is eliminated, and accordingly, the flow of water in the soil can be controlled depending on the amount and position of water supply and drainage.

【0029】また、排水中の陰イオン汚染物の分離除去
処理を酸性状態のまま行い、該処理水を給水用にリサイ
クルするようにしたので、土壌中の陰イオン汚染物が溶
解しやすい状態となり、いったんアルカリに戻して分離
除去し、これを給水用にリサイクルするよりも土壌中の
陰イオン汚染物をより効率的に回収除去することが可能
となる。
Further, since the treatment for separating and removing anionic contaminants in the waste water is carried out in an acidic state and the treated water is recycled for water supply, the anionic contaminants in the soil are easily dissolved. It becomes possible to recover and remove anionic contaminants in soil more efficiently than once returning to alkali to separate and remove it, and to recycle it for water supply.

【0030】本実施形態では、炭素棒で構成した陽極を
ストレーナ管内に配設したが、ストレーナ管自体を陽極
としてもよい。
In the present embodiment, the anode made of carbon rod is arranged in the strainer tube, but the strainer tube itself may be used as the anode.

【0031】また、本実施形態では、給水を陽極側から
行うようにしたが、給水位置については特に限定される
ものではなく、陽極側に加えてあるいはその代わりに電
極間の所望の位置で地表面から散水し、例えば電気分解
による損失分を補充するようにしてもよい。
Further, in the present embodiment, the water is supplied from the anode side, but the water supply position is not particularly limited, and in addition to or instead of the anode side, the ground is provided at a desired position between the electrodes. You may make it sprinkle water from the surface and supplement the loss by electrolysis, for example.

【0032】また、本実施形態では、酸性環境のまま水
処理を行う方法として、イオン交換樹脂を用いた方法を
採用したが、かかる方法に代えて、例えば砒素やセレン
を鉄化合物に吸着させて除去を図る方法を採用してもよ
い。
In this embodiment, a method using an ion exchange resin is adopted as a method for water treatment in an acidic environment. Instead of such a method, for example, arsenic or selenium is adsorbed on an iron compound. You may employ the method of removing.

【0033】また、本実施形態では、排水された水を酸
性環境のまま水処理するようにしたが、必ずしも酸性の
ままで処理する必要はなく、いったんアルカリ性にして
から陰イオン汚染物の分離除去水処理を行うようにして
もよいし、かかる場合、処理水を給水用にリサイクルし
なくてもよい。
In this embodiment, the drained water is treated in an acidic environment. However, it is not always necessary to treat it in an acidic state. Water treatment may be performed, and in such a case, treated water may not be recycled for water supply.

【0034】(第2実施形態)次に、第2実施形態につ
いて説明する。なお、第1実施形態と実質的に同一の部
品等については同一の符号を付してその説明を省略す
る。
(Second Embodiment) Next, a second embodiment will be described. It should be noted that parts and the like that are substantially the same as those in the first embodiment are designated by the same reference numerals and the description thereof is omitted.

【0035】図5は、第2実施形態に係る陰イオン汚染
物の除去における電極配置方法の手順を示したフローチ
ャートである。本実施形態の除去における電極配置方法
は、図6に示すように既設構造物11の下方を除染する
場合に特に適した方法であり、まず、既設構造物11の
下方に拡がる汚染土壌1の側方に作業用立坑16を掘削
し、該立坑16から陰極12および陽極13を陰極12
が上段になるようにほぼ平行に埋設する(図5、ステッ
プ111)。
FIG. 5 is a flow chart showing a procedure of an electrode arrangement method for removing anionic contaminants according to the second embodiment. The electrode placement method in the removal of the present embodiment is a method particularly suitable for decontaminating the lower part of the existing structure 11 as shown in FIG. 6, and first, of the contaminated soil 1 spreading below the existing structure 11. A work vertical shaft 16 is excavated laterally, and a cathode 12 and an anode 13 are connected to the negative electrode 12 from the vertical shaft 16.
Are buried substantially parallel to each other so that they are on the upper side (FIG. 5, step 111).

【0036】ここで、陰極12および陽極13は、それ
ぞれ導電性中空管に多数の孔を設けて形成してあり、電
極とストレーナ管とを兼用させてある。また、陰極12
内には給水管14を、陽極13内には排水管15をそれ
ぞれ配設してあり、該給水管14、排水管15は図示し
ない給排水ポンプに接続してある。
Here, each of the cathode 12 and the anode 13 is formed by providing a large number of holes in a conductive hollow tube, and serves as both an electrode and a strainer tube. In addition, the cathode 12
A water supply pipe 14 is provided inside, and a drain pipe 15 is provided inside the anode 13. The water supply pipe 14 and the drain pipe 15 are connected to a water supply / drainage pump (not shown).

【0037】このように電極を配置した後、給水管14
および陰極12を介して土壌1内に給水するとともに、
陽極13および陰極12の間に直流電圧を印加して通電
する。そして、給水した水を排水管15を介して陽極1
3の側から排水し、陰イオン汚染物を回収する(ステッ
プ112)。
After arranging the electrodes in this way, the water supply pipe 14
And supplying water into the soil 1 via the cathode 12,
A direct current voltage is applied between the anode 13 and the cathode 12 to conduct electricity. Then, the supplied water is supplied to the anode 1 via the drain pipe 15.
Drain from the side of 3 and collect anion contaminants (step 112).

【0038】ここで、陰極12側は通電中をはじめ終始
非排水とし、電気浸透による陰極12への水の移動を阻
止しておく。すなわち、土壌中の水は、電気浸透によっ
て陰極12へ移動しようとするが、陰極側で非排水とし
ておけば、周囲の地下水位よりも若干上昇した位置で陰
極12へ移動しようとする力と陰極付近の水位の上昇に
よる圧力とが平衡し、水は上方へ移動しなくなる。
Here, the cathode 12 side is not drained from beginning to beginning during energization to prevent movement of water to the cathode 12 due to electroosmosis. That is, the water in the soil tries to move to the cathode 12 by electroosmosis, but if it is not drained on the cathode side, the force to move to the cathode 12 at a position slightly higher than the surrounding groundwater level and the cathode Equilibrium with the pressure due to rising water level in the vicinity, water does not move upward.

【0039】かかる状態で通電を行えば、陰イオン汚染
物は、従来のように電気浸透による陰極12への水の移
動にあえて逆らうことなく、電気泳動および自重によっ
て自然に陽極13に集まる。しかも、陽極13に近づく
ほど酸性度が上昇して陰イオン汚染物の溶解度が高くな
るので、より効率的な回収が可能となる。
When electricity is applied in such a state, the anion contaminants naturally collect on the anode 13 by electrophoresis and self-weight, without countering the movement of water to the cathode 12 by electroosmosis as in the conventional case. Moreover, the closer to the anode 13, the higher the acidity and the higher the solubility of the anionic contaminants, so that more efficient recovery is possible.

【0040】以下、第1実施形態と同様に水処理をして
陰イオン汚染物を分離除去し(ステップ113)、分離
除去した後の処理水を給水用にリサイクルする(ステッ
プ114)。
Thereafter, similar to the first embodiment, water treatment is performed to separate and remove anionic contaminants (step 113), and the treated water after the separation and removal is recycled for water supply (step 114).

【0041】以上説明したように、本実施形態に係る陰
イオン汚染物の除去における電極配置方法によれば、第
1実施形態と同様の効果に加えて、既設構造物の下方領
域であってもこれを効率的に除染することができるとい
う効果を奏する。
As described above, according to the electrode arrangement method for removing anionic contaminants according to the present embodiment, in addition to the same effect as the first embodiment, even in the lower region of the existing structure. This has the effect of efficiently decontaminating this.

【0042】[0042]

【発明の効果】以上述べたように、本発明の陰イオン汚
染物の除去における電極配置方法は、陰イオン汚染物を
含む土壌内に陽極および陰極をほぼ鉛直に埋設し、次
に、前記土壌に適宜給水するとともに前記陽極および前
記陰極間に直流電圧を印加して通電を行い、給水された
水を前記陽極側からのみ排水する方法であって、前記陰
極を前記陽極の周囲に多数配設するので、陰イオン汚染
物を効率よく土壌内から回収することができる。
As described above, according to the method for arranging electrodes for removing anion contaminants of the present invention, the anode and the cathode are buried almost vertically in the soil containing the anion contaminants, and then the soil is removed. Is a method for supplying water to the anode and applying a DC voltage between the anode and the cathode to conduct electricity, and draining the supplied water only from the anode side, and a large number of the cathodes are provided around the anode. Therefore, the anion contaminant can be efficiently recovered from the soil.

【0043】また、本発明の陰イオン汚染物の除去にお
ける電極配置方法は、陰イオン汚染物を含む土壌内に陽
極および陰極をほぼ鉛直に埋設し、次に、前記土壌に適
宜給水するとともに前記陽極および前記陰極間に直流電
圧を印加して通電を行い、給水された水を前記陽極側か
らのみ排水する方法であって、前記陽極を千鳥状に配置
するとともに前記陰極を前記各陽極の周囲に多数配設す
るので、陰イオン汚染物を効率よく土壌内から回収する
ことができる。
In the method for arranging electrodes for removing anionic contaminants of the present invention, the anode and the cathode are substantially vertically buried in the soil containing the anionic contaminants, and then the soil is appropriately supplied with water. A method of applying a DC voltage between the anode and the cathode to conduct electricity and draining the supplied water only from the side of the anode, wherein the anodes are arranged in a staggered pattern and the cathodes are arranged around the respective anodes. Since a large number of anionic pollutants are arranged in the soil, it is possible to efficiently collect the anion contaminants from the soil.

【0044】また、本発明の陰イオン汚染物の除去にお
ける電極配置方法は、陰イオン汚染物を含む土壌内に陽
極および陰極をほぼ鉛直に埋設し、次に、前記土壌に適
宜給水するとともに前記陽極および前記陰極間に直流電
圧を印加して通電を行い、給水された水を前記陽極側か
らのみ排水する方法であって、前記陽極を所定の間隔で
ほぼ直線状に配置し、該陽極の両側に前記陰極をほぼ平
行配置するので、陰イオン汚染物を効率よく土壌内から
回収することができる。
In the method for arranging electrodes for removing anion contaminants according to the present invention, the anode and the cathode are buried almost vertically in the soil containing the anion contaminants, and then the soil is appropriately supplied with water. A method of applying a DC voltage between the anode and the cathode to conduct electricity and draining the supplied water only from the side of the anode, in which the anodes are arranged in a substantially straight line at predetermined intervals, Since the cathodes are arranged in parallel on both sides, anion contaminants can be efficiently collected from the soil.

【0045】また、本発明の陰イオン汚染物の除去にお
ける電極配置方法は、陰イオン汚染物を含む土壌内に陽
極および陰極を該陰極が上段になるようにほぼ水平に埋
設し、次に、前記陰極近傍から前記土壌に適宜給水する
とともに前記陽極および前記陰極間に直流電圧を印加し
て通電を行い、給水された水を前記陽極側からのみ排水
するので、陰イオン汚染物を効率よく土壌内から回収す
ることができる。
The method of arranging the electrodes for removing the anion contaminants of the present invention is as follows. The anode and the cathode are buried substantially horizontally in the soil containing the anion contaminants so that the cathodes are in the upper stage. While supplying water to the soil from the vicinity of the cathode as appropriate, energizing by applying a DC voltage between the anode and the cathode, and draining the supplied water only from the anode side, anion contaminants are efficiently soiled. It can be recovered from within.

【0046】[0046]

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施形態に係る陰イオン汚染物の除去にお
ける電極配置方法の手順を示したフローチャート。
FIG. 1 is a flowchart showing a procedure of an electrode arrangement method for removing anionic contaminants according to the first embodiment.

【図2】第1実施形態に係る陰イオン汚染物の除去にお
ける電極配置方法の作用を説明したものであり、(a)は
通電前、(b)は通電中の状態を示した図。
2A and 2B are diagrams for explaining the action of the electrode arrangement method for removing anionic contaminants according to the first embodiment, in which FIG. 2A shows a state before energization and FIG. 2B shows a state during energization.

【図3】電極配置例を示した平面図であり、(a) は陽極
の周囲に多数の陰極を配置した例、(b) はこれを千鳥配
置にした例。
FIG. 3 is a plan view showing an electrode arrangement example, (a) is an example in which a large number of cathodes are arranged around an anode, and (b) is an example in which they are arranged in a staggered manner.

【図4】電極配置例を示した別の平面図。FIG. 4 is another plan view showing an arrangement example of electrodes.

【図5】第2実施形態に係る電極配置方法の手順を示し
たフローチャート。
FIG. 5 is a flowchart showing a procedure of an electrode placement method according to a second embodiment.

【図6】第2実施形態に係る電極配置状況を示した断面
図。
FIG. 6 is a cross-sectional view showing an electrode arrangement state according to the second embodiment.

【符号の説明】[Explanation of symbols]

1 汚染土壌 2、13 陽極 3、12 陰極 4 ストレーナ管 1 Contaminated soil 2,13 Anode 3,12 Cathode 4 Strainer tube

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 陰イオン汚染物を含む土壌内に陽極およ
び陰極をほぼ鉛直に埋設し、次に、前記土壌に適宜給水
するとともに前記陽極および前記陰極間に直流電圧を印
加して通電を行い、給水された水を前記陽極側からのみ
排水する方法であって、前記陰極を前記陽極の周囲に多
数配設することを特徴とする陰イオン汚染物の除去にお
ける電極配置方法。
1. An anode and a cathode are buried almost vertically in a soil containing an anion contaminant, and then water is appropriately supplied to the soil and a DC voltage is applied between the anode and the cathode to conduct electricity. A method for arranging electrodes in the removal of anionic contaminants, which is a method of draining supplied water only from the side of the anode, wherein a large number of the cathodes are arranged around the anode.
【請求項2】 陰イオン汚染物を含む土壌内に陽極およ
び陰極をほぼ鉛直に埋設し、次に、前記土壌に適宜給水
するとともに前記陽極および前記陰極間に直流電圧を印
加して通電を行い、給水された水を前記陽極側からのみ
排水する方法であって、前記陽極を千鳥状に配置すると
ともに前記陰極を前記各陽極の周囲に多数配設すること
を特徴とする陰イオン汚染物の除去における電極配置方
法。
2. An anode and a cathode are buried almost vertically in a soil containing an anion contaminant, and then water is appropriately supplied to the soil and a DC voltage is applied between the anode and the cathode to conduct electricity. A method for draining the supplied water only from the anode side, wherein the anodes are arranged in a staggered manner and a large number of the cathodes are arranged around each of the anodes. Electrode placement method for removal.
【請求項3】 陰イオン汚染物を含む土壌内に陽極およ
び陰極をほぼ鉛直に埋設し、次に、前記土壌に適宜給水
するとともに前記陽極および前記陰極間に直流電圧を印
加して通電を行い、給水された水を前記陽極側からのみ
排水する方法であって、前記陽極を所定の間隔でほぼ直
線状に配置し、該陽極の両側に前記陰極をほぼ平行配置
することを特徴とする陰イオン汚染物の除去における電
極配置方法。
3. An anode and a cathode are buried almost vertically in a soil containing an anion contaminant, and then water is appropriately supplied to the soil and a direct current voltage is applied between the anode and the cathode to conduct electricity. A method for draining the supplied water only from the anode side, wherein the anodes are arranged in a substantially straight line at predetermined intervals, and the cathodes are arranged in parallel on both sides of the anode. Electrode placement method for removing ionic contaminants.
【請求項4】 陰イオン汚染物を含む土壌内に陽極およ
び陰極を該陰極が上段になるようにほぼ水平に埋設し、
次に、前記陰極近傍から前記土壌に適宜給水するととも
に前記陽極および前記陰極間に直流電圧を印加して通電
を行い、給水された水を前記陽極側からのみ排水するこ
とを特徴とする陰イオン汚染物の除去における電極配置
方法。
4. An anode and a cathode are embedded substantially horizontally in a soil containing an anion contaminant so that the cathode is in an upper stage,
Next, anion characterized by appropriately supplying water to the soil from the vicinity of the cathode and energizing by applying a DC voltage between the anode and the cathode, and discharging the supplied water only from the anode side. Electrode placement method for contaminant removal.
JP04832296A 1996-02-09 1996-02-09 Electrode placement method for removal of anionic contaminants Expired - Fee Related JP3214607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04832296A JP3214607B2 (en) 1996-02-09 1996-02-09 Electrode placement method for removal of anionic contaminants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04832296A JP3214607B2 (en) 1996-02-09 1996-02-09 Electrode placement method for removal of anionic contaminants

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001147347A Division JP3575544B2 (en) 2001-05-17 2001-05-17 Electrode placement method for removal of anionic contaminants

Publications (2)

Publication Number Publication Date
JPH09215975A true JPH09215975A (en) 1997-08-19
JP3214607B2 JP3214607B2 (en) 2001-10-02

Family

ID=12800185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04832296A Expired - Fee Related JP3214607B2 (en) 1996-02-09 1996-02-09 Electrode placement method for removal of anionic contaminants

Country Status (1)

Country Link
JP (1) JP3214607B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002346539A (en) * 2001-05-28 2002-12-03 Nippon Kokan Light Steel Kk Method for cleaning polluted soil
KR100427692B1 (en) * 2002-03-05 2004-04-28 주식회사 에코필 system of Electrokinetic soil remediation
JP2010012445A (en) * 2008-07-07 2010-01-21 Tosaka Takuya Method for treating contaminated soil
JP2011251256A (en) * 2010-06-02 2011-12-15 Sogo Sekkei Kenkyusho:Kk Method for purifying soil, and double electrode cylinder, single electrode cylinder, electrode rod and electrode cylinder installation device used for the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002346539A (en) * 2001-05-28 2002-12-03 Nippon Kokan Light Steel Kk Method for cleaning polluted soil
KR100427692B1 (en) * 2002-03-05 2004-04-28 주식회사 에코필 system of Electrokinetic soil remediation
JP2010012445A (en) * 2008-07-07 2010-01-21 Tosaka Takuya Method for treating contaminated soil
JP4718585B2 (en) * 2008-07-07 2011-07-06 登坂 卓也 Treatment method of contaminated soil
JP2011251256A (en) * 2010-06-02 2011-12-15 Sogo Sekkei Kenkyusho:Kk Method for purifying soil, and double electrode cylinder, single electrode cylinder, electrode rod and electrode cylinder installation device used for the same

Also Published As

Publication number Publication date
JP3214607B2 (en) 2001-10-02

Similar Documents

Publication Publication Date Title
US5584980A (en) Electric field method and apparatus for decontaminating soil
RU96102026A (en) METHOD OF RESTORATION IN PLACE OF CONTAMINATED HETEROGENEOUS SOILS
JP3178581B2 (en) How to clean contaminated soil
CN110434166B (en) Double-ring vertical self-cleaning type in-situ dehydration pollution-reduction electric repair device and method
JP4718585B2 (en) Treatment method of contaminated soil
JPH09215975A (en) Method for arranging electrode in removing anion contaminant
EP1149206B1 (en) Method and apparatus for contitioning a substrate mass
JP3575544B2 (en) Electrode placement method for removal of anionic contaminants
JP3381764B2 (en) How to clean contaminated soil
JP2000084535A (en) Method of cleaning contaminated soil by volatile compound
JPH115077A (en) Contaminated ground purification system
JP3180313B2 (en) Anion contaminant removal equipment
JP3180312B2 (en) Concentration control method for removal of anionic contaminants
JP3610916B2 (en) How to remove anionic contaminants
JP3214606B2 (en) How to remove anionic contaminants
JP3149425B2 (en) Concentration control method for removal of anionic contaminants
JP3214600B2 (en) How to clean contaminated soil
JPH11221553A (en) Purifying method of heavy metal contamination soil
JP3142050B2 (en) Method for removing and cleaning anionic contaminants
JPH11128901A (en) Method and apparatus for purifying polluted soil
JP3343662B2 (en) In-situ treatment method and apparatus for hydrous soil by electroosmosis
KR0134078B1 (en) Device for solidifying solid polluted with heavy metals
JP2005161171A (en) Soil pollution cleaning structure and method for the same
JP2002035736A (en) Treatment device for contaminated soil and method therefor
JP3374232B2 (en) How to restore contaminated groundwater and soil

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010628

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees