JP3610916B2 - How to remove anionic contaminants - Google Patents

How to remove anionic contaminants Download PDF

Info

Publication number
JP3610916B2
JP3610916B2 JP2001084347A JP2001084347A JP3610916B2 JP 3610916 B2 JP3610916 B2 JP 3610916B2 JP 2001084347 A JP2001084347 A JP 2001084347A JP 2001084347 A JP2001084347 A JP 2001084347A JP 3610916 B2 JP3610916 B2 JP 3610916B2
Authority
JP
Japan
Prior art keywords
water
anode
cathode
anionic contaminants
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001084347A
Other languages
Japanese (ja)
Other versions
JP2001300508A (en
Inventor
武 川地
博 久保
純 光本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2001084347A priority Critical patent/JP3610916B2/en
Publication of JP2001300508A publication Critical patent/JP2001300508A/en
Application granted granted Critical
Publication of JP3610916B2 publication Critical patent/JP3610916B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Processing Of Solid Wastes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、CrO 2−、Cr 2−、AsO 3−、AsO 3−、SeO 2−、SeO 2−、CN、PbO 2−等の陰イオン汚染物を土壌内から除去する方法に関する。
【0002】
【従来の技術】
工場廃水、工場廃棄物、鉱山廃水などによって汚染された土壌には、カドミウム、鉛、銅、亜鉛、砒素、セレン、ニッケル、クロム等の汚染物質が含まれていることがあり、このような土壌をそのまま放置すると、かかる物質が地下水や生物サイクルを介して環境に拡散する危険性がある。
【0003】
そのため、汚染された土壌は、これを掘削除去して所定の処理を施し、しかる後に管理型あるいは遮断型の処分地に廃棄処分する一方、掘削された孔内には通常の土を客土して原状復帰するのが一般的である。
【0004】
ところが、かかる方法では、掘削の際に汚染土を撹乱して二次汚染のおそれがあるとともに、汚染土を大量に搬出、運搬しなければならないという問題や、既存建築物の近接部や直下では掘削除去自体が困難になるという問題が生じる。そのため、最近では、原位置で浄化する技術が研究され始めており、その一つとして通電により汚染物質を回収する方法が特開平5−59716 号公報に開示されている。
【0005】
当該方法においては、まず、処理対象の地盤範囲に止水壁を構築し、次いで、その地盤範囲に多数の通水孔を有する中空管からなる陽極および陰極を挿入し、次いで、当該地盤範囲に適宜散水してから電極間に直流電圧を印加し、次いで、電気浸透現象によって陰極側に集まった水を中空管を介して排水回収する。
【0006】
かかる方法によれば、所定の汚染物質は、電気浸透現象による水の流れに乗って陰極側に流れ込むので、これを排水回収することにより、当該汚染物質を除去することができる。
【0007】
【発明が解決しようとする課題】
一方、クロム、砒素、セレン、シアン、鉛などは、それぞれCrO 2−、Cr 2−、AsO 3−、AsO 3−、SeO 2−、SeO 2−、CN、PbO 2−(アルカリ性下)等の陰イオンの形で土壌に含まれている。そして、これら陰イオン汚染物は、通電を行うと、陰極に移動する水の流れに逆らいながら電気泳動によって陽極方向に力を受けるので、陰極側ではほとんど回収できないことが本出願人が行った実験で判明した。そのため、陰イオン汚染物を回収するには、陽極付近に集まったものを土とともに除去するしかないが、土の掘削、運搬、客土など一連の作業が必要となり、その除去効率はきわめて悪い。
【0008】
本発明は、上述した事情を考慮してなされたもので、陰イオン汚染物を効率よく土壌内から回収可能な陰イオン汚染物の除去方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するため、本発明の陰イオン汚染物の除去方法は請求項1に記載したように、陰イオン汚染物を含む土壌内に陽極および陰極を埋設し、次に、前記土壌に適宜給水するとともに前記陽極および前記陰極間に直流電圧を印加して通電を行い、給水された水を前記陽極側からのみ排水するとともに、前記陰極側を非排水とすることで電気浸透による前記陰極への水の移動を阻止するものである。
また、本発明に係る陰イオン汚染物の除去方法は、前記陽極側から給水するとともに、給水した水を該陽極側から排水するものである。
【0010】
本発明に係る陰イオン汚染物の除去方法においては、陰極側を非排水とすることで電気浸透による陰極への水の移動を阻止しておき、かかる状態で土壌中の水を陽極側から排水する。
【0011】
すると、陰イオン汚染物は、電気浸透による陰極への水の移動にあえて逆らうことなく、電気泳動によって自然に陽極に集まり、水とともに回収される。しかも、陽極に近づくほど酸性度が上昇して陰イオン汚染物の溶解度が高くなるので、より効率的に回収される。
【0012】
【発明の実施の形態】
以下、本発明に係る陰イオン汚染物の除去方法の実施の形態について、添付図面を参照して説明する。
【0013】
図1は、本実施形態に係る陰イオン汚染物の除去方法の手順を示したフローチャートである。本実施形態の除去方法においては、まず、図2(a) に示すように、CrO 2−、Cr 2−、AsO 3−、AsO 3−、SeO 2−、SeO 2−、CN、PbO 2−等の陰イオン汚染物を含む土壌1内に陽極2および陰極3を埋設する(図1、ステップ101)。
【0014】
ここで、陽極2は例えば炭素棒で構成し、陰極3は鉄筋棒で構成するのがよい。なお、陽極2は、中空管に多数の孔を設けたストレーナ管4の中に配設してあり、該ストレーナ管4との間に図示しないホースを挿入して給水やポンプアップによる排水を行うことができるようになっている。
【0015】
次に、図2(b) に示すように、陽極2の側、例えばストレーナ管4を介して土壌1内に給水するとともに、陽極2および陰極3の間に直流電圧を印加して通電し、給水した水を陽極2の側から排水して陰イオン汚染物を回収するが、排水にあたっては、陽極2の側からのみ排水するとともに、陰極3の側を非排水とすることで電気浸透による陰極3への水の移動を阻止しておく(ステップ102)。なお、陽極2付近の水位は、陰極3側の水位が地表面に達することがない程度に適宜調整する。
【0016】
次に、陽極から回収された水を酸性環境のままイオン交換樹脂等を用いて水処理を行い、該水中の陰イオン汚染物を分離除去する(ステップ103)。次いで、陰イオン汚染物が除去された後の処理水を給水用にリサイクルする(ステップ104)。
【0017】
陽極側で回収された水は酸性度が高い。したがって、これをアルカリにして一般的な水処理を行うよりも、酸性環境をそのまま生かして陰イオン汚染物を分離処理し、処理された後の処理水を給水用にリサイクルするようにすれば、陰イオン汚染物を溶解させやすい水を土壌中に給水することができる。
【0018】
なお、陰イオン汚染物が分離除去された排水は、工事終了後はpH処理して下水に放流する。
【0019】
本実施形態に係る陰イオン汚染物の除去方法においては、陰極3側を非排水とすることで電気浸透による陰極3への水の移動を阻止しておく。すなわち、土壌中の水は、電気浸透によって陰極3へ移動しようとするが、陰極側で非排水としておけば、陰極3へ移動しようとする力と陰極付近の水位の上昇による圧力とが平衡し、水は移動しなくなる。
【0020】
かかる状態で通電を行えば、陰イオン汚染物は、従来のように電気浸透による陰極3への水の移動にあえて逆らうことなく、電気泳動によって自然に陽極2に集まる。しかも、陽極2に近づくほど酸性度が上昇して陰イオン汚染物の溶解度が高くなるので、より効率的な回収が可能となる。
【0021】
以上説明したように、本実施形態に係る陰イオン汚染物の除去方法によれば、陰極側を非排水とし陽極側からのみ排水するようにしたので、CrO 2−、Cr 2−、AsO 3−、AsO 3−、SeO 2−、SeO 2−、CN、PbO 2−などの陰イオン汚染物は、電気浸透による水の流れに邪魔されることなく、電気泳動によってスムーズに陽極に到達し、かくして、陰イオン汚染物を効率よく陽極に集めてこれを回収することが可能となる。
【0022】
また、陽極に近づくほど陰イオン汚染物の溶解度が高くなるので、陰極〜陽極間の広い範囲の土壌を除染することができる。
【0023】
また、陰極非排水としたことによって電気浸透による水の移動がなくなり、その分、給排水の量や位置によって土壌中の水の流れを制御できるようになる。
【0024】
また、排水中の陰イオン汚染物の分離除去処理を酸性状態のまま行い、該処理水を給水用にリサイクルするようにしたので、土壌中の陰イオン汚染物が溶解しやすい状態となり、いったんアルカリに戻して分離除去し、これを給水用にリサイクルするよりも土壌中の陰イオン汚染物をより効率的に回収除去することが可能となる。
【0025】
本実施形態では、炭素棒で構成した陽極をストレーナ管内に配設したが、ストレーナ管自体を陽極としてもよい。
【0026】
また、本実施形態では、給水を陽極側から行うようにしたが、給水位置については特に限定されるものではなく、陽極側に加えてあるいはその代わりに電極間の所望の位置で地表面から散水し、例えば電気分解による損失分を補充するようにしてもよい。
【0027】
また、本実施形態では、酸性環境のまま水処理を行う方法として、イオン交換樹脂を用いた方法を採用したが、かかる方法に代えて、例えば砒素やセレンを鉄化合物に吸着させて除去を図る方法を採用してもよい。
【0028】
また、本実施形態では、排水された水を酸性環境のまま水処理するようにしたが、必ずしも酸性のままで処理する必要はなく、いったんアルカリ性にしてから陰イオン汚染物の分離除去水処理を行うようにしてもよいし、かかる場合、処理水を給水用にリサイクルしなくてもよい。
【0029】
【発明の効果】
以上述べたように、本発明に係る陰イオン汚染物の除去方法によれば、陰イオン汚染物を効率よく土壌内から回収することができる。
【0030】
【図面の簡単な説明】
【図1】本実施形態に係る陰イオン汚染物の除去方法の手順を示したフローチャート。
【図2】本実施形態に係る陰イオン汚染物の除去方法の作用を説明したものであり、(a)は通電前、(b)は通電中の状態を示した図。
【符号の説明】
1 汚染土壌
2 陽極
3 陰極
4 ストレーナ管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to anionic contaminants such as CrO 4 2− , Cr 2 O 7 2− , AsO 4 3− , AsO 3 3− , SeO 4 2− , SeO 3 2− , CN , and PbO 2 2−. The present invention relates to a method for removing from the soil.
[0002]
[Prior art]
Soil contaminated by factory wastewater, factory waste, mine wastewater, etc. may contain contaminants such as cadmium, lead, copper, zinc, arsenic, selenium, nickel, chromium, etc. If left untreated, there is a risk that such substances will diffuse into the environment through groundwater or biological cycles.
[0003]
Therefore, the contaminated soil is excavated and removed and subjected to a predetermined treatment. After that, it is disposed of in a managed or shut-down disposal site, while ordinary soil is left in the excavated hole. It is common to return to the original state.
[0004]
However, in this method, the contaminated soil may be disturbed during excavation and there is a risk of secondary contamination, and there is a problem that a large amount of contaminated soil must be carried out and transported. There arises a problem that excavation and removal itself becomes difficult. Therefore, recently, a technique for purifying in-situ has begun to be studied, and as one of them, a method for recovering pollutants by energization is disclosed in JP-A-5-59716.
[0005]
In the method, first, a water blocking wall is constructed in the ground range to be treated, then an anode and a cathode made of a hollow tube having a large number of water passage holes are inserted into the ground range, and then the ground range Then, water is appropriately sprayed, a DC voltage is applied between the electrodes, and then water collected on the cathode side due to the electroosmosis phenomenon is recovered through a hollow tube.
[0006]
According to this method, the predetermined pollutant flows on the cathode side along the flow of water due to the electroosmosis phenomenon, and the pollutant can be removed by collecting the wastewater.
[0007]
[Problems to be solved by the invention]
On the other hand, chromium, arsenic, selenium, cyan, lead, etc. are CrO 4 2− , Cr 2 O 7 2− , AsO 4 3− , AsO 3 3− , SeO 4 2− , SeO 3 2− , CN , respectively. It is contained in the soil in the form of anions such as PbO 2 2− (under alkaline). These anionic contaminants, when energized, are subjected to force in the anode direction by electrophoresis against the flow of water moving to the cathode. Turned out. For this reason, in order to recover the anionic contaminants, it is only possible to remove what is collected in the vicinity of the anode together with the soil, but a series of operations such as excavation, transportation, and soil of the soil are required, and the removal efficiency is extremely poor.
[0008]
The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a method for removing anionic contaminants that can efficiently recover anionic contaminants from the soil.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, according to the method for removing anionic contaminants of the present invention, as described in claim 1, an anode and a cathode are embedded in soil containing anionic contaminants, Supplying water and applying a DC voltage between the anode and the cathode to conduct electricity, draining the supplied water only from the anode side, and non-draining the cathode side to the cathode by electroosmosis This prevents water from moving.
Moreover, the removal method of the anion contaminant which concerns on this invention supplies water from the said anode side, and drains the supplied water from this anode side.
[0010]
In the method for removing anionic contaminants according to the present invention, water movement to the cathode due to electroosmosis is prevented by non-draining the cathode side, and water in the soil is drained from the anode side in such a state. To do.
[0011]
Then, the anionic contaminants naturally gather at the anode by electrophoresis without being countered by the movement of water to the cathode by electroosmosis, and are collected together with the water. In addition, the acidity increases as it approaches the anode, and the solubility of the anionic contaminants increases, so that it can be recovered more efficiently.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of an anion contaminant removal method according to the present invention will be described below with reference to the accompanying drawings.
[0013]
FIG. 1 is a flowchart showing the procedure of the anion contaminant removal method according to the present embodiment. In the removal method of the present embodiment, first, as shown in FIG. 2 (a), CrO 4 2− , Cr 2 O 7 2− , AsO 4 3− , AsO 3 3− , SeO 4 2− , SeO 3. 2-, CN -, burying the anode 2 and cathode 3 in the soil 1 containing anionic contaminants PbO 2 2-like (Figure 1, step 101).
[0014]
Here, the anode 2 is preferably composed of a carbon rod, for example, and the cathode 3 is preferably composed of a reinforcing bar. The anode 2 is arranged in a strainer tube 4 having a hollow tube with a large number of holes. A hose (not shown) is inserted between the anode 2 and the strainer tube 4 to drain water by supplying water or pumping up. Can be done.
[0015]
Next, as shown in FIG. 2 (b), water is supplied into the soil 1 via the anode 2 side, for example, the strainer tube 4, and a DC voltage is applied between the anode 2 and the cathode 3 to energize. The supplied water is drained from the anode 2 side to recover the anionic contaminants. In draining, the cathode 2 is drained only from the anode 2 side, and the cathode 3 side is not drained so that the cathode is electroosmotic. The movement of water to 3 is blocked (step 102). The water level in the vicinity of the anode 2 is appropriately adjusted so that the water level on the cathode 3 side does not reach the ground surface.
[0016]
Next, the water collected from the anode is subjected to water treatment using an ion exchange resin or the like in an acidic environment to separate and remove the anionic contaminants in the water (step 103). Next, the treated water from which the anionic contaminants have been removed is recycled for water supply (step 104).
[0017]
The water collected on the anode side is highly acidic. Therefore, rather than performing general water treatment using this as an alkali, if the acidic environment is used as it is, the anionic contaminants are separated and the treated water is recycled for water supply. Water that easily dissolves anionic contaminants can be supplied to the soil.
[0018]
In addition, the wastewater from which the anionic contaminants are separated and removed is subjected to pH treatment and discharged into sewage after the completion of the construction.
[0019]
In the method for removing anionic contaminants according to the present embodiment, the cathode 3 side is not drained to prevent water from moving to the cathode 3 due to electroosmosis. That is, the water in the soil tries to move to the cathode 3 by electroosmosis, but if it is not drained on the cathode side, the force to move to the cathode 3 and the pressure due to the rise in the water level near the cathode are balanced. The water stops moving.
[0020]
If energization is performed in such a state, the anionic contaminants naturally gather on the anode 2 by electrophoresis without daring to counter the movement of water to the cathode 3 by electroosmosis as in the prior art. In addition, the closer to the anode 2, the higher the acidity and the higher the solubility of the anionic contaminants, so that more efficient recovery is possible.
[0021]
As described above, according to the method for removing anionic contaminants according to the present embodiment, the cathode side is not drained and drained only from the anode side, so CrO 4 2− , Cr 2 O 7 2− , AsO 4 3− , AsO 3 3− , SeO 4 2− , SeO 3 2− , CN , PbO 2 2−, etc. The migration smoothly reaches the anode, and thus it becomes possible to efficiently collect and recover the anionic contaminants on the anode.
[0022]
Moreover, since the solubility of an anionic contaminant becomes high as it approaches the anode, a wide range of soil between the cathode and the anode can be decontaminated.
[0023]
In addition, the cathode non-drainage eliminates the movement of water due to electroosmosis, and accordingly, the flow of water in the soil can be controlled by the amount and position of the water supply / drainage.
[0024]
In addition, the separation and removal treatment of the anionic contaminants in the wastewater is carried out in an acidic state, and the treated water is recycled for water supply. It is possible to recover and remove the anionic contaminants in the soil more efficiently than by separating and removing the water and recycling it for water supply.
[0025]
In this embodiment, the anode composed of carbon rods is disposed in the strainer tube, but the strainer tube itself may be used as the anode.
[0026]
Further, in this embodiment, water supply is performed from the anode side, but the water supply position is not particularly limited, and water is sprayed from the ground surface at a desired position between the electrodes in addition to or instead of the anode side. For example, the loss due to electrolysis may be supplemented.
[0027]
In this embodiment, a method using an ion exchange resin is adopted as a method for performing water treatment in an acidic environment. However, instead of such a method, for example, arsenic or selenium is adsorbed on an iron compound to be removed. A method may be adopted.
[0028]
Further, in this embodiment, the drained water is treated with water in an acidic environment, but it is not always necessary to treat it with acidity, and once it is made alkaline, water treatment for separating and removing anionic contaminants is performed. You may make it perform, and in such a case, it is not necessary to recycle treated water for water supply.
[0029]
【The invention's effect】
As described above, according to the method for removing anionic contaminants according to the present invention, anionic contaminants can be efficiently recovered from the soil.
[0030]
[Brief description of the drawings]
FIG. 1 is a flowchart showing a procedure of a method for removing an anionic contaminant according to the present embodiment.
FIGS. 2A and 2B illustrate the operation of the anion contaminant removal method according to the present embodiment, and FIG. 2A shows a state before energization, and FIG. 2B shows a state during energization.
[Explanation of symbols]
1 Contaminated soil 2 Anode 3 Cathode 4 Strainer tube

Claims (2)

陰イオン汚染物を含む土壌内に陽極および陰極を埋設し、次に、前記土壌に適宜給水するとともに前記陽極および前記陰極間に直流電圧を印加して通電を行い、給水された水を前記陽極側からのみ排水するとともに、前記陰極側を非排水とすることで電気浸透による前記陰極への水の移動を阻止することを特徴とする陰イオン汚染物の除去方法。An anode and a cathode are embedded in the soil containing anionic contaminants, and then water is supplied to the soil as appropriate, and a DC voltage is applied between the anode and the cathode to energize the supplied water. A method for removing anionic contaminants, wherein water is drained only from the side and the cathode side is not drained to prevent water from moving to the cathode due to electroosmosis. 前記陽極側から給水するとともに、給水した水を該陽極側から排水する請求項1記載の陰イオン汚染物の除去方法。The method for removing anionic contaminants according to claim 1, wherein water is supplied from the anode side and the supplied water is drained from the anode side.
JP2001084347A 2001-03-23 2001-03-23 How to remove anionic contaminants Expired - Fee Related JP3610916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001084347A JP3610916B2 (en) 2001-03-23 2001-03-23 How to remove anionic contaminants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001084347A JP3610916B2 (en) 2001-03-23 2001-03-23 How to remove anionic contaminants

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP04831096A Division JP3214606B2 (en) 1996-02-09 1996-02-09 How to remove anionic contaminants

Publications (2)

Publication Number Publication Date
JP2001300508A JP2001300508A (en) 2001-10-30
JP3610916B2 true JP3610916B2 (en) 2005-01-19

Family

ID=18940031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001084347A Expired - Fee Related JP3610916B2 (en) 2001-03-23 2001-03-23 How to remove anionic contaminants

Country Status (1)

Country Link
JP (1) JP3610916B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005035151A1 (en) * 2003-10-10 2005-04-21 Anzai, Setsu Parchloric acid polluted soil treatment apparatus

Also Published As

Publication number Publication date
JP2001300508A (en) 2001-10-30

Similar Documents

Publication Publication Date Title
CN110434166B (en) Double-ring vertical self-cleaning type in-situ dehydration pollution-reduction electric repair device and method
JP2007090301A (en) Method for purifying heavy metal contaminated soil
JP3610916B2 (en) How to remove anionic contaminants
JPH0947748A (en) Polluted soil purifying method
JPH1190410A (en) In-situ remediation system of contaminant
KR100427692B1 (en) system of Electrokinetic soil remediation
JP4718585B2 (en) Treatment method of contaminated soil
JP3214607B2 (en) Electrode placement method for removal of anionic contaminants
JPH10277531A (en) Method for cleaning contaminated soil by circulation of ground water
JP3180313B2 (en) Anion contaminant removal equipment
JP3180312B2 (en) Concentration control method for removal of anionic contaminants
JP3142050B2 (en) Method for removing and cleaning anionic contaminants
JP3214606B2 (en) How to remove anionic contaminants
JP3575544B2 (en) Electrode placement method for removal of anionic contaminants
JP3381764B2 (en) How to clean contaminated soil
JP3149425B2 (en) Concentration control method for removal of anionic contaminants
JPH10258266A (en) Method for repairing original position of polluted ground and pollutant treatment apparatus
JPH11221553A (en) Purifying method of heavy metal contamination soil
JPH1034126A (en) Method and apparatus for purifying soil polluted with heavy metal
JP3232494B2 (en) Method for cleaning contaminated soil and cleaning apparatus used in the method
JP3214600B2 (en) How to clean contaminated soil
JP4782904B2 (en) Electrochemical purification method for contaminated ground
JP3343662B2 (en) In-situ treatment method and apparatus for hydrous soil by electroosmosis
KR102604316B1 (en) Installation facilities of permeable reactive barriers through hybrid groundwater flow control
KR20060036813A (en) Remediation and dewatering of dredged slurry and mine tailing with the vacuum method and electrokinetic phenomenon and apparatus)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041011

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071029

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees