JPH06201620A - 試料の熱物性評価方法及びその装置 - Google Patents

試料の熱物性評価方法及びその装置

Info

Publication number
JPH06201620A
JPH06201620A JP155993A JP155993A JPH06201620A JP H06201620 A JPH06201620 A JP H06201620A JP 155993 A JP155993 A JP 155993A JP 155993 A JP155993 A JP 155993A JP H06201620 A JPH06201620 A JP H06201620A
Authority
JP
Japan
Prior art keywords
sample
thermal expansion
pressure
refractive index
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP155993A
Other languages
English (en)
Inventor
Shingo Suminoe
伸吾 住江
Hiroyuki Takamatsu
弘行 高松
Tsutomu Morimoto
勉 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP155993A priority Critical patent/JPH06201620A/ja
Publication of JPH06201620A publication Critical patent/JPH06201620A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

(57)【要約】 【目的】 本発明は,試料の熱物性定数の測定および熱
物性定数から得られる試料の物理的な状態の評価を常に
正確に行い得る試料の熱物性評価方法及びその装置の提
供を目的とする。 【構成】 試料に接した気体の圧力を測定し,該圧力に
対応した気体の屈折率,屈折率の温度勾配および熱拡散
長を求める。これにより,圧力変化による試料からの反
射光の位相変化および位相変化による見かけ上の熱膨張
量を算出することができるので,これを用いて試料の真
の熱膨張量を求めることができる。また,略真空状態下
では試料に接する媒質が存在しないため,反射光の位相
変化は熱膨張のみによって生じる。従って,試料の真の
熱膨張量を測定することができる。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は,試料の熱物性評価方法
及びその装置に係り,詳しくは試料の熱物性定数の測定
および熱物性定数から得られる試料の物理的な状態の評
価を行う試料の熱物性評価方法及びその装置に関するも
のである。
【0002】
【従来の技術】試料に周期的に強度変調した励起光を照
射すると,試料はこの光の吸収により発熱し,これによ
り熱膨張する。照射光は周期的に強度変調しているた
め,発熱による試料の温度変化は周期的となり,試料は
熱膨張振動をおこす。これらの熱応答を計測することに
より試料を評価する手法は,光音響法ないしは光熱変位
法として知られている。図4は,上記光熱変位法による
従来の試料の熱物性評価装置Aoの一例における概略構
成を示す模式図である。図4に示す如く,従来の試料の
熱物性評価装置Aoに適用される評価方法では,まずポ
ンプレーザ1から出た励起光(ポンプ光)はチョッパ2
により断続した光束になり,レンズ3によって測定試料
4の表面に照射される。このとき試料4がポンプ光を吸
収する材質の場合,上記したように試料4は,ポンプ光
のエネルギを断続的に吸収してその温度が周期的に変化
するため,試料4の表面に熱膨張振動が生じる。一般
に,熱膨張振動の振幅は10-11 m程度と非常に小さい
ので,光学的な干渉技術を利用して測定される。ここで
は,プローブレーザ5としてHe−Neレーザを用いた
マイケルソン型の干渉計が用いられている。プローブレ
ーザ5から出た光(プローブ光)はビームスプリッタ6
により2方向に分けられる。一方のプローブ光は測定試
料4に向かい,試料4の表面で反射される。反射された
プローブ光は試料4の表面の熱膨張による周期的な位相
変化の影響を受け,再度ビームスプリッタ6で反射さ
れ,光検出器7に入射する。他方のプローブ光は参照ミ
ラー8に向かい,この参照ミラー8で反射されてビーム
スプリッタ6を通過し,光検出器7に入射する。そし
て,試料4から戻ってきた上記一方のプローブ光と干渉
を起こす。ここで,プローブレーザ5の周波数が1種類
であるホモダイン干渉の場合は,干渉信号の強度は熱膨
張振動振幅の余弦関数で与えられ,またプローブレーザ
5の周波数が2種類であるヘテロダイン干渉の場合に
は,干渉信号のビート(うなり)波形の位相が熱膨張振
動振幅に従って変化することになる。これらの干渉信号
をロックインアンプ等により位相検波すれば,微小な熱
膨張量を求めることができる。熱膨張量は試料4の熱伝
導率,熱膨張率などの熱物性定数と密接に関連してい
て,またそれらは試料4の結晶欠陥密度などの物理的な
状態を反映している。ところで,光熱変位法では,チョ
ッパ2の断続(変調)周波数を高くするとポンプ光の熱
エネルギを試料4の表面に閉じこめることができる。従
って,光熱変位法を用いて熱膨張量を求めることによ
り,試料4の表層の熱物性定数の測定および熱物性定数
から得られる試料4の物理的な状態(例えば結晶欠陥,
イオン注入量など)の評価を行うことができた。
【0003】
【発明が解決しようとする課題】干渉計による熱膨張の
計測は,上述したように反射光の位相変化の検出に基づ
いている。しかし,反射光の位相は熱膨張だけでなく試
料4に接する媒質(一般には気体)の屈折率の変化によ
っても影響を受ける。試料4がポンプ光のエネルギを断
続的に吸収すると,試料4の温度が周期的に変化し,そ
のため試料4の表面に熱膨張振動が生じる。同時に試料
4の周期的な温度上昇により,試料4に接した気体の温
度が上昇し,その結果気体の屈折率が下がる。これによ
り,反射光の位相が真空中より遅れ,見かけ上熱膨張量
が大きく測定される(図5(a)〜(d)参照)。本発
明はこのような従来の技術における課題を解決するため
に,試料の熱物性を常に正確に評価できる試料の熱物性
評価方法及びその装置を提供することを目的とするもの
である。
【0004】
【課題を解決するための手段】上記目的を達成するため
に,本発明が採用する第1の手段は,その要旨とすると
ころが,試料に励起光を照射してそれによる該試料の熱
膨張振動を計測して試料の評価を行う熱物性評価方法に
おいて,上記試料に接する気体の圧力を測定し,該圧力
に対応した上記気体の屈折率,該屈折率の温度勾配及び
熱拡散長を求め,得られたこれらの値に基づいて上記試
料に係る熱膨張量を補正する点に係る試料の熱物性評価
方法である。更に,本発明が採用する第2の手段は,そ
の要旨とするところが,試料に励起光を照射してそれに
よる該試料の熱膨張振動を計測して試料の評価を行う熱
物性評価装置において,上記試料に接する気体の圧力を
測定する圧力測定手段と,上記圧力に対応した上記気体
の屈折率,該屈折率の温度勾配及び熱拡散長を求め,得
られたこれらの値に基づいて上記試料に係る熱膨張量を
補正する補正手段とを具備してなる点に係る試料の熱物
性評価装置である。更にまた,本発明が採用する第3の
手段は,その要旨とするところが,試料に励起光を照射
してそれによる該試料の熱膨張振動を計測して試料の評
価を行う熱物性評価方法において,少なくとも上記試料
に接する領域を略真空状態にする点に係る試料の熱物性
評価方法である。
【0005】
【作用】本発明に係る熱物性評価方法及びその装置で
は,試料に接した気体の圧力を測定し,該圧力に対応し
た気体の屈折率,屈折率の温度勾配および熱拡散長を求
める。これにより,圧力変化による試料からの反射光の
位相変化および位相変化による見かけ上の熱膨張量を算
出することができるので,これを用いて試料の真の熱膨
張量を求めることができる。また,略真空状態下では試
料に接する媒質が存在しないため,反射光の位相変化は
熱膨張のみによって生じる。従って,試料の真の熱膨張
量を測定することができる。
【0006】
【実施例】以下,添付図面を参照して本発明を具体化し
た実施例に付き説明し,本発明の理解に供する。尚以下
の実施例は,本発明を具体化した一例であって,本発明
の技術的範囲を限定する性格のものではない。ここに,
図1は本発明の一実施例に係る試料の熱物性評価方法を
適用することのできる熱物性評価装置の概略構成を示す
ブロック図,図2は試料表面に接する領域の圧力と試料
表面からの反射光の位相変化の増加率との関係を示すグ
ラフ,図3は試料表面に接する領域の圧力と試料のみか
け上の熱膨張量との関係を示すグラフである。試料の熱
膨張および空気の温度上昇が引き起こす屈折率低下によ
る反射光の位相変化は,1次元の熱伝導モデルでは以下
のように表すことができる。ここで,数式中に現れる記
号の物理的な意味を以下に定義する。 λ0 :真空中のプローブ光の波長 μa :空気の熱拡散長 μs :試料の熱拡散長 β :空気の(体積)熱膨張率 α :試料の(線)熱膨張率 ΔTs (z):ポンプ光の照射による試料の温度上昇
(深さz) Δn(z) :ポンプ光の照射による空気の屈折率変化
(深さz) T0 :試料表面の温度 dn/dT:空気の屈折率の温度勾配 ω:ポンプ光の断続角周波数 e:水蒸気の圧力 κa :空気の熱伝導率 ρa :空気の密度 Ca :空気の比熱 κs :試料の熱伝導率 ρs :試料の密度 Cs :試料の比熱 n0 ,T0 ,P0 :基準状態での空気の屈折率,温度,
圧力 n ,T ,P :測定状態での空気の屈折率,温度,
圧力
【0007】まず,真空中での試料の熱膨張hの影響に
よる反射光の位相変化ΔΦvsは以下のように表される。
【数1】 他方,空気中での試料の熱膨張hの影響による反射光の
位相変化ΔΦasは上記(1)の場合と同様に,以下のよ
うに表される。
【数2】 更に,空気の温度上昇の影響による反射光の位相変化Δ
Φa は以下のように表される。
【数3】 従って,空気が存在することによる反射光の位相変化の
増加率Ra は,上記〜式より以下のように表され
る。
【数4】 ここで屈折率nは,乾燥空気の場合
【数5】 と表されるので,この屈折率の温度勾配dn/dTは以
下の式で与えられる。
【数6】 また,空気及び試料の熱拡散長μa ,μs は以下の式
で与えられる。
【数7】 ここで上記〜式を前期式に代入し,空気及び試料
としての例えばシリコンの物性値(表1参照)を用いる
と,空気中でこのシリコンを測定した場合の位相変化の
増加率Ra を求めることができる。この増加率Ra は見
かけ上の熱膨張量の増加率に等しい。
【0008】
【表1】 即ち,空気の熱伝導率κa は分子条件が満たされるほど
の低い圧力でなければ圧力に依存しない。また,空気の
密度ρa は圧力に反比例するので,空気の温度T=27
degの場合について増加率Ra を圧力Pの関数として
表すと図2のようになる。ここで,本発明の一実施例に
係る試料の熱物性評価装置A(図1参照)により,試料
8(シリコン)に接する空気の圧力と干渉計5を用いて
得られる光熱変位量を測定した結果との関係を図3に示
す。尚第1図中,1はポンプレーザ,2はミラー,3は
レンズ,4はプローブレーザ,5は干渉計である。ま
た,6はガラス窓7を備え,上記試料8及び該試料8を
載置して位置決めするためのX−Yステージ9を収容す
るチャンバ,10は上記チャンバ6内の圧力計測用の圧
力計(圧力測定手段),11は信号処理回路,12は上
記チャンバ6内を排気するポンプである。更に13はデ
ータ処理用のパーソナルコンピュータ,14はメモリ,
15は上記試料8のハンドリング用のロボット16を制
御するコントローラ,17は上記チャンバ6に対する流
量調節弁である。そして,熱膨張量の補正に係る一連の
演算処理は,上記パーソナルコンピュータ13内のメモ
リに予め記憶された処理プログラムにより実行される。
これが補正手段に相当する。
【0009】尚,前述の図3には,図2における増加率
a を圧力P=760torrで規格化した理論値によ
る曲線も併せて記入した。同図により前述の測定結果と
結論的に求められた増加率Ra は良く一致していること
がわかる。このことは, 当該評価装置Aにより,試料8
に接した気体の圧力を測定し,この圧力に対応した気体
の屈折率,該屈折率の温度勾配および熱拡散長を求め,
それらを用いて熱膨張量を補正することが可能であるこ
とを表している。また,図3は,試料8(または試料8
および当該測定装置本体)をチャンバ6(図1参照)内
において真空中に封入することによっても,試料8の真
の熱膨張量を直接的に測定することができることを示し
ている。従って,本実施例方法及びその装置によって
は,例えば試料8の熱物性を常に正確に評価することが
できるようになる。尚,前述の屈折率nは,水蒸気を含
んだ実際の空気の場合
【数8】 と表わされるので,この屈折率の温度勾配dN/dTは
以下の′式で与えられる。
【数9】 従って,,′,′及び式を用いると,より正確
に熱膨張量を補正できる。また,上記実施例においては
簡単のために1次元の熱伝導モデルを用いた。3次元の
モデルを用いた補正式にて補正すれば,さらに正確に熱
膨張量を補正することができる。
【0010】
【発明の効果】本発明に係る試料の熱物性評価方法及び
その装置は上記したように構成されているため,試料の
真の熱膨張量を求めることができ,該試料の熱物性を常
に正確に評価することができる。
【図面の簡単な説明】
【図1】 本発明の一実施例に係る試料の熱物性評価方
法を適用することのできる熱物性評価装置の概略構成を
示すブロック図。
【図2】 試料表面に接する領域の圧力と試料表面から
の反射光の位相変化の増加率との関係を示すグラフ。
【図3】 試料表面に接する領域の圧力と試料のみかけ
上の熱膨張量との関係を示すグラフ。
【図4】 光熱変位法による従来の試料の熱物性評価装
置の一例における概略構成を示す模式図。
【図5】 真空中又は空気中の反射光の位相変化を示す
説明図。
【符号の説明】
A…熱物性評価装置 1…ポンプレー
ザ 4…プローブレーザ 5…干渉計 6…チャンバ 8…試料 10…圧力計(圧力測定手段) 11…信号処理
回路 12…排気ポンプ 13…パーソナ
ルコンピュータ 14…メモリ 17…流量調節

Claims (3)

    【特許請求の範囲】
  1. 【請求項1】 試料に励起光を照射してそれによる該試
    料の熱膨張振動を計測して試料の評価を行う熱物性評価
    方法において,上記試料に接する気体の圧力を測定し,
    該圧力に対応した上記気体の屈折率,該屈折率の温度勾
    配及び熱拡散長を求め,得られたこれらの値に基づいて
    上記試料に係る熱膨張量を補正することを特徴とする試
    料の熱物性評価方法。
  2. 【請求項2】 試料に励起光を照射してそれによる該試
    料の熱膨張振動を計測して試料の評価を行う熱物性評価
    装置において,上記試料に接する気体の圧力を測定する
    圧力測定手段と,上記圧力に対応した上記気体の屈折
    率,該屈折率の温度勾配及び熱拡散長を求め,得られた
    これらの値に基づいて上記試料に係る熱膨張量を補正す
    る補正手段とを具備してなることを特徴とする試料の熱
    物性評価装置。
  3. 【請求項3】 試料に励起光を照射してそれによる該試
    料の熱膨張振動を計測して試料の評価を行う熱物性評価
    方法において,少なくとも上記試料に接する領域を略真
    空状態にすることを特徴とする試料の熱物性評価方法。
JP155993A 1993-01-08 1993-01-08 試料の熱物性評価方法及びその装置 Pending JPH06201620A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP155993A JPH06201620A (ja) 1993-01-08 1993-01-08 試料の熱物性評価方法及びその装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP155993A JPH06201620A (ja) 1993-01-08 1993-01-08 試料の熱物性評価方法及びその装置

Publications (1)

Publication Number Publication Date
JPH06201620A true JPH06201620A (ja) 1994-07-22

Family

ID=11504886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP155993A Pending JPH06201620A (ja) 1993-01-08 1993-01-08 試料の熱物性評価方法及びその装置

Country Status (1)

Country Link
JP (1) JPH06201620A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7164481B2 (en) 2003-09-01 2007-01-16 Kabushiki Kaisha Ohara Coefficient of linear expansion measuring apparatus and coefficient of linear expansion measuring method
US7182510B2 (en) * 2005-04-04 2007-02-27 David Gerard Cahill Apparatus and method for measuring thermal conductivity
WO2008103528A1 (en) * 2007-02-22 2008-08-28 M-I L.L.C Crystallization point automated test apparatus
WO2008103527A1 (en) * 2007-02-22 2008-08-28 M-I L.L.C. Pressurized crystallization point automated test apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7164481B2 (en) 2003-09-01 2007-01-16 Kabushiki Kaisha Ohara Coefficient of linear expansion measuring apparatus and coefficient of linear expansion measuring method
US7182510B2 (en) * 2005-04-04 2007-02-27 David Gerard Cahill Apparatus and method for measuring thermal conductivity
WO2008103528A1 (en) * 2007-02-22 2008-08-28 M-I L.L.C Crystallization point automated test apparatus
WO2008103527A1 (en) * 2007-02-22 2008-08-28 M-I L.L.C. Pressurized crystallization point automated test apparatus

Similar Documents

Publication Publication Date Title
JP4579423B2 (ja) 試料を非破壊計測するためのシステム
JP2688012B2 (ja) 熱拡散率測定方法
US6188050B1 (en) System and method for controlling process temperatures for a semi-conductor wafer
US6549276B1 (en) Method and apparatus for optical measurement of concentration and temperature of liquids
JPH0432704A (ja) ギャップ測定装置および表面形状測定装置
US10408775B2 (en) Sensor arrangements and methods of operating a sensor arrangement
JPH06201620A (ja) 試料の熱物性評価方法及びその装置
Lima et al. Measurement of the thermal properties of liquids using a thermal wave interferometer
US20090274191A1 (en) Single beam optical apparatus and method
JPH0640071B2 (ja) 水蒸気光吸収線の2次微分曲線を利用した高精度湿度測定方法
JP2004069380A (ja) 線膨張係数測定装置
CN111947803B (zh) 基于弱测量泵浦光调制动态范围的高精度温度测量方法
JP2726210B2 (ja) 試料の熱物性評価方法及びその装置
JP2000346818A (ja) レーザー加熱オングストローム法による薄膜の熱拡散率測定方法及びその測定装置
WO2020059452A1 (ja) ガス測定装置及びガス測定方法
JP6606018B2 (ja) 成分濃度測定装置および方法
JP3510201B2 (ja) Lsaw伝搬特性測定方法及び測定装置
Ghizoni et al. Photopyroelectric measurement of the thermal diffusivity of solids
JP3908211B2 (ja) 線膨張係数測定装置及び線膨張係数測定方法
CN111307059A (zh) 基于波长移相干涉的光热表面变形检测标定装置及方法
JP6742900B2 (ja) 水分濃度測定方法およびその装置
Matsumoto Length Measurement of Gauge Blocks Using a 3.39 µm He-Ne Laser Interferometer
JP6619379B2 (ja) 成分濃度測定装置および方法
CN211576103U (zh) 基于波长移相干涉的光热表面变形检测标定装置
JPH11190670A (ja) 表面温度測定装置及び表面温度測定方法