JPH0621452A - Field effect transistor and manufacture thereof - Google Patents

Field effect transistor and manufacture thereof

Info

Publication number
JPH0621452A
JPH0621452A JP17404892A JP17404892A JPH0621452A JP H0621452 A JPH0621452 A JP H0621452A JP 17404892 A JP17404892 A JP 17404892A JP 17404892 A JP17404892 A JP 17404892A JP H0621452 A JPH0621452 A JP H0621452A
Authority
JP
Japan
Prior art keywords
oxide film
silicon
silicon oxide
semiconductor substrate
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17404892A
Other languages
Japanese (ja)
Inventor
Tomoyuki Hikita
智之 疋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP17404892A priority Critical patent/JPH0621452A/en
Publication of JPH0621452A publication Critical patent/JPH0621452A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the gate width of a field effect transistor without reducing the integration degree of the LSI comprising the transistors, by making the cross section of the active region of the transistor convex. CONSTITUTION:In a field effect transistor, first, a silicon oxide film 2 is formed on a silicon substrate 1, and thereon, silicon nitride film 3 is formed. Then, after applying a resist 4 thereto extensively, the silicon substrate 1 is etched to a predetermined depth while removing the nitride film 3 and the silicon oxide film 2, and in the region to be changed into the region for separating elements from each other, an opening part is formed, and further, a reflection preventing layer 5 is formed on the bottom surface of the groove part of the opening part by injecting ions from the opening part thereinto. Subsequently, a LOCOS oxidization is performed, and a silicon oxide film 6 is formed in the opening part. Then, after removing the silicon nitride film 3 by an anisotropic etching, the silicon oxide film 6 is removed to a predetermined depth, and the silicon substrate 1 to be changed into an active region 11 is exposed in a convex form. Thereafter, a gate oxide film 8 and a gate electrode part 9 are formed on the protruding substrate 1. Further, the protruding substrate 1 is subjected to an ion implantation, using the gate electrode part 9 as a mask, and it is annealed, and source/drain layers 10, 10 are formed out of it.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電界効果トランジスタ
及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a field effect transistor and its manufacturing method.

【0002】[0002]

【従来の技術】図4は、従来のMOSトランジスタの製
造工程を示す。
2. Description of the Related Art FIG. 4 shows a conventional process for manufacturing a MOS transistor.

【0003】まず、所望の導電型(P型)にドーピング
されたシリコン基板1の表面に熱酸化により、膜厚が約
600Åのシリコン酸化膜2を形成し、次に、CVD法
により膜厚が約1200Åのシリコン窒化膜3を形成す
る。その後、パターニングし、シリコン窒化膜3及びシ
リコン酸化膜2を開口し、この開口領域に、反転防止の
ための不純物(ボロン等)をイオン注入し、反転防止層
5を形成する(図4(a))。
First, a silicon oxide film 2 having a thickness of about 600 Å is formed by thermal oxidation on the surface of a silicon substrate 1 doped to a desired conductivity type (P type), and then a film thickness is formed by a CVD method. A silicon nitride film 3 of about 1200Å is formed. After that, patterning is performed to open the silicon nitride film 3 and the silicon oxide film 2, and impurities (boron or the like) for preventing inversion are ion-implanted into the opening region to form an inversion prevention layer 5 (FIG. )).

【0004】次に、ロコス酸化により、膜厚が約600
0Åのシリコン酸化膜による素子分離領域6を形成する
(図4(b))。
Next, the film thickness is about 600 by locos oxidation.
An element isolation region 6 is formed of a 0Å silicon oxide film (FIG. 4B).

【0005】次に、シリコン窒化膜3及びシリコン酸化
膜2を除去し、シリコン基板1の表面を露出させた後、
膜厚が約300Åの犠性酸化膜7を形成し、しきい値電
圧制御のため、イオン注入を行う(図4(c))。
Next, after removing the silicon nitride film 3 and the silicon oxide film 2 to expose the surface of the silicon substrate 1,
A sacrificial oxide film 7 having a film thickness of about 300Å is formed, and ion implantation is performed for controlling the threshold voltage (FIG. 4C).

【0006】次に、犠性酸化膜7を除去した後、膜厚約
200Åのゲート酸化膜8を形成し、全面に、ゲート電
極材料となる、膜厚約1500ÅのN+ポリシリコン膜
及び膜厚約2000Åのタングステンシリサイド膜を連
続的に形成し、パターニングし、ゲート電極部9を形成
する(図4(d))。
Next, after removing the sacrificial oxide film 7, a gate oxide film 8 having a film thickness of about 200 Å is formed, and an N + polysilicon film and a film having a film thickness of about 1500 Å to be a gate electrode material are formed on the entire surface. A tungsten silicide film having a thickness of about 2000Å is continuously formed and patterned to form the gate electrode portion 9 (FIG. 4D).

【0007】次に、ゲート電極部9をマスクとしてソー
ス/ドレイン層10となる領域に、N型不純物としてヒ
素(As)等を注入し、アニールを行い、ソース/ドレ
イン層10を形成する(図4(e))。
Next, using the gate electrode portion 9 as a mask, arsenic (As) or the like is implanted as an N-type impurity into a region to be the source / drain layer 10 and annealed to form the source / drain layer 10 (FIG. 4 (e)).

【0008】[0008]

【発明が解決しようとする課題】MOSトランジスタの
ドライブ能力は、ゲート長(L)とゲート幅(W)によ
りほぼ決定し、高いドライブ能力を得るためには、ゲー
ト長を小さく、ゲート幅を大きく設計すれば良い。しか
し、ゲート長を小さくするためには、耐圧低下の問題及
びショートチャンネル効果の問題があり、ゲート幅を大
きくするためには、LSIの集積度を低下させるという
問題がある。
The drive capability of a MOS transistor is almost determined by the gate length (L) and the gate width (W), and in order to obtain high drive capability, the gate length is made small and the gate width is made large. Just design. However, there is a problem of lowering the breakdown voltage and the problem of the short channel effect in order to reduce the gate length, and a problem of lowering the integration degree of the LSI in order to increase the gate width.

【0009】本発明は、LSIの集積度を低下させるこ
となくゲート幅を大きくする手段を提供することを目的
とする。
An object of the present invention is to provide a means for increasing the gate width without lowering the degree of integration of LSI.

【0010】[0010]

【課題を解決するための手段】請求項1記載の本発明の
電界効果トランジスタは、活性領域の、ソース/ドレイ
ン方向に垂直方向の断面が凸状であり、且つ、ゲート電
極及びソース/ドレイン層が前記凸状活性領域の上面及
び側面に設けられていることを特徴とするものである。
According to the field effect transistor of the present invention as set forth in claim 1, the active region has a convex cross section in a direction perpendicular to the source / drain direction, and has a gate electrode and a source / drain layer. Are provided on the upper surface and the side surface of the convex active region.

【0011】また、請求項2に記載の本発明の電界効果
トランジスタの製造方法は、半導体基板上に、シリコン
酸化膜及びシリコン窒化膜を順に形成する工程と、パタ
ーニング後、前記シリコン酸化膜,シリコン窒化膜及び
半導体基板をエッチングし、少なくともソース/ドレイ
ン方向に平行に、前記半導体基板上の活性領域となる領
域の縁部に、所定の深さ及び幅の溝部を形成する工程
と、前記溝部に反転防止のためのイオン注入を行った
後、ロコス酸化により、前記溝部に素子分離領域を形成
する工程と、前記シリコン窒化膜を除去した後、前記シ
リコン酸化膜及び前記溝部に形成された素子分離領域を
所定の深さまでエッチングし、前記半導体基板表面部を
凸状に露出させる工程と、前記凸状半導体基板表面に、
しきい値電圧制御のためのイオン注入を行った後、ゲー
ト酸化膜を形成する工程と、前記凸状の半導体基板の上
面及び側面にゲート電極及びソース/ドレイン層を形成
する工程とを有することを特徴とするものである。
According to a second aspect of the present invention, there is provided a method of manufacturing a field effect transistor, comprising a step of sequentially forming a silicon oxide film and a silicon nitride film on a semiconductor substrate, and after patterning, the silicon oxide film and the silicon oxide film. Etching the nitride film and the semiconductor substrate to form a groove portion having a predetermined depth and width at least in parallel to the source / drain direction at the edge of the region to be the active region on the semiconductor substrate; After performing ion implantation for preventing inversion, a step of forming an element isolation region in the groove by locos oxidation, and a step of removing the silicon nitride film, and then separating the element formed in the silicon oxide film and the groove Etching the region to a predetermined depth, exposing the semiconductor substrate surface portion in a convex shape, and the convex semiconductor substrate surface,
Having a step of forming a gate oxide film after performing ion implantation for controlling a threshold voltage, and a step of forming a gate electrode and a source / drain layer on an upper surface and a side surface of the convex semiconductor substrate. It is characterized by.

【0012】[0012]

【作用】上記本発明を用いることにより、LSIの集積
度を低下させることなく、ゲート幅が大きくなる。
By using the present invention, the gate width can be increased without lowering the degree of integration of the LSI.

【0013】[0013]

【実施例】以下、一実施例に基づいて、本発明を詳細に
説明する。
The present invention will be described in detail below based on an example.

【0014】図1は本発明の一実施例のMOSトランジ
スタの平面図を示し、図2は同MOSトランジスタの図
1のA−A′断面の製造工程図を示し、図3は同MOS
トランジスタの、図1のB−B′断面の構造断面図を示
す。
FIG. 1 is a plan view of a MOS transistor according to an embodiment of the present invention, FIG. 2 is a manufacturing process diagram of the MOS transistor taken along the line AA 'in FIG. 1, and FIG.
FIG. 2 is a structural cross-sectional view of the transistor taken along the line BB ′ in FIG. 1.

【0015】図1に示す様に、本発明の一実施例のMO
Sトランジスタは、活性領域11の周囲のシリコン基板
1を除去し、該領域にシリコン酸化膜による素子分離領
域6が形成され、図2及び3に示す様に活性領域となる
シリコン基板1が凸状に露出しており、該凸状のシリコ
ン基板1の上面及び側面に、ゲート電極部9及びソース
/ドレイン層10が形成されている。
As shown in FIG. 1, the MO of one embodiment of the present invention.
In the S transistor, the silicon substrate 1 around the active region 11 is removed, and an element isolation region 6 made of a silicon oxide film is formed in the region, and the silicon substrate 1 to be the active region has a convex shape as shown in FIGS. The gate electrode portion 9 and the source / drain layer 10 are formed on the upper surface and the side surface of the convex silicon substrate 1.

【0016】次に、図2を用いて、本発明の一実施例の
MOSトランジスタの製造工程を説明する。
Next, the manufacturing process of the MOS transistor of one embodiment of the present invention will be described with reference to FIG.

【0017】まず、P型にドーピングされた、シリコン
基板1を熱酸化し、膜厚が約600Åのシリコン酸化膜
2を形成し、次に、CVD法で、膜厚が約1200Åの
シリコン窒化膜3を形成する(図2(a))。
First, the P-type doped silicon substrate 1 is thermally oxidized to form a silicon oxide film 2 having a thickness of about 600 Å, and then a silicon nitride film having a thickness of about 1200 Å is formed by a CVD method. 3 is formed (FIG. 2A).

【0018】次に、全面にレジスト4を塗布した後、パ
ターニングを行い、異方性エッチングにより、シリコン
窒化膜3及びシリコン酸化膜2を除去しシリコン基板1
を深さ約3000Åエッチングし、素子分離領域6とな
る領域を開口し、該開口部から反転防止のためにP+
純物であるボロン等をイオン注入し溝部の底面に反転防
止層5を形成する(図2(b))。
Next, after applying a resist 4 on the entire surface, patterning is performed, and the silicon nitride film 3 and the silicon oxide film 2 are removed by anisotropic etching to remove the silicon substrate 1.
Is etched to a depth of about 3,000 Å, a region to be the element isolation region 6 is opened, and P + impurity such as boron is ion-implanted from the opening to form an inversion prevention layer 5 on the bottom surface of the groove. (FIG.2 (b)).

【0019】次に、ロコス酸化を行い、膜厚が約600
0Åのシリコン酸化膜6を形成し(図2(c))、次
に、異方性エッチングにより、シリコン窒化膜3を除去
した後、シリコン酸化膜6を深さ約3000Å除去し、
活性領域11となるシリコン基板1を凸型に露出させる
(図2(d))。
Next, locos oxidation is performed to obtain a film thickness of about 600.
A silicon oxide film 6 having a thickness of 0 Å is formed (FIG. 2C), and then the silicon nitride film 3 is removed by anisotropic etching, and then the silicon oxide film 6 is removed to a depth of about 3000 Å.
The silicon substrate 1 to be the active region 11 is exposed in a convex shape (FIG. 2D).

【0020】次に、犠性酸化膜7を膜厚約300Å形成
し、MOSトランジスタのしきい値電圧制御のためにイ
オン注入を行い(図2(e))、その後、犠性酸化膜7
を除去し、熱酸化法により、膜厚が約200Åのゲート
酸化膜8を形成し、全面にゲート電極材料となる、例え
ば、膜厚が約1500ÅのN+型ポリシリコン膜及び膜
厚が約2000Åのタングステンシリサイド膜を形成
し、パターニングし、ゲート電極部9を形成する(図2
(f))。
Next, a sacrificial oxide film 7 is formed to a film thickness of about 300Å, ions are implanted to control the threshold voltage of the MOS transistor (FIG. 2 (e)), and then the sacrificial oxide film 7 is formed.
Is removed and a gate oxide film 8 having a film thickness of about 200Å is formed by a thermal oxidation method, and becomes a gate electrode material on the entire surface. For example, an N + -type polysilicon film having a film thickness of about 1500Å and a film thickness of about A 2000 Å tungsten silicide film is formed and patterned to form the gate electrode portion 9 (FIG. 2).
(F)).

【0021】次に、ゲート電極部9をマスクとして、ソ
ース/ドレイン層10となる領域に、N型不純物として
ヒ素(As)等を注入し(図2(g))、アニールを行
い、ソース/ドレイン層10を形成し(図2(h))、
MOSトランジスタを完成させる。
Next, using the gate electrode portion 9 as a mask, arsenic (As) or the like is implanted as an N-type impurity into the region to be the source / drain layer 10 (FIG. 2 (g)), and annealing is performed to form the source / drain. Forming the drain layer 10 (FIG. 2 (h)),
Complete the MOS transistor.

【0022】本実施例においては、活性領域の周囲に溝
部を設けたが、ソース/ドレイン方向に垂直な方向の活
性領域の断面が凸状になっていればよく、活性領域の周
囲全てに溝部を設ける必要はない。また、本実施例にお
いてMOSトランジスタについて説明したが、本発明
は、MOSトランジスタに限定されるものではなく、電
界効果トランジスタであれば適用可能である。
In this embodiment, the groove is provided around the active region. However, it is sufficient that the cross section of the active region in the direction perpendicular to the source / drain direction is convex, and the groove is formed around the entire active region. Need not be provided. Further, although the MOS transistor has been described in the present embodiment, the present invention is not limited to the MOS transistor and can be applied to any field effect transistor.

【0023】[0023]

【発明の効果】以上、詳細に説明した様に、本発明を用
い、電界効果トランジスタの活性領域を凸状にすること
により、従来の2次元的構造の電界効果トランジスタと
比べて同じ2次元的スペースにおいて、より大きいゲー
ト幅を得ることができ、特に、微細な電界効果トランジ
スタの単位長あたりのドライブ能力を大幅に向上するこ
とができる。
As described above in detail, by using the present invention, by making the active region of the field effect transistor convex, the same two-dimensional field effect transistor as the conventional two-dimensional structure can be obtained. In a space, a larger gate width can be obtained, and in particular, the drive capability per unit length of a fine field effect transistor can be greatly improved.

【0024】また、微細なゲート幅の場合に生じる、し
きい値電圧の増大(狭チャンネル効果)を著しく抑制で
きる。
Further, the increase of the threshold voltage (narrow channel effect) which occurs in the case of a fine gate width can be remarkably suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のMOSトランジスタの平面
図である。
FIG. 1 is a plan view of a MOS transistor according to an embodiment of the present invention.

【図2】同MOSトランジスタの製造工程図である。FIG. 2 is a manufacturing process diagram of the same MOS transistor.

【図3】同MOSトランジスタの断面図である。FIG. 3 is a sectional view of the same MOS transistor.

【図4】従来のMOSトランジスタの製造工程図であ
る。
FIG. 4 is a manufacturing process diagram of a conventional MOS transistor.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 シリコン酸化膜 3 シリコン窒化膜 4 レジスト 5 反転防止層 6 素子分離領域 7 犠性酸化膜 8 ゲート酸化膜 9 ゲート電極 10 ソース/ドレイン層 11 活性領域 1 Silicon substrate 2 Silicon oxide film 3 Silicon nitride film 4 Resist 5 Inversion prevention layer 6 Element isolation region 7 Sacrificial oxide film 8 Gate oxide film 9 Gate electrode 10 Source / drain layer 11 Active region

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 活性領域の、ソース/ドレイン方向に垂
直方向の断面が凸状であり、且つ、ゲート電極及びソー
ス/ドレイン層が前記凸状活性領域の上面及び側面に設
けられていることを特徴とする電界効果トランジスタ。
1. A cross section of the active region in a direction perpendicular to the source / drain direction has a convex shape, and a gate electrode and a source / drain layer are provided on an upper surface and a side surface of the convex active area. Characteristic field effect transistor.
【請求項2】 半導体基板上に、シリコン酸化膜及びシ
リコン窒化膜を順に形成する工程と、 パターニング後、前記シリコン酸化膜,シリコン窒化膜
及び半導体基板をエッチングし、少なくともソース/ド
レイン方向に平行に、前記半導体基板上の活性領域とな
る領域の縁部に所定の深さ及び幅の溝部を形成する工程
と、 前記溝部に反転防止のためのイオン注入を行った後、ロ
コス酸化により、前記溝部に素子分離領域を形成する工
程と、 前記シリコン窒化膜を除去した後、前記シリコン酸化膜
及び前記溝部に形成された素子分離領域を所定の深さま
でエッチングし、前記半導体基板表面部を凸状に露出さ
せる工程と、 前記凸状の半導体基板表面に、しきい値電圧制御のため
のイオン注入を行った後、ゲート酸化膜を形成する工程
と、 前記凸状の半導体基板の上面及び側面にゲート電極及び
ソース/ドレイン層を形成する工程とを有することを特
徴とする、電界効果トランジスタの製造方法。
2. A step of sequentially forming a silicon oxide film and a silicon nitride film on a semiconductor substrate, and after patterning, the silicon oxide film, the silicon nitride film and the semiconductor substrate are etched to be parallel to at least source / drain directions. A step of forming a groove portion having a predetermined depth and width at an edge portion of a region to be an active region on the semiconductor substrate; and after performing ion implantation for preventing inversion, the groove portion is formed by locos oxidation. A step of forming an element isolation region in, and after removing the silicon nitride film, etching the element isolation region formed in the silicon oxide film and the groove portion to a predetermined depth, the semiconductor substrate surface portion in a convex shape A step of exposing, a step of forming a gate oxide film after performing ion implantation for controlling a threshold voltage on the convex semiconductor substrate surface, Characterized in that the upper and side surfaces shaped for semiconductor substrate and a step of forming a gate electrode and source / drain layer, a method of manufacturing a field effect transistor.
JP17404892A 1992-07-01 1992-07-01 Field effect transistor and manufacture thereof Pending JPH0621452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17404892A JPH0621452A (en) 1992-07-01 1992-07-01 Field effect transistor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17404892A JPH0621452A (en) 1992-07-01 1992-07-01 Field effect transistor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0621452A true JPH0621452A (en) 1994-01-28

Family

ID=15971715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17404892A Pending JPH0621452A (en) 1992-07-01 1992-07-01 Field effect transistor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0621452A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005173608A (en) * 2003-12-09 2005-06-30 Heidelberger Druckmas Ag Method and device for image forming of printing plate
JP2008004894A (en) * 2006-06-26 2008-01-10 Elpida Memory Inc Semiconductor device and method of manufacturing the same
JP2008186915A (en) * 2007-01-29 2008-08-14 Toshiba Corp Semiconductor device and its manufacturing method
JP2009060134A (en) * 2008-11-10 2009-03-19 Elpida Memory Inc Semiconductor device and manufacturing method
WO2009157040A1 (en) * 2008-06-25 2009-12-30 富士通マイクロエレクトロニクス株式会社 Semiconductor device and process for producing the semiconductor device
JP2010232677A (en) * 2010-06-18 2010-10-14 Renesas Electronics Corp Method of manufacturing semiconductor device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005173608A (en) * 2003-12-09 2005-06-30 Heidelberger Druckmas Ag Method and device for image forming of printing plate
JP2008004894A (en) * 2006-06-26 2008-01-10 Elpida Memory Inc Semiconductor device and method of manufacturing the same
US7829419B2 (en) 2006-06-26 2010-11-09 Elpida Memory, Inc. Semiconductor device and method for manufacturing the same
JP2008186915A (en) * 2007-01-29 2008-08-14 Toshiba Corp Semiconductor device and its manufacturing method
WO2009157040A1 (en) * 2008-06-25 2009-12-30 富士通マイクロエレクトロニクス株式会社 Semiconductor device and process for producing the semiconductor device
US8362530B2 (en) 2008-06-25 2013-01-29 Fujitsu Semiconductor Limited Semiconductor device including MISFET and its manufacture method
JP5158197B2 (en) * 2008-06-25 2013-03-06 富士通セミコンダクター株式会社 Semiconductor device and manufacturing method thereof
JP2009060134A (en) * 2008-11-10 2009-03-19 Elpida Memory Inc Semiconductor device and manufacturing method
JP2010232677A (en) * 2010-06-18 2010-10-14 Renesas Electronics Corp Method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
JP3077630B2 (en) Semiconductor device and manufacturing method thereof
US5998849A (en) Semiconductor device having highly-doped source/drain regions with interior edges in a dislocation-free state
JPH04269873A (en) Transistor provided with inverted silicide t-shaped gate structure
JPS6344770A (en) Field effect transistor and manufacture of the same
JP2951893B2 (en) Method of manufacturing transistor for semiconductor device
JP3072754B2 (en) Method for manufacturing semiconductor device
US5610424A (en) Metal oxide semiconductor field effect transistor
US5115296A (en) Preferential oxidization self-aligned contact technology
JPH0621452A (en) Field effect transistor and manufacture thereof
JP2596117B2 (en) Method for manufacturing semiconductor integrated circuit
JPH04218925A (en) Semiconductor device and manufacture thereof
JPH04276662A (en) Manufacture of semiconductor device
JP2852901B2 (en) Method of manufacturing MOSFET
JPH0147016B2 (en)
JPH0738095A (en) Semiconductor device and its manufacturing method
JP2673384B2 (en) Semiconductor device and manufacturing method thereof
JP2972508B2 (en) MOS transistor and method of manufacturing the same
JPS6344769A (en) Field effect transistor and manufacture of the same
JP2626532B2 (en) Semiconductor device and manufacturing method thereof
JP2917301B2 (en) Semiconductor device and manufacturing method thereof
JP3041860B2 (en) Method for manufacturing MIS transistor
JP3060948B2 (en) Method for manufacturing semiconductor device
JPH05347410A (en) Semiconductor device and its manufacture
JPH07135313A (en) Fet transistor and its fabrication
JPH0243339B2 (en)