JPH062041A - Stable production of grain-oriented silicon steel sheet - Google Patents

Stable production of grain-oriented silicon steel sheet

Info

Publication number
JPH062041A
JPH062041A JP16592592A JP16592592A JPH062041A JP H062041 A JPH062041 A JP H062041A JP 16592592 A JP16592592 A JP 16592592A JP 16592592 A JP16592592 A JP 16592592A JP H062041 A JPH062041 A JP H062041A
Authority
JP
Japan
Prior art keywords
steel sheet
grain
annealing
electrical steel
silicon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP16592592A
Other languages
Japanese (ja)
Inventor
Hodaka Honma
穂高 本間
Hiroaki Masui
浩昭 増井
Katsuro Kuroki
克郎 黒木
Yasunari Yoshitomi
康成 吉冨
Yoshiyuki Ushigami
義行 牛神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP16592592A priority Critical patent/JPH062041A/en
Publication of JPH062041A publication Critical patent/JPH062041A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To produce a middle grade grain-oriented silicon steel sheet having not so high B8 of magnetic properties without causing sensitivity to the change in hot rolling heating temp. CONSTITUTION:At the time of producing a grain-oriented silicon steel sheet by using a steel having a composition consisting of, by weight, 2-7% Si, 0.03-0.08% C, 0.01-0.07% Al, 0.003-0.013% N, 0.05-0.45% Mn, and the balance Fe with inevitable impurities as a starting material and controlling slab heating temp. to <=1280 deg.C, S content is regulated to 0.01-0.05%, by which the diameter of primary recrystallized grains is controlled. By this method, the inexpensive middle grade grain-oriented silicon steel sheet can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、変圧器等の電気機器の
鉄心に用いられる方向性電磁鋼板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet used for an iron core of electric equipment such as a transformer.

【0002】[0002]

【従来の技術】方向性電磁鋼板は、トランスの鉄心等に
用いられる軟磁性材料である。トランスの鉄心に要求さ
れる特性は、電圧変換時の磁気的エネルギー損失である
鉄損が小さいことである。鉄損を低減させるために、電
磁鋼板では、Siを添加する、集合組織を整える、等の
方法を鋼板に適用している。
2. Description of the Related Art Grain-oriented electrical steel sheets are soft magnetic materials used for transformer cores and the like. The characteristic required for the iron core of the transformer is that the iron loss, which is the magnetic energy loss during voltage conversion, is small. In order to reduce iron loss, methods such as adding Si and adjusting the texture are applied to the steel sheet for electromagnetic steel sheets.

【0003】鋼板を交流磁化すると、鋼板内に誘導電流
が流れる。この電流の発生するジュール熱の源は磁気エ
ネルギーであるため、ジュール熱の低減、すなわち誘導
電流を小さくすることが鉄損低減に結びつく。Siを添
加すると鋼板の電気抵抗が増大し、誘導電流が小さくな
る。従って一般的に電磁鋼板にはSiが添加される。
又、体心立方格子を組んでいるFeあるいはFe−Si
合金は、格子の方位によって磁化特性が異なる。この性
質は磁気異方性と呼ばれ、FeあるいはFe−Si合金
の場合はミラー指数で〈100〉方向が最も磁化特性が
優れる。従って結晶粒の〈100〉方向に磁化すれば所
定の磁束密度が小さな磁化力で得られることになり、磁
化の一サイクルあたりの磁気エネルギー損失も小さくな
る。従って鋼板の結晶粒の〈100〉方位を磁化方向に
揃えることが、鉄損低減に結びつく。
When alternating current magnetization is applied to a steel sheet, an induced current flows in the steel sheet. Since the source of Joule heat generated by this current is magnetic energy, reduction of Joule heat, that is, reduction of induced current leads to reduction of iron loss. When Si is added, the electric resistance of the steel sheet increases and the induced current decreases. Therefore, Si is generally added to the magnetic steel sheet.
In addition, Fe or Fe-Si forming a body-centered cubic lattice
The alloy has different magnetization characteristics depending on the orientation of the lattice. This property is called magnetic anisotropy, and in the case of Fe or Fe-Si alloy, the <100> direction is the best in terms of the magnetization characteristic in terms of Miller index. Therefore, if the crystal grains are magnetized in the <100> direction, a predetermined magnetic flux density can be obtained with a small magnetizing force, and the magnetic energy loss per one cycle of magnetization is also small. Therefore, aligning the <100> orientation of the crystal grains of the steel sheet with the magnetization direction leads to reduction of iron loss.

【0004】このようにFe−Si合金の結晶粒の〈1
00〉方位を、集合組織制御によって圧延方向に揃えた
鋼板を方向性電磁鋼板と呼ぶ。この時の集合組織制御
は、二次再結晶と呼ばれる微細析出物を用いた結晶粒成
長現象を利用する。二次再結晶に必要な冶金的条件は、
一次再結晶粒の結晶粒径と集合組織、及びインヒビター
と呼ばれる微細析出物である。一次再結晶時の集合組織
は、一般的には二次再結晶後の最終方位である(11
0)〈001〉(Goss方位と呼ばれる)と、この粒
に蚕食される(111)〈112〉方位を有するように
作り込まれる。
Thus, the Fe--Si alloy crystal grains <1
A steel sheet whose 00> orientation is aligned with the rolling direction by texture control is called a grain-oriented electrical steel sheet. The texture control at this time utilizes a grain growth phenomenon using fine precipitates called secondary recrystallization. The metallurgical conditions required for secondary recrystallization are
It is a crystal grain size and texture of primary recrystallized grains, and fine precipitates called inhibitors. The texture during primary recrystallization is generally the final orientation after secondary recrystallization (11
0) <001> (referred to as Goss orientation) is incorporated into the grains to have a (111) <112> orientation.

【0005】インヒビターは、Goss方位が優先的に
成長する温度まで結晶粒の成長を抑え込む働きをする。
このために用いられる析出物としては、MnS,Al
N,MnSe等が用いられる。又、インヒビターの作り
込みには、製鋼段階で成分調整され、圧延、焼鈍で分散
状態を制御する方法や、工程中で窒化等により作り込む
方法等がある。
The inhibitor functions to suppress the growth of crystal grains up to a temperature at which the Goss orientation preferentially grows.
Precipitates used for this purpose include MnS, Al
N, MnSe, etc. are used. In addition, the inhibitor can be made by adjusting the composition at the steelmaking stage and controlling the dispersed state by rolling or annealing, or by making nitriding during the process.

【0006】これらに対して、一次再結晶粒径は二次再
結晶方位が最適になるよう、又二次再結晶方位ができる
だけ正しいGoss方位を向くように制御される。一次
再結晶粒径は一次再結晶焼鈍(脱炭焼鈍がこれを代替す
る)の温度及び一次再結晶時に析出している析出物の状
態で決まる。従って、例えば、生産時の操業条件として
脱炭焼鈍温度を固定しようとすると、析出物の分散状態
を一定に保たなければ、安定かつ均一な二次再結晶状態
は得られにくいことになる。
On the other hand, the primary recrystallized grain size is controlled so that the secondary recrystallized orientation is optimum and that the secondary recrystallized orientation is directed to the correct Goss orientation as much as possible. The primary recrystallization grain size is determined by the temperature of the primary recrystallization annealing (decarburization annealing substitutes for this) and the state of precipitates precipitated during the primary recrystallization. Therefore, for example, if the decarburization annealing temperature is fixed as an operating condition during production, it is difficult to obtain a stable and uniform secondary recrystallization state unless the dispersed state of the precipitate is kept constant.

【0007】脱炭焼鈍に至るまでの析出物の状態は、成
分及びそれまでの溶解、析出挙動に依存する。例えば上
工程でとけ込みの少ない場合は大きな析出物が少数存在
するが、溶け込みの激しい場合は小さな析出物が多数存
在する。脱炭焼鈍温度が同じ場合は、後者の方が結晶粒
径は小さくなる。従って、鋼板内で析出物の分布に不均
一がある場合は、二次再結晶状態にも不均一が生じるこ
とになる。
The state of the precipitate until the decarburization annealing depends on the components and the dissolution and precipitation behavior up to that point. For example, a large number of large precipitates are present when the melting is small in the upper step, but a large number of small precipitates are present when the melting is intense. When the decarburization annealing temperature is the same, the latter has a smaller crystal grain size. Therefore, if the distribution of precipitates in the steel sheet is not uniform, the secondary recrystallized state will also be uneven.

【0008】[0008]

【発明が解決しようとする課題】本発明は方向性電磁鋼
板の磁気特性がさほど高い値を要求されない場合、一次
再結晶粒径を適正にコントロールすることにより、高い
磁性よりむしろ安定かつ均一な二次再結晶を生じさせる
方向性電磁鋼板の製造方法を提起するものである。
In the present invention, when the magnetic properties of the grain-oriented electrical steel sheet are not required to be so high, the primary recrystallized grain size is appropriately controlled so that the grain size is stable and uniform rather than high magnetism. The present invention proposes a method for producing a grain-oriented electrical steel sheet which causes secondary recrystallization.

【0009】[0009]

【課題を解決するための手段】方向性電磁鋼板を、12
80℃以下の低い温度でスラブ加熱を行う時、インヒビ
ター強度を確保しにくくなる。そのために成分調整、あ
るいは二次再結晶直前の窒化等によってインヒビター強
度を確保しなければならない。
Means for Solving the Problems A grain-oriented electrical steel sheet is
When slab heating is performed at a low temperature of 80 ° C. or lower, it becomes difficult to secure the inhibitor strength. Therefore, the inhibitor strength must be ensured by adjusting the components or nitriding immediately before secondary recrystallization.

【0010】本発明者は、スラブ加熱温度が変化したと
きの一次再結晶粒径(以下一次粒径という)の変化を測
定した。表1の成分Aにおける一次粒径の変化を図1
に、成分Bの一次粒径の変化を図2に示す。
The inventor of the present invention measured the change in the primary recrystallized grain size (hereinafter referred to as the primary grain size) when the slab heating temperature was changed. FIG. 1 shows the change in the primary particle size of component A in Table 1.
2 shows the change in the primary particle size of the component B.

【0011】[0011]

【表1】 [Table 1]

【0012】一次粒径とインヒビターの強度との関係に
より二次再結晶後の製品の磁気特性は決まってくる。例
えば、さほど二次再結晶後の製品の磁束密度を高くする
必要のない場合には、むしろ一次粒径を小さく、かつ一
次再結晶温度の変動に対しても一次粒径の変動も小さく
する必要がある。図1,図2に示すように、成分系によ
っては、スラブ加熱温度の変動に対して一次再結晶粒径
の大きさも、変動も小さくなることを見いだした。
The magnetic properties of the product after the secondary recrystallization are determined by the relationship between the primary particle size and the strength of the inhibitor. For example, when it is not necessary to increase the magnetic flux density of the product after secondary recrystallization so much, it is necessary to reduce the primary particle size and to reduce the fluctuation of the primary particle size with respect to the fluctuation of the primary recrystallization temperature. There is. As shown in FIG. 1 and FIG. 2, it was found that depending on the component system, both the size and the fluctuation of the primary recrystallized grain size are small with respect to the fluctuation of the slab heating temperature.

【0013】即ち、図1,2に示したように、二次再結
晶に必要なインヒビターを確保するためにAlを300
ppm 程度含んだ場合、S添加量が高い方すなわち図1の
方がスラブ加熱温度及び一次再結晶温度の変動に対して
一次再結晶粒径も小さく、かつ変化も小さいことがわか
った。
That is, as shown in FIGS. 1 and 2, Al is added in an amount of 300 to secure the inhibitor necessary for secondary recrystallization.
It has been found that when the content of S is approximately ppm, the one having a higher S content, that is, the one shown in FIG.

【0014】本発明は、この知見に基づいてなされ、更
なる実験の結果、以下に示す条件の下で、磁束密度はさ
ほど高くはないが低廉な方向性電磁鋼板の製造が可能と
なることを見いだした。即ち、本発明の骨子とするとこ
ろは、重量%で、Si:2〜7%、C:0.03〜0.
08%、Al:0.01〜0.07%、N:0.003
〜0.0130%、Mn:0.05〜0.45%を含
み、残部Fe及び不可避的不純物よりなる鋼を溶製し、
鋳造によって鋼塊又はスラブとした後、熱延し、冷延
し、脱炭焼鈍及びそれに引き続く焼鈍分離剤塗布の後に
高温仕上焼鈍を行う方向性電磁鋼板の製造方法におい
て、S量を0.01%以上0.05%以下とし、スラブ
加熱温度が1280℃以下であることを特徴とする方向
性電磁鋼板の安定製造方法である。
The present invention has been made on the basis of this finding, and as a result of further experiments, it is possible to manufacture an inexpensive grain-oriented electrical steel sheet, although the magnetic flux density is not so high, under the following conditions. I found it. That is, the gist of the present invention is, by weight%, Si: 2 to 7%, C: 0.03 to 0.
08%, Al: 0.01 to 0.07%, N: 0.003
.About.0.0130%, Mn: 0.05 to 0.45%, and smelting steel containing the balance Fe and unavoidable impurities,
After forming a steel ingot or slab by casting, hot rolling, cold rolling, decarburization annealing and subsequent annealing separating agent application, followed by high temperature finish annealing, in the method for producing a grain-oriented electrical steel sheet, the S content is 0.01 % Or more and 0.05% or less, and the slab heating temperature is 1280 ° C. or less, which is a stable method for producing a grain-oriented electrical steel sheet.

【0015】更に本発明は熱延後、冷間圧延終了までの
間に、1回又は2回以上の焼鈍を、900℃〜1250
℃の間で行うこと、脱炭焼鈍後、二次再結晶が生じるま
での間に窒化すること及び窒化後の窒素量が、150pp
m 以上300ppm 以下であることを含むものである。
Further, according to the present invention, after hot rolling and before the end of cold rolling, one or more annealings are performed at 900 ° C to 1250 ° C.
Nitriding until the secondary recrystallization occurs after decarburization annealing, and the amount of nitrogen after nitriding is 150 pp.
It is included that it is m or more and 300 ppm or less.

【0016】まず、成分の限定理由に付いて述べる。S
iは、2%未満の時、鉄損特性が充分に得られないこ
と、又、良好な二次再結晶が得られなかったので2%以
上とした。又、7%を超えると製品が極端に脆くなり、
スリット、打ち抜き等の加工が困難になるので、7%以
下とした。
First, the reasons for limiting the components will be described. S
When i is less than 2%, iron loss characteristics cannot be sufficiently obtained, and good secondary recrystallization was not obtained, so i was set to 2% or more. If it exceeds 7%, the product becomes extremely brittle,
Since processing such as slitting and punching becomes difficult, it was set to 7% or less.

【0017】Cは、0.03%未満では、二次再結晶の
方位が悪くて磁気特性が得られず、又、0.08%を超
えると、脱炭焼鈍に長時間を有してコスト的に不利にな
るので、0.03%以上0.08%以下とした。
If C is less than 0.03%, the magnetic properties cannot be obtained because the orientation of secondary recrystallization is poor, and if it exceeds 0.08%, decarburization annealing takes a long time and the cost is low. However, it is 0.03% or more and 0.08% or less.

【0018】Alは、二次再結晶に際してのインヒビタ
ー形成元素として必要である。0.01%未満では安定
した二次再結晶が得られず、又、得られたとしても磁気
特性は悪い。0.07%超含有すると、仕上焼鈍の際に
鋼板表面に大量のAl2 3を形成し、被膜外観を害す
るばかりでなく、鉄損特性にも悪影響を与える。
Al is necessary as an inhibitor-forming element during secondary recrystallization. If it is less than 0.01%, stable secondary recrystallization cannot be obtained, and even if it is obtained, the magnetic properties are poor. If the content exceeds 0.07%, a large amount of Al 2 O 3 is formed on the surface of the steel sheet during finish annealing, which not only impairs the appearance of the coating film but also adversely affects the iron loss characteristics.

【0019】Nは、Alと化合して、AlNを形成し、
二次再結晶のインヒビターとして働く。0.003%未
満ではインヒビターの量を確保するのに不充分であり、
0.0130%を超えるとブリスターと呼ばれる鋼板表
面の割れを生じさせて特性を損なう。
N combines with Al to form AlN,
Acts as an inhibitor of secondary recrystallization. If it is less than 0.003%, it is insufficient to secure the amount of the inhibitor,
If it exceeds 0.0130%, a crack called a blister on the surface of the steel sheet is caused to impair the characteristics.

【0020】Mnは、固溶Sを固着してS偏析による熱
間割れを防ぐ。又、MnSは、インヒビターとしても有
効な析出物である。多すぎると、インヒビターのバラン
スを崩すとともに、脱炭焼鈍板の酸素付着量が過多とな
って、被膜形成を損ねる。
Mn fixes the solid solution S and prevents hot cracking due to S segregation. MnS is also a precipitate that is effective as an inhibitor. If it is too large, the balance of the inhibitor will be lost and the amount of oxygen adhered to the decarburized annealed plate will be excessive, impairing the film formation.

【0021】本発明に於いて、Sの役割は重要である。
本発明材に於いて、S量が少ないとき、製品の磁気特性
は高く優れるものの、スラブ加熱の変動によって多少一
次粒径がばらつく。しかるにS量を0.010%以上と
することによって製品の磁気特性はさほど高くはないも
のの、スラブ加熱温度の影響は小さくなる。逆に多すぎ
ると、インヒビターのバランスを崩す、あるいは偏析を
引き起こして鋼板内での特性のばらつきを生じる。
In the present invention, the role of S is important.
In the material of the present invention, when the amount of S is small, the magnetic properties of the product are high and excellent, but the primary particle size varies somewhat due to fluctuations in slab heating. However, when the S content is 0.010% or more, the magnetic characteristics of the product are not so high, but the influence of the slab heating temperature is reduced. On the other hand, if the amount is too large, the balance of the inhibitor is lost or segregation is caused to cause variations in properties within the steel sheet.

【0022】熱延の、とりわけ加熱の負荷低減のため
に、スラブ加熱温度は、1280℃以下とする。Siを
含む鋼は融点が下がるため、温度が高すぎると鋼板表面
の極端な酸化、あるいは一部融解等が生じるため、低温
であるほど好ましい。又、普通鋼の製造プロセスにおい
て用いている加熱炉を共用することができるため、生産
上も有利である。
In order to reduce the load of hot rolling, especially heating, the slab heating temperature is set to 1280 ° C. or lower. Since the melting point of the steel containing Si is lowered, if the temperature is too high, extreme oxidation of the surface of the steel sheet, partial melting or the like will occur. Therefore, the lower the temperature, the better. Moreover, since the heating furnace used in the manufacturing process of ordinary steel can be shared, it is advantageous in production.

【0023】スラブ加熱温度が低いとき、析出物の固
溶、再析出する量が少ない。従ってインヒビター強度が
弱くなる。このときインヒビターを補強する手段とし
て、窒化によりAlNを形成させると二次再結晶に有利
である。このとき、どうしても若干のAl,Nを鋼中成
分に含有させなければならない。AlNは、固溶再析出
すると極めて微細に析出するものが多く、僅かな温度履
歴の差で析出状態が大きく変化する。従って例えばスラ
ブ加熱温度が高くなると、冷延板、脱炭板の段階で微細
なAlNが増加し、一次再結晶粒が微細化する。
When the slab heating temperature is low, the amount of solid solution and reprecipitation of the precipitate is small. Therefore, the inhibitor strength is weakened. At this time, forming AlN by nitriding as a means for reinforcing the inhibitor is advantageous for secondary recrystallization. At this time, some Al and N must be contained in the steel composition. AlN often precipitates extremely finely when re-deposited as a solid solution, and the precipitation state changes greatly with a slight difference in temperature history. Therefore, for example, when the slab heating temperature becomes high, fine AlN increases in the stages of cold-rolled sheet and decarburized sheet, and the primary recrystallized grains become finer.

【0024】これが図1及び図2に実線と破線の差とし
て示された内容である。Sを添加すると、MnSが析出
し出す。MnSは、固溶再析出による微細化があまり激
しくないので、熱履歴の差による一次粒径の変動は小さ
い。すなわち図2に比べ図1の方が実線と破線の間隔が
狭く、又一次再結晶温度に対する変化量も小さい。更
に、MnSは、AlNが再析出するときの析出核になる
ため、MnSが存在すると、AlNはMnSとの複合析
出と言う形で存在することになって、微細析出量が減少
する。即ち、鋼中のS量を増加させると上工程での熱履
歴変動起因の特性不安定要因が軽減されるのである。
This is the content shown as the difference between the solid line and the broken line in FIGS. When S is added, MnS begins to precipitate. Since MnS is not so severely refined by solid solution reprecipitation, the variation in the primary particle diameter due to the difference in thermal history is small. That is, in FIG. 1, the distance between the solid line and the broken line is narrower than that in FIG. 2, and the amount of change with respect to the primary recrystallization temperature is smaller. Further, since MnS becomes a precipitation nucleus when AlN is re-precipitated, when MnS is present, AlN is present in the form of complex precipitation with MnS, and the fine precipitation amount is reduced. That is, when the amount of S in the steel is increased, the characteristic instability factor due to the thermal history variation in the upper process is reduced.

【0025】なお、熱延板焼鈍を行うと鋼板の集合組織
が適正化されて、磁束密度が高くなる。この効果は特に
900℃以上で焼鈍したときに顕著に現れる。又、この
とき磁性変動は抑えられる傾向にあるが、例えばスラブ
加熱温度変動が極めて大きかったとき等は、熱延板焼鈍
だけで変動を抑え込むことは困難である。又、熱延板焼
鈍条件自体が変動することもあり、このときも本発明が
効果を発現する。
When the hot rolled sheet is annealed, the texture of the steel sheet is optimized and the magnetic flux density is increased. This effect is particularly remarkable when annealed at 900 ° C. or higher. At this time, the magnetic fluctuation tends to be suppressed, but when the slab heating temperature fluctuation is extremely large, for example, it is difficult to suppress the fluctuation only by annealing the hot rolled sheet. In addition, the hot-rolled sheet annealing condition itself may change, and the present invention also exhibits the effect at this time.

【0026】[0026]

【実施例】【Example】

(実施例1) (Example 1)

【表2】 [Table 2]

【0027】表2に示した成分のスラブを1150℃,
1200℃,1250℃で加熱した後、板厚2.0mmま
で熱間圧延し、880℃(表3)、1120℃×30秒
(表4)の焼鈍を行った後酸洗し、0.22mmまで冷間
圧延し、露点60℃の湿潤雰囲気中で、830℃×11
0秒の焼鈍を行い、引き続きNH3 を含む雰囲気中で焼
鈍して窒素含有量180ppm 程度(A材:184ppm 、
B材:179ppm 、C材:175ppm 、D材:181pp
m)とした後、MgOを主成分とする焼鈍分離剤を塗布
し、1200℃×20hrの高温焼鈍を行った。
The slabs having the components shown in Table 2 were heated at 1150 ° C.
After heating at 1200 ° C and 1250 ° C, hot rolling to a plate thickness of 2.0 mm, annealing at 880 ° C (Table 3) and 1120 ° C for 30 seconds (Table 4) followed by pickling, 0.22 mm Cold rolled to 830 ℃ × 11 in a humid atmosphere with a dew point of 60 ℃
Annealing is performed for 0 seconds, and then annealing is performed in an atmosphere containing NH 3 so that the nitrogen content is about 180 ppm (A material: 184 ppm,
B material: 179 ppm, C material: 175 ppm, D material: 181 pp
After m), an annealing separator containing MgO as a main component was applied, and high temperature annealing at 1200 ° C. for 20 hours was performed.

【0028】このときの磁束密度の値を表3,4に示
す。表から、A材はB8は高いがスラブ加熱温度が大き
く変化すると磁気特性がやや大きく変わる。一方、B,
C,D材は、B8はやや低いが、その変化が小さいこと
が解る。即ち、本発明材は、B8はA材ほど高くないも
のの、スラブ加熱温度の変動に対して、磁性の変化が小
さい。又表3と表4との比較から、熱延板焼鈍温度によ
らず類似の傾向が認められる。
The values of the magnetic flux density at this time are shown in Tables 3 and 4. From the table, the material A has a high B8, but the magnetic characteristics change a little when the slab heating temperature changes greatly. On the other hand, B,
It is understood that the C and D materials have a slightly low B8, but their change is small. That is, although the B8 is not as high as the A material in the material of the present invention, the change in magnetism is small with respect to the fluctuation in the slab heating temperature. From the comparison between Table 3 and Table 4, a similar tendency is observed regardless of the hot-rolled sheet annealing temperature.

【0029】[0029]

【表3】 [Table 3]

【0030】[0030]

【表4】 [Table 4]

【0031】[0031]

【発明の効果】本発明により、磁気特性B8はさほど高
くない、中流級の方向性電磁鋼板の製造に対して、熱延
加熱温度の変動に対して鈍感な製造法が可能となった。
EFFECTS OF THE INVENTION According to the present invention, a manufacturing method that is insensitive to fluctuations in the hot rolling heating temperature can be realized for the production of a mid-grade grain-oriented electrical steel sheet in which the magnetic property B8 is not so high.

【図面の簡単な説明】[Brief description of drawings]

【図1】Sを充分含むときのスラブ加熱温度と、脱炭焼
鈍時の一次再結晶粒径との関係を示す図表である。
FIG. 1 is a table showing the relationship between the slab heating temperature when S is sufficiently contained and the primary recrystallized grain size during decarburization annealing.

【図2】S量が少ないときのスラブ加熱温度と、脱炭焼
鈍時の一次再結晶粒径との関係を示す図表である。
FIG. 2 is a table showing the relationship between the slab heating temperature when the amount of S is small and the primary recrystallized grain size during decarburization annealing.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉冨 康成 北九州市戸畑区飛幡町1番1号 新日本製 鐵株式会社八幡製鐵所内 (72)発明者 牛神 義行 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasunari Yoshitomi 1-1 Tobahata-cho, Tobata-ku, Kitakyushu City Nippon Steel Co., Ltd. Yawata Works (72) Inventor Yoshiyuki Ushigami 20-1 Shintomi, Futtsu-shi Shinnihon Steel Engineering Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 Si:2〜7%、 C :0.03〜0.08%、 Al:0.01〜0.07%、 N :0.003〜0.0130%、 Mn:0.05〜0.45%を含み、残部Fe及び不可
避的不純物よりなる鋼を溶製し、鋳造によって鋼塊又は
スラブとした後、熱延し、冷延し、脱炭焼鈍及びそれに
引き続く焼鈍分離剤塗布の後に高温仕上焼鈍を行う方向
性電磁鋼板の製造方法において、S量を0.01%以上
0.05%以下とし、スラブ加熱温度が1280℃以下
であることを特徴とする方向性電磁鋼板の安定製造方
法。
1. By weight%, Si: 2 to 7%, C: 0.03 to 0.08%, Al: 0.01 to 0.07%, N: 0.003 to 0.0130%, Mn. : Steel containing 0.05 to 0.45% and the balance Fe and unavoidable impurities is melted and cast into a steel ingot or slab, which is then hot rolled, cold rolled, decarburized and subsequently decarburized. In the method for producing a grain-oriented electrical steel sheet, wherein high temperature finish annealing is performed after applying an annealing separator, the amount of S is 0.01% or more and 0.05% or less, and the slab heating temperature is 1280 ° C or less. Stable manufacturing method for high-performance electrical steel sheet.
【請求項2】 熱延後、冷間圧延終了までの間に、1回
又は2回以上の焼鈍を、900℃〜1250℃の間で行
うことを特徴とする請求項1記載の方向性電磁鋼板の安
定製造方法。
2. The directional electromagnetic field according to claim 1, wherein annealing is performed once or twice or more between 900 ° C. and 1250 ° C. after hot rolling and before completion of cold rolling. Stable manufacturing method of steel sheet.
【請求項3】 脱炭焼鈍後、二次再結晶が生じるまでの
間に窒化することを特徴とする請求項1又は2記載の方
向性電磁鋼板の安定製造方法。
3. The stable production method of a grain-oriented electrical steel sheet according to claim 1, wherein nitriding is performed after decarburization annealing until secondary recrystallization occurs.
【請求項4】 窒化後の窒素量が、150ppm 以上30
0ppm 以下であることを特徴とする請求項1又は2又は
3記載の方向性電磁鋼板の安定製造方法。
4. The amount of nitrogen after nitriding is 150 ppm or more and 30 or more.
It is 0 ppm or less, The stable manufacturing method of the grain-oriented electrical steel sheet of Claim 1 or 2 or 3 characterized by the above-mentioned.
JP16592592A 1992-06-24 1992-06-24 Stable production of grain-oriented silicon steel sheet Withdrawn JPH062041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16592592A JPH062041A (en) 1992-06-24 1992-06-24 Stable production of grain-oriented silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16592592A JPH062041A (en) 1992-06-24 1992-06-24 Stable production of grain-oriented silicon steel sheet

Publications (1)

Publication Number Publication Date
JPH062041A true JPH062041A (en) 1994-01-11

Family

ID=15821619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16592592A Withdrawn JPH062041A (en) 1992-06-24 1992-06-24 Stable production of grain-oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JPH062041A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100268847B1 (en) * 1996-10-08 2000-10-16 이구택 The manufacturing method of high magnetic flux density steel sheet with magnetic properties

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100268847B1 (en) * 1996-10-08 2000-10-16 이구택 The manufacturing method of high magnetic flux density steel sheet with magnetic properties

Similar Documents

Publication Publication Date Title
JP5782527B2 (en) Low iron loss high magnetic flux density grained electrical steel sheet and manufacturing method thereof
JP2620438B2 (en) Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density
JP3212376B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP2002212639A (en) Method for producing grain oriented silicon steel sheet having excellent magnetic property
EP0307905A2 (en) Method for producing grainoriented electrical steel sheet with very high magnetic flux density
JP2009209428A (en) Method for manufacturing grain-oriented electromagnetic steel sheet with remarkably high magnetic flux density
JPH055126A (en) Production of nonoriented silicon steel sheet
KR950002895B1 (en) Ultrahigh-silicon directional electrical steel sheet and production thereof
JPH062041A (en) Stable production of grain-oriented silicon steel sheet
JP3397277B2 (en) Manufacturing method of ultra-low iron loss ultra-high magnetic flux density unidirectional electromagnetic steel strip
JPH0949023A (en) Production of grain oriented silicon steel sheet excellent in iron loss
JP2003089821A (en) Method for producing ultrahigh magnetic flux density grain oriented silicon steel sheet
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
KR970007162B1 (en) Making method of oriented electrical steel sheet having excellent from loss properties
JP2784661B2 (en) Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet
JPH075975B2 (en) Method for producing grain-oriented electrical steel sheet
JP3397273B2 (en) Manufacturing method for ultra-low iron loss ultra-high magnetic flux density unidirectional electrical steel sheet
JP6228956B2 (en) Low iron loss high magnetic flux density grained electrical steel sheet and manufacturing method thereof
JPS61190017A (en) Production of grain oriented silicon steel sheet having low iron loss
JP3561323B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3324044B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3215178B2 (en) Material for ultra high magnetic flux density unidirectional electrical steel sheet
JP3485475B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPS6296615A (en) Manufacture of grain oriented electrical sheet superior in magnetic characteristic and less in ear cracking at hot rolling
JP3621712B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990831