JPH0622244B2 - Thin film transistor and manufacturing method thereof - Google Patents

Thin film transistor and manufacturing method thereof

Info

Publication number
JPH0622244B2
JPH0622244B2 JP60221666A JP22166685A JPH0622244B2 JP H0622244 B2 JPH0622244 B2 JP H0622244B2 JP 60221666 A JP60221666 A JP 60221666A JP 22166685 A JP22166685 A JP 22166685A JP H0622244 B2 JPH0622244 B2 JP H0622244B2
Authority
JP
Japan
Prior art keywords
semiconductor layer
electrode
phosphorus
layer
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60221666A
Other languages
Japanese (ja)
Other versions
JPS6281064A (en
Inventor
茂雄 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hosiden Corp
Original Assignee
Hosiden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hosiden Corp filed Critical Hosiden Corp
Priority to JP60221666A priority Critical patent/JPH0622244B2/en
Priority to AT86113674T priority patent/ATE77177T1/en
Priority to EP86113674A priority patent/EP0217406B1/en
Priority to DE8686113674T priority patent/DE3685623T2/en
Priority to KR1019860008313A priority patent/KR900000066B1/en
Publication of JPS6281064A publication Critical patent/JPS6281064A/en
Priority to US07/222,296 priority patent/US4864376A/en
Priority to US07/399,141 priority patent/US5061648A/en
Publication of JPH0622244B2 publication Critical patent/JPH0622244B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28525Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System the conductive layers comprising semiconducting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon
    • H01L29/458Ohmic electrodes on silicon for thin film silicon, e.g. source or drain electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78663Amorphous silicon transistors
    • H01L29/78666Amorphous silicon transistors with normal-type structure, e.g. with top gate

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は例えば液晶を用いたアクティブ表示素子に用
いられる薄膜トランジスタ及びその製造方法に関する。
The present invention relates to a thin film transistor used for an active display element using liquid crystal, for example, and a manufacturing method thereof.

「従来の技術」 まず従来の薄膜トランジスタを用いたアクティブ液晶表
示素子を第2図を参照して説明する。ガラスのようの透
明基板11及び12が近接対向して設けられ、その周縁
部にはスペーサ13が介在され、これら透明基板11,
12間に液晶14が封入されている。一方の透明基板1
1の内面に表示電極15が複数形成され、これら各表示
電極15に接してそれぞれスイッチング素子として薄膜
トランジスタ16が形成され、その薄膜トランジスタ1
6のドレインは表示電極15に接続されている。これら
複数の表示電極15と対向して他方の透明基板12の内
面に透明な共通電極17が形成されている。
"Prior Art" First, an active liquid crystal display element using a conventional thin film transistor will be described with reference to FIG. Transparent substrates 11 and 12 such as glass are provided in close proximity to each other, and a spacer 13 is interposed in the peripheral portion thereof.
A liquid crystal 14 is enclosed between 12 pieces. One transparent substrate 1
A plurality of display electrodes 15 are formed on the inner surface of the thin film transistor 1, and thin film transistors 16 are formed as switching elements in contact with the respective display electrodes 15.
The drain of 6 is connected to the display electrode 15. A transparent common electrode 17 is formed on the inner surface of the other transparent substrate 12 so as to face the plurality of display electrodes 15.

表示電極15は例えば画素電極であって第3図に示すよ
うに、透明基板11上に正方形の表示電極15が行及び
列に近接配列されており、表示電極15の各行配列と近
接し、かつこれに沿ってそれぞれゲートバス18が形成
され、また表示電極15の各列配列と近接してそれに沿
ってソースバス19がそれぞれ形成されている。これら
各ゲートバス18及びソースバス19の交差点において
薄膜トランジスタ16が設けられ、各薄膜トランジスタ
16のゲートは両バスの交差点位置においてゲートバス
18に接続され、各ソースはソースバス19にそれぞれ
接続され、更に各ドレインは表示電極15に接続されて
いる。
The display electrode 15 is, for example, a pixel electrode, and as shown in FIG. 3, the square display electrodes 15 are arranged in rows and columns on the transparent substrate 11, and are arranged close to each row of the display electrodes 15, and Gate buses 18 are formed along the respective lines, and source buses 19 are formed along and adjacent to the respective column arrays of the display electrodes 15. The thin film transistors 16 are provided at the intersections of the gate buses 18 and the source buses 19, the gates of the thin film transistors 16 are connected to the gate buses 18 at the intersections of the buses, and the sources are connected to the source buses 19 respectively. The drain is connected to the display electrode 15.

これらゲートバス18とソースバス19との各一つを選
択してそれら間に電圧を印加し、その電圧が印加された
薄膜トランジスタ16のみが導通し、その導通した薄膜
トランジスタ16のドレインに接続された表示電極15
に電荷を蓄積して表示電極15と共通電極17との間の
液晶14の部分においてのみ電圧を印加し、これによっ
て表示電極15の部分のみを光透明或いは光遮断とする
ことによって選択的な表示を行う。この表示電極15に
蓄積した電荷を放電させることによって表示を消去させ
ることができる。
Each of the gate bus 18 and the source bus 19 is selected and a voltage is applied between them, and only the thin film transistor 16 to which the voltage is applied becomes conductive, and the display connected to the drain of the conductive thin film transistor 16 is displayed. Electrode 15
A charge is accumulated in the display electrode 15 and a voltage is applied only to a portion of the liquid crystal 14 between the display electrode 15 and the common electrode 17, so that only the portion of the display electrode 15 is transparent or light-blocked, thereby selectively displaying. I do. The display can be erased by discharging the charges accumulated in the display electrode 15.

薄膜トランジスタ16は従来においては例えば第4図及
び第5図に示すように構成されていた。即ち透明基板1
1上に表示電極15をソースバス19とがITOのよう
な透明導電膜によって形成され、表示電極15及びソー
スバス19の互いに平行近接した部分間にまたがってア
モルファスシリコンのような半導体層21が形成され、
更にその上に窒化シリコンなどのゲート絶縁膜22が形
成される。このゲート絶縁膜22上において半導体層2
1を介して表示電極15及びソースバス19とそれぞれ
一部重なってゲート電極23が形成される。ゲート電極
23の一端はゲートバス18に接続される。このように
してゲート電極23とそれぞれ内攻した表示電極15,
ソースバス19はそれぞれドレイン電極15a,ソース
電極19aを構成し、これら電極15a,19a,半導
体層21,ゲート絶縁膜22,ゲート電極23によって
薄膜トランジスタ16が構成される。ゲート電極23及
びゲートバス18は同時に形成され、例えばアルミニウ
ムによって構成される。
Conventionally, the thin film transistor 16 is constructed as shown in FIGS. 4 and 5, for example. That is, the transparent substrate 1
1, the display electrode 15 and the source bus 19 are formed of a transparent conductive film such as ITO, and the semiconductor layer 21 such as amorphous silicon is formed across the display electrode 15 and the source bus 19 in parallel and close to each other. Is
Further, a gate insulating film 22 made of silicon nitride or the like is formed thereon. The semiconductor layer 2 is formed on the gate insulating film 22.
The gate electrode 23 is formed so as to partially overlap with the display electrode 15 and the source bus 19 via the gate electrode 1. One end of the gate electrode 23 is connected to the gate bus 18. In this way, the gate electrode 23 and the display electrode 15 that has respectively attacked inside,
The source bus 19 constitutes a drain electrode 15a and a source electrode 19a, respectively, and the thin film transistor 16 is constituted by the electrodes 15a and 19a, the semiconductor layer 21, the gate insulating film 22 and the gate electrode 23. The gate electrode 23 and the gate bus 18 are formed at the same time and are made of, for example, aluminum.

またドレイン電極15a及びソース電極19a上にはそ
れぞれオーミック接触層24,25が形成されていた。
オーミック接触層24,25は例えばnプラスのアモル
ファスシリコンで構成されている。その不純物としては
例えばリンが用いられている。更にこれら薄膜トランジ
スタ16の全体を覆って、例えばシリコンチッ化膜より
なる保護層26が形成されている。
Ohmic contact layers 24 and 25 were formed on the drain electrode 15a and the source electrode 19a, respectively.
The ohmic contact layers 24 and 25 are made of, for example, n-plus amorphous silicon. For example, phosphorus is used as the impurity. Further, a protective layer 26 made of, for example, a silicon nitride film is formed so as to cover the entire thin film transistors 16.

「発明が解決しようとする課題」 第5図に示したように従来の薄膜トランジスタにおいて
は、ドレイン電極15a,ソース電極19aとなるべき
透明電極を透明基板11上に形成し、その上にオーミッ
ク接触層24,25となるべきnプラスのアモルファス
シリコン層を形成し、その後nプラスアモルファスシリ
コン層と透明電極とを所定のパターンにエッチングして
表示電極15,ソースバス19を形成していた。従って
オーミック接触層24,25は第5図に示すようにドレ
イン電極15a,ソース電極19aの上側においてのみ
形成されており、従ってこれら電極15a,19aと半
導体層21との接触部分の幅w1,w2が小さくなるに
従って、これた電極15a,19aと半導体層21との
オーミック接触が十分とならず、ドレイン、ソース間に
直列に挿入される抵抗、いわゆるRs が大きくなる。ま
た、このように従来においては、オーミック接触層2
4,25を特に形成しているため、その膜厚分だけソー
ス、ドレイン間の抵抗Rs が大きな値となっていた。
[Problems to be Solved by the Invention] As shown in FIG. 5, in a conventional thin film transistor, a transparent electrode to serve as a drain electrode 15a and a source electrode 19a is formed on a transparent substrate 11, and an ohmic contact layer is formed thereon. The n-plus amorphous silicon layer which should become 24 and 25 is formed, and then the n-plus amorphous silicon layer and the transparent electrode are etched into a predetermined pattern to form the display electrode 15 and the source bus 19. Therefore, the ohmic contact layers 24 and 25 are formed only above the drain electrode 15a and the source electrode 19a as shown in FIG. 5, and therefore the widths w1 and w2 of the contact portions between these electrodes 15a and 19a and the semiconductor layer 21 are formed. As becomes smaller, ohmic contact between the electrodes 15a and 19a and the semiconductor layer 21 becomes insufficient, and the resistance inserted in series between the drain and the source, so-called Rs, increases. In addition, as described above, the ohmic contact layer 2 is conventionally used.
Since Nos. 4 and 25 are formed in particular, the resistance Rs between the source and the drain has a large value corresponding to the film thickness.

更に、従来においてドレイン電極15a,ソース電極1
9aは透明電極であるが、例えば酸化錫やITO(酸化
インジュウム及び酸化錫)で構成されており、この透明
電極上に、オーミック接触層24,25や半導体層21
を、例えばプラズマCVD法(プラズマ化学的気相成長
法)によって形成するが、これら層を形成中に透明電極
15a,19a中のインジュウムや錫などの構成元素が
半導体層21やオーミック接触層24,25内に拡散
し、不純物となり、半導体層21がP形層となり、また
透明電極15a,19a中の酸化物が半導体層21,オ
ーミック接触層24,25に入り、酸化シリコンを形成
したり、更にインジュウムや錫がオーミック接触層2
4,25に入るとnプラス層に対してP形不純物が入っ
たことになり、オーミック接触の効果を下げてしまい、
従って前記Rs が大きくなる。これらの点より薄膜トラ
ンジスタの特性の良好なものが得られなかった。
Further, conventionally, the drain electrode 15a and the source electrode 1
Reference numeral 9a denotes a transparent electrode, which is made of, for example, tin oxide or ITO (indium oxide and tin oxide), and the ohmic contact layers 24 and 25 and the semiconductor layer 21 are formed on the transparent electrode.
Is formed by, for example, a plasma CVD method (plasma chemical vapor deposition method). During the formation of these layers, the constituent elements such as indium and tin in the transparent electrodes 15a and 19a are changed to the semiconductor layer 21 and the ohmic contact layer 24, 25, and become an impurity, the semiconductor layer 21 becomes a P-type layer, and the oxides in the transparent electrodes 15a and 19a enter the semiconductor layer 21 and the ohmic contact layers 24 and 25 to form silicon oxide. Indium and tin are ohmic contact layers 2
When entering 4 and 25, P-type impurities have entered the n-plus layer, and the effect of ohmic contact is reduced,
Therefore, the Rs becomes large. From these points, a thin film transistor having excellent characteristics could not be obtained.

またガラス基板と接してソース電極及びドレイン電極間
のチャンネルが設けられている薄膜トランジスタにおい
ては、ガラス基板からナトリウムがチャネル中に侵入し
てトランジスタの特性が劣化する問題があった。
Further, in a thin film transistor in which a channel between the source electrode and the drain electrode is provided in contact with the glass substrate, there is a problem that sodium enters the channel from the glass substrate and the characteristics of the transistor are deteriorated.

この発明の目的はソース電極、ドレイン電極間と半導体
層とのオーミック接触が良好で、かつガラス基板のナト
リウムに影響され難く、しかも生産性がよく歩留りが高
い薄膜トランジスタ及びその製造方法を提供することに
ある。
An object of the present invention is to provide a thin film transistor having good ohmic contact between a source electrode and a drain electrode and a semiconductor layer, less susceptible to sodium of a glass substrate, and having high productivity and a high yield, and a manufacturing method thereof. is there.

「課題を解決するための手段」 この発明によればガラス基板上のソース電極及びドレイ
ン電極と半導体層との全接触域にわたってリンを含むオ
ーミック接触層が形成され、かつこれら両オーミック接
触層とほゞ連続するようにガラス基板半導体層側の面内
にリン含有層が形成される。従ってこれら半導体層とこ
れら電極とは良好なオーミック接触状態となり、いわゆ
るRs が小さいものが得られる。
[Means for Solving the Problems] According to the present invention, an ohmic contact layer containing phosphorus is formed over the entire contact area between the source electrode and the drain electrode on the glass substrate and the semiconductor layer, and both of these ohmic contact layers are almost the same. A phosphorus-containing layer is formed in the surface of the glass substrate semiconductor layer side so as to be continuous. Therefore, these semiconductor layers and these electrodes are in good ohmic contact with each other, and so-called Rs is small.

この発明の方法は透明ガラス基板上に透明導電膜からな
るソース電極及びドレイン電極を形成し、その後これら
両電極とガラス基板との各表面にプラズマドーピング法
によりリンを拡散し、その後半導体層を形成し、またゲ
ート絶縁膜、ゲート電極を順次形成する。この場合リン
の拡散、半導体層の形成、ゲート絶縁膜はプラズマCV
D法により連続的に行い、特にオーミック接触層の形成
する工程を設けることはないが、半導体層を形成する際
に先にソース電極、ドレイン電極に拡散したリンが半導
体層との接触面に折出し半導体層に入り、オーミック接
触層が自動的に形成される。なおガラス基板の半導体層
側の面内にリン含有層が形成される。
According to the method of the present invention, a source electrode and a drain electrode made of a transparent conductive film are formed on a transparent glass substrate, then phosphorus is diffused on each surface of these electrodes and the glass substrate by a plasma doping method, and then a semiconductor layer is formed. Then, a gate insulating film and a gate electrode are sequentially formed. In this case, phosphorus diffusion, semiconductor layer formation, and gate insulation film are plasma CV.
The method is continuously performed by the D method, and there is no particular step of forming an ohmic contact layer. However, when the semiconductor layer is formed, phosphorus diffused in the source electrode and the drain electrode first is broken at the contact surface with the semiconductor layer. Upon entering the semiconductor layer, an ohmic contact layer is automatically formed. A phosphorus-containing layer is formed in the surface of the glass substrate on the semiconductor layer side.

「実施例」 以下この発明による薄膜トランジスタ及びその製法を説
明する。第1図Aに示すようにガラスの透明基板11上
にITOなどの透明導電膜31が形成され、その透明導
電膜31をエッチング処理して所定のパターンに形成
し、第1図Bに示すようにドレンイン電極15a,ソー
ス電極19aをそれぞれ形成する。更にこれら基板1
1,電極15a,19aの表面にリン含有層32を形成
する。このリンを含有させるにはプラズマCVD法の装
置を用いて行う。即ち、基板11を200℃乃至300
℃とし、 PH3ガスをアルゴンガス5000ppm に稀釈
し、10cc/分の速度で供給し、圧力10Torr の雰
囲気で20Wの高周波電力によりプラズマドーピングを
数分間行うことにより、基板11,電極15a,19a
の各表面にリンを拡散させてリン含有層32を形成させ
る。
[Examples] Hereinafter, a thin film transistor according to the present invention and a method for manufacturing the same will be described. As shown in FIG. 1A, a transparent conductive film 31 such as ITO is formed on a transparent substrate 11 made of glass, and the transparent conductive film 31 is etched to form a predetermined pattern. Then, the drain-in electrode 15a and the source electrode 19a are formed respectively. Furthermore, these substrates 1
1, the phosphorus-containing layer 32 is formed on the surfaces of the electrodes 15a and 19a. The phosphorus is contained by using an apparatus of plasma CVD method. That is, the substrate 11 is heated to 200 ° C. to 300 ° C.
C., PH 3 gas was diluted to 5000 ppm with argon gas, supplied at a rate of 10 cc / min, and plasma doping was carried out for several minutes with a high frequency power of 20 W in an atmosphere of a pressure of 10 2 Torr. 19a
The phosphorus-containing layer 32 is formed by diffusing phosphorus on the respective surfaces.

このようにリン含有層32を形成した後、第1図Cに示
すように従来と同様に例えばアモルファスシリコンの半
導体層21をプラズマCVD法により形成し、その上に
チッ化シリコンのゲート絶縁膜22を連続して形成し、
更にその上にゲート電極23を形成し、その後エッチン
グにより所定のパターンとする。次に第1図Dに示すよ
うに保護層26を例えばチッ化シリコンにより形成す
る。
After the phosphorus-containing layer 32 is formed in this way, as shown in FIG. 1C, a semiconductor layer 21 of, for example, amorphous silicon is formed by a plasma CVD method as in the conventional case, and a gate insulating film 22 of silicon nitride is formed thereon. Are continuously formed,
Further, a gate electrode 23 is formed thereon, and then a predetermined pattern is formed by etching. Next, as shown in FIG. 1D, a protective layer 26 is formed of, for example, silicon nitride.

半導体層21は高周波プラズマCVD法によって基板を
200℃乃至300℃として形成されるが、その際にリ
ン含有層32のリンが半導体層21に拡散し、半導体層
21と電極15a,19aとの全接触面にわたってそれ
ぞれリンを含むオーミック接触層33,34が形成され
る。このように形成されるため、このオーミック接触層
33は非常にごく薄いが確実に形成され、しかも半導体
層21と電極15a及び19aとが互いに接触している
全域にわたって形成され、良好なオーミック接触が得ら
れ、従って前記Rs の小さな薄膜トランジスタが得られ
る。また半導体層21の厚さも薄くすることができ、こ
の点からもRs を小さくすることができる。
The semiconductor layer 21 is formed by a high-frequency plasma CVD method at a substrate temperature of 200 ° C. to 300 ° C. At that time, the phosphorus of the phosphorus-containing layer 32 diffuses into the semiconductor layer 21, and the semiconductor layer 21 and the electrodes 15a and 19a are entirely diffused. Ohmic contact layers 33 and 34 each containing phosphorus are formed over the contact surfaces. Since the ohmic contact layer 33 is formed in this manner, it is very thin but surely formed, and is formed over the entire region where the semiconductor layer 21 and the electrodes 15a and 19a are in contact with each other, and good ohmic contact is obtained. Thus, a thin film transistor having a small Rs can be obtained. Also, the thickness of the semiconductor layer 21 can be made thin, and from this point as well, Rs can be made small.

また、ガラス基板11に拡散したリンがガラス基板11
の表面に現れるため、特に電極15a,19a間のチャ
ネル部分において、ガラス基板11中のナトリウムなど
が現れても、そのナトリウムがリンによっていわゆるゲ
ッタリングされて安定に動作する薄膜トランジスタが得
られる。
In addition, phosphorus diffused in the glass substrate 11 is
Therefore, even if sodium or the like in the glass substrate 11 appears especially in the channel portion between the electrodes 15a and 19a, the sodium is so-called gettered by phosphorus, and a thin film transistor that operates stably can be obtained.

更に半導体層21を形成中において通設電極15a,1
9a中のインジュウムや錫がリンと結合し、これらが半
導体層21に拡散するのが防止される。なお必要に応じ
て半導体層21を所定の形状にエッチングする際に透明
電極15a,19a上のリン含有層32を除去してもよ
い。
Further, during formation of the semiconductor layer 21, the through electrodes 15a, 1
Indium and tin in 9a are bound to phosphorus and prevented from diffusing into the semiconductor layer 21. If necessary, the phosphorus-containing layer 32 on the transparent electrodes 15a and 19a may be removed when the semiconductor layer 21 is etched into a predetermined shape.

「発明の効果」 以上述べたように、この発明によれば透明電極と半導体
層の全接触域にわたってリンを含有するオーミック接触
層が形成されているためRs の小さなものが得られる。
また透明電極としてリンを含有したものを用いて作るこ
とによって前記Rs を小さく、しかも安定な薄膜トラン
ジスタが得られる。
[Advantages of the Invention] As described above, according to the present invention, the Rs is small because the ohmic contact layer containing phosphorus is formed over the entire contact area between the transparent electrode and the semiconductor layer.
Also, by using a transparent electrode containing phosphorus, it is possible to obtain a stable thin film transistor having a small Rs.

更にリンの拡散をプラズマドーピング法により行い、ま
た半導体層の形成をプラズマCVD法により行ってお
り、また従来よりゲート絶縁膜もプラズマCVD法によ
り形成することが行われているからリン拡散からゲート
絶縁膜の形成までを真空を破ることなく連続的に行うこ
とができ、量産性を向上でき、かつごみの混入が少な
く、歩留りが高くなる。
Further, phosphorus is diffused by a plasma doping method, a semiconductor layer is formed by a plasma CVD method, and a gate insulating film is conventionally formed by a plasma CVD method. The film can be continuously formed without breaking the vacuum, mass productivity can be improved, less dust is mixed, and the yield is increased.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明による薄膜トランジスタの一例の製造
工程を示す断面図、第2図は液晶表示素子の断面の一部
を示す図、第3図は薄膜トランジスタの電気回路を示す
回路図、第4図は第3図中の表示電極、薄膜トランジス
タの平面図、第5図は第4図のAA線拡大断面図であ
る。 11:透明基板、15a:ドレイン電極、19a:ソー
ス電極、21:半導体層、22:ゲート絶縁膜、23:
ゲート電極、32:リン含有層、33,34:オーミッ
ク接触層。
FIG. 1 is a cross-sectional view showing a manufacturing process of an example of a thin film transistor according to the present invention, FIG. 2 is a view showing a part of a cross section of a liquid crystal display element, FIG. 3 is a circuit diagram showing an electric circuit of a thin film transistor, and FIG. Is a plan view of the display electrode and the thin film transistor in FIG. 3, and FIG. 5 is an enlarged sectional view taken along the line AA of FIG. 11: transparent substrate, 15a: drain electrode, 19a: source electrode, 21: semiconductor layer, 22: gate insulating film, 23:
Gate electrode, 32: phosphorus-containing layer, 33, 34: ohmic contact layer.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】透明ガラス基板上に透明導電膜からなるソ
ース電極及びドレイン電極が互いに分離されて形成さ
れ、前記ソース電極及びドレイン電極間にわたって半導
体層が形成され、該半導体層上にゲート絶縁膜が形成さ
れ、該ゲート絶縁膜上にゲート電極が形成され、上記半
導体層と上記ソース電極及びドレイン電極との間の全域
にわたってリンを含有するオーミック接触層が形成され
ると共にこれらオーミック接触層とほゞ連続するよう
に、上記ガラス基板の上記半導体層側の面内にリン含有
層が形成されている薄膜トランジスタ。
1. A source electrode and a drain electrode made of a transparent conductive film are separately formed on a transparent glass substrate, a semiconductor layer is formed between the source electrode and the drain electrode, and a gate insulating film is formed on the semiconductor layer. Is formed, a gate electrode is formed on the gate insulating film, an ohmic contact layer containing phosphorus is formed over the entire area between the semiconductor layer and the source electrode and drain electrode, and at the same time, these ohmic contact layers are formed. A thin film transistor in which a phosphorus-containing layer is formed in the surface of the glass substrate on the semiconductor layer side so as to be continuous.
【請求項2】透明ガラス基板上に透明導電膜からなるソ
ース電極及びドレイン電極を形成する工程と、 上記ソース電極及びドレイン電極と上記ガラス基板との
各表面にプラズマドーピング法によりリンを拡散させ、
リン含有層を形成する工程と、 上記リン含有層上に半導体層をプラズマCVD法により
連続して形成すると共に透明導電膜中のリンを上記半導
体層中に拡散させる工程と、 上記半導体層上にゲート絶縁膜用絶縁膜を形成する工程
と、 その後、上記絶縁膜上にゲート電極用導電層を形成する
工程と、 次に上記ゲート電極用導電層、上記絶縁膜及び上記半導
体層を所望のパターンにエッチングしてゲート電極、ゲ
ート絶縁膜、半導体層を作る工程と、 を有する薄膜トランジスタの製造方法。
2. A step of forming a source electrode and a drain electrode made of a transparent conductive film on a transparent glass substrate, and diffusing phosphorus on each surface of the source electrode and the drain electrode and the glass substrate by a plasma doping method,
A step of forming a phosphorus-containing layer, a step of continuously forming a semiconductor layer on the phosphorus-containing layer by a plasma CVD method, and a step of diffusing phosphorus in a transparent conductive film into the semiconductor layer; A step of forming an insulating film for a gate insulating film, and then a step of forming a conductive layer for a gate electrode on the insulating film, and then forming the conductive layer for a gate electrode, the insulating film and the semiconductor layer into a desired pattern And a step of forming a gate electrode, a gate insulating film, and a semiconductor layer by etching, and a method of manufacturing a thin film transistor.
JP60221666A 1985-10-04 1985-10-04 Thin film transistor and manufacturing method thereof Expired - Fee Related JPH0622244B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP60221666A JPH0622244B2 (en) 1985-10-04 1985-10-04 Thin film transistor and manufacturing method thereof
AT86113674T ATE77177T1 (en) 1985-10-04 1986-10-03 THIN FILM TRANSISTOR AND METHOD FOR ITS MANUFACTURE.
EP86113674A EP0217406B1 (en) 1985-10-04 1986-10-03 Thin-film transistor and method of fabricating the same
DE8686113674T DE3685623T2 (en) 1985-10-04 1986-10-03 THIN FILM TRANSISTOR AND METHOD FOR THE PRODUCTION THEREOF.
KR1019860008313A KR900000066B1 (en) 1985-10-04 1986-10-04 Manufacturing method of film transistor
US07/222,296 US4864376A (en) 1985-10-04 1988-07-22 Thin-film transistor and method of fabricating the same
US07/399,141 US5061648A (en) 1985-10-04 1989-08-28 Method of fabricating a thin-film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60221666A JPH0622244B2 (en) 1985-10-04 1985-10-04 Thin film transistor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS6281064A JPS6281064A (en) 1987-04-14
JPH0622244B2 true JPH0622244B2 (en) 1994-03-23

Family

ID=16770359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60221666A Expired - Fee Related JPH0622244B2 (en) 1985-10-04 1985-10-04 Thin film transistor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0622244B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6069370A (en) 1997-03-26 2000-05-30 Nec Corporation Field-effect transistor and fabrication method thereof and image display apparatus
KR101112541B1 (en) * 2004-11-16 2012-03-13 삼성전자주식회사 Thin film transistor array panel using organic semiconductor and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5769778A (en) * 1980-10-17 1982-04-28 Matsushita Electric Ind Co Ltd Semiconductor device
JPS59172774A (en) * 1983-03-22 1984-09-29 Nec Corp Amorphous silicon thin film transistor
JPS59181064A (en) * 1983-03-31 1984-10-15 Toshiba Corp Semiconductor device
JPS59232385A (en) * 1983-06-15 1984-12-27 株式会社東芝 Active matrix type display unit

Also Published As

Publication number Publication date
JPS6281064A (en) 1987-04-14

Similar Documents

Publication Publication Date Title
EP0217406B1 (en) Thin-film transistor and method of fabricating the same
US4624737A (en) Process for producing thin-film transistor
KR100205373B1 (en) Manufacturing method of liquid crystal display element
JPS59208783A (en) Thin film transistor
JPH0219840A (en) Manufacture of active matrix panel
KR0156178B1 (en) Method for producing lcd device
US5668381A (en) Thin film transistor array panel for a liquid crystal display
JPH0622244B2 (en) Thin film transistor and manufacturing method thereof
JP2659976B2 (en) Thin film transistor and method of manufacturing the same
JP2572379B2 (en) Method for manufacturing thin film transistor
JPH07122718B2 (en) Liquid crystal display
JPH10173195A (en) Thin film transistor and its manufacturing method
JP2003172949A (en) Manufacturing method for array substrate for display device
JP3125345B2 (en) Thin film transistor element array and method of manufacturing the same
KR100551436B1 (en) Thin film transistor liquid crystal display device and manufacturing method thereof
JPS62169125A (en) Preparation of liquid crystal display panel
JPH07191349A (en) Thin film transistor panel
JPH10213815A (en) Production of liquid crystal display device
JP2797361B2 (en) Semiconductor device
JPH07112068B2 (en) Manufacturing method of active matrix array
WO2004053822A2 (en) Display pixel, display apparatus having an image pixel and method of manufacturing display device
JPH02196470A (en) Thin film transistor and manufacture thereof
JPH0822029A (en) Liquid crystal display device and its production
JPH0652790B2 (en) Method for manufacturing solid-state display device
KR100977223B1 (en) method for manufacturing of liquid crystal display device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees