JPH06195622A - Production of magnetic head - Google Patents

Production of magnetic head

Info

Publication number
JPH06195622A
JPH06195622A JP34247392A JP34247392A JPH06195622A JP H06195622 A JPH06195622 A JP H06195622A JP 34247392 A JP34247392 A JP 34247392A JP 34247392 A JP34247392 A JP 34247392A JP H06195622 A JPH06195622 A JP H06195622A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic core
wafers
block
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34247392A
Other languages
Japanese (ja)
Inventor
Toshiyuki Urano
敏行 浦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP34247392A priority Critical patent/JPH06195622A/en
Publication of JPH06195622A publication Critical patent/JPH06195622A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PURPOSE:To provide the process for production of the small-sized magnetic head having excellent strength of gap butt welding and accuracy by a method of butt joining a pair of magnetic core half bodies consisting of magnetic alloy films with nonmagnetic reinforcing materials via nonmagnetic gap spacers. CONSTITUTION:A laminated substrate block is formed of plural sheets of the nonmagnetic substrates stuck and formed with the magnetic alloy films 1. This block is cut to form plural sheets of wafers of magnetic core half body members having two surfaces parallel with each other. Winding grooves 6 are dug and formed on the surfaces of the wafers. Magnetic head chips are formed by polishing the surfaces of the wafers 2 to mirror finished surfaces, forming gap spacer films 3 on at last one surface of the wafers, laminating and joining the wafers to form a magnetic core block, cutting this block to half the thickness of the wafers to form magnetic core bars and cutting these magnetic core bars at the bisecting plane of the substrates.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はVTR、HDD等の磁気
記録再生装置に使用される磁気ヘッドの製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a magnetic head used in a magnetic recording / reproducing apparatus such as a VTR or HDD.

【0002】[0002]

【従来の技術】VTR、HDD等の磁気記録再生システ
ムにおいては時間的な記録密度の向上(周波数の高帯域
化)及び空間的な記録密度の向上(狭トラック化、短波
長化)が望まれ、それを実現するためには、狭ギャッ
プ、狭トラック幅の磁気ヘッドを短波長記録が可能な高
抗磁力媒体に近接配置し、両者を高速で相対走行させな
がら電磁信号を入出力することが前提となる。
2. Description of the Related Art In a magnetic recording / reproducing system such as a VTR or HDD, it is desired to improve temporal recording density (higher frequency band) and spatial recording density (narrower track, shorter wavelength). To achieve this, a magnetic head with a narrow gap and a narrow track width can be placed close to a high coercive force medium capable of short-wavelength recording, and electromagnetic signals can be input and output while both are traveling relatively at high speed. It is a prerequisite.

【0003】このような高密度記録用の磁気ヘッドとし
ては、特開平2−168406号に示された図2のよう
な磁性合金膜積層コア型磁気ヘッドが有力である。
As a magnetic head for such high density recording, a magnetic alloy film laminated core type magnetic head as shown in FIG. 2 shown in Japanese Patent Laid-Open No. 2-168406 is effective.

【0004】図2の磁気ヘッドの磁路は、高抗磁力の媒
体に対応するために高飽和磁束密度の磁性合金膜1で構
成される。該磁性合金膜は、厚い磁性合金膜の磁気特性
が高周波における渦電流の影響で劣化するのを防ぐため
に比較的薄い磁性合金膜を電気的絶縁膜を介して積層す
ることが望ましいが、以下の説明では、磁性合金膜の単
層膜、積層膜にかかわらず磁性合金膜と称する。
The magnetic path of the magnetic head shown in FIG. 2 is composed of a magnetic alloy film 1 having a high saturation magnetic flux density so as to correspond to a medium having a high coercive force. The magnetic alloy film is preferably formed by laminating a relatively thin magnetic alloy film via an electrically insulating film in order to prevent the magnetic characteristics of the thick magnetic alloy film from deteriorating under the influence of eddy currents at high frequencies. In the description, the magnetic alloy film is referred to as a magnetic alloy film regardless of whether it is a single-layer film or a laminated film.

【0005】前記磁性合金膜1は、非磁性の補強基板2
0によって挟持され、非磁性のギャップスペーサ3を介
して突き合わせ接合されている。4はギャップ突き合わ
せ接合補強用のガラスである。
The magnetic alloy film 1 is a non-magnetic reinforcing substrate 2
They are sandwiched by 0s and are abutted and joined to each other via a non-magnetic gap spacer 3. Reference numeral 4 is a glass for reinforcing the gap butt joint.

【0006】図2の磁気ヘッドは、記録媒体との高速摺
動という問題に対しても、公知のフェライトヘッドやM
IG(メタル・イン・ギャップ)ヘッドに比べて、摺動
ノイズの発生しやすいフェライト材を含まない磁気コア
構造を有するという点で有利である。
The magnetic head shown in FIG. 2 has a known ferrite head and M even with respect to the problem of high speed sliding on the recording medium.
Compared with an IG (metal-in-gap) head, it is advantageous in that it has a magnetic core structure that does not include a ferrite material that easily causes sliding noise.

【0007】図2の磁気ヘッドは、図3〜図9に示すよ
うな工程を経て製造される。すなわち、まず図3に示す
ように、結晶化ガラス、非磁性セラミック等からなる基
板20の一方の表面に、ガラス層5を塗布焼成法、スパ
ッタリング法等によって付着形成し、他方の表面に、磁
性合金膜1をトラック幅に相当する厚さ分、スパッタリ
ング法等によって付着形成する。
The magnetic head shown in FIG. 2 is manufactured through the steps shown in FIGS. That is, as shown in FIG. 3, first, a glass layer 5 is adhered and formed on one surface of a substrate 20 made of crystallized glass, non-magnetic ceramic or the like by a coating firing method, a sputtering method or the like, and a magnetic layer is formed on the other surface. The alloy film 1 is deposited by a thickness corresponding to the track width by a sputtering method or the like.

【0008】次に、図4に示すように、前記基板を複数
枚積み重ね、図中矢印Pの向きに加圧した状態で真空中
または不活性ガス雰囲気中で加熱昇温して前記ガラス層
5を溶融させることによって前記基板を積層接合し、図
5のような積層基板ブロック91を得る。ここで、前記
接合ガラス層5は基板2と磁性合金膜1との間に介在す
ることになるが、以下の図では簡略化のために接合ガラ
ス層を図示しない。
Next, as shown in FIG. 4, a plurality of the substrates are stacked and heated in a vacuum or in an inert gas atmosphere while being pressurized in the direction of arrow P in the figure to heat the glass layer 5. The substrates are laminated and joined by melting to obtain a laminated substrate block 91 as shown in FIG. Here, the bonding glass layer 5 is interposed between the substrate 2 and the magnetic alloy film 1, but the bonding glass layer is not shown in the following figures for simplification.

【0009】次に、前記積層基板ブロック91を図5の
破線D−Eに沿って切断し、図6のような磁気コア半体
部材となるべきウエハ92a、92bを得る。
Next, the laminated substrate block 91 is cut along the broken line D--E in FIG. 5 to obtain wafers 92a, 92b to be magnetic core half members as shown in FIG.

【0010】次に、図7に示すように、前記ウエハの2
枚92a、92bを1ペアとして、一方のウエハのギャ
ップ突き合わせ面となる表面にガラス溝を掘削しガラス
40を充填する。また、他方のウエハのギャップ突き合
わせ面となる表面に巻線溝6を掘削する。その後、前記
1ペアのウエハのギャップ突き合わせ面を鏡面研摩し、
ギャップスペーサ膜(図示せず)を付着形成する。
Next, as shown in FIG.
A pair of sheets 92a and 92b is used as a pair, and a glass groove is excavated on the surface of one of the wafers to be the gap abutting surface to fill the glass 40. In addition, the winding groove 6 is excavated on the surface of the other wafer which is to be the gap abutting surface. After that, the gap abutting surfaces of the pair of wafers are mirror-polished,
A gap spacer film (not shown) is deposited.

【0011】次に、図8に示すように、前記1ペアのウ
エハを突き合わせ、図中矢印Qの向きに加圧した状態で
真空中または不活性ガス雰囲気中で加熱昇温して前記ガ
ラス溝中のガラス40を溶融流動させ、該ガラスを前記
巻線溝6の先端部にまで流し込んでギャップ突き合わせ
接合し、磁気コアバー94を得る。以下、この工程をギ
ャップ溶着工程と略称する。
Next, as shown in FIG. 8, the pair of wafers are butted and heated in a vacuum or in an inert gas atmosphere while being pressurized in the direction of arrow Q in the figure to heat the glass groove. The glass 40 in the inside is melted and flowed, and the glass is poured to the tip of the winding groove 6 and gap-butted and joined to obtain a magnetic core bar 94. Hereinafter, this step is abbreviated as a gap welding step.

【0012】最後に、前記磁気コアバー94の記録媒体
対向面を図9の一点鎖線Fに沿って曲面研摩した後、該
磁気コアバ−を図9の一点鎖線Gに沿ってスライスし
て、図2のような磁気ヘッドチップ95を得る。
Finally, after the surface of the magnetic core bar 94 facing the recording medium is curved along the alternate long and short dash line F in FIG. 9, the magnetic core bar is sliced along the alternate long and short dash line G in FIG. A magnetic head chip 95 such as

【0013】[0013]

【発明が解決しようとする課題】ここで、高密度磁気記
録用の磁気ヘッドとしては、小型化という点で図1に示
した磁気コア半体の横幅Wa、Wb、すなわち製造工程
を逆上れば、図8のギャップ溶着工程に供される図7の
ウエハ92a.92bの厚さTa、Tbが制限され、ま
た、記録信号の短波長化に対応するためは、ギャップ長
の狭小化、高精度化が求められる。
As a magnetic head for high-density magnetic recording, the lateral widths Wa and Wb of the magnetic core halves shown in FIG. 1, that is, the manufacturing steps are reversed from the viewpoint of miniaturization. For example, the wafer 92a. The thicknesses Ta and Tb of 92b are limited, and in order to cope with the shortening of the wavelength of the recording signal, it is required to narrow the gap length and improve the accuracy.

【0014】ところが、前記ウエハの厚さTa、Tbを
薄くしようとすると、図7のギャップ突き合わせ面研摩
工程においてウエハが反りやすく、ギャップ突き合わせ
面の平面度が低下して、図8のギャップ溶着工程におけ
るギャップ突き合わせの接合強度やギャップ長の寸法精
度が低下する。
However, when the thicknesses Ta and Tb of the wafer are reduced, the wafer is likely to warp in the step of polishing the gap abutting surface of FIG. 7, the flatness of the gap abutting surface is lowered, and the gap welding step of FIG. 8 is performed. The joint strength of the gap abutting and the dimensional accuracy of the gap length are reduced.

【0015】これに対して、厚いウエハの状態でギャッ
プ突き合わせ面研摩を行い、溶着した後で溶着ブロック
の側面を削り落として横幅を規制するという方法も考え
られるが、工数が増え、材料の損失も多くなる。
On the other hand, it is conceivable to polish the gap abutting surface in the state of a thick wafer, and after welding, scrape the side surface of the welding block to control the lateral width, but the number of steps is increased and the loss of material is increased. Also increases.

【0016】本発明は、上述のような従来技術の問題点
を踏まえた上で、材料の損失や工数の増加をできるかぎ
り抑えながら、ギャップ突き合わせ溶着の強度や精度に
優れた小型磁気ヘッドを製造するための方法を明らかに
しようとするものである。
In consideration of the above-mentioned problems of the prior art, the present invention manufactures a small magnetic head having excellent strength and accuracy of gap butt welding while suppressing material loss and increase in man-hours as much as possible. It is intended to clarify the way to do it.

【0017】[0017]

【課題を解決するための手段】本発明による磁気ヘッド
の製造方法は、非磁性の補強基板によって挾持された磁
性合金膜からなる一対の磁気コア半体を、非磁性のギャ
ップスペーサを介して突き合わせ接合してなる磁気ヘッ
ドの製造方法において、(1)磁性合金膜が付着形成さ
れた非磁性基板を複数枚積み重ね接合して、積層基板ブ
ロックを形成する工程と、(2)前記積層基板ブロック
を切断して、互いに平行な2表面を有する磁気コア半体
部材のウエハを複数枚形成する工程と、(3)前記ウエ
ハの互いに平行な2表面のうち、少なくとも一方の表面
に巻線溝を掘削形成する工程と、(4)前記ウエハの互
いに平行な2表面をそれぞれ鏡面研摩する工程と、
(5)前記ウエハの互いに平行な2表面のうち、少なく
とも一方の表面にギャップスペーサ膜を形成する工程
と、(6)前記ウエハを複数枚積み重ね接合(すなわ
ち、前記従来の製法における用語を流用すれば、一括ギ
ャップ溶着)して、積層磁気コアブロックを形成する工
程と、(7)前記積層磁気コアブロックを、前記ウエハ
の厚さを2分割する面に沿って切断して、磁気コアバー
を形成する工程と、(8)前記磁気コアバーを、前記基
板の厚さを2分割する面に沿って切断して、磁気ヘッド
チップを形成する工程とを備えることを特徴とするもの
である。
According to the method of manufacturing a magnetic head of the present invention, a pair of magnetic core halves made of a magnetic alloy film sandwiched by a nonmagnetic reinforcing substrate are butted against each other via a nonmagnetic gap spacer. In the method of manufacturing a magnetic head formed by joining, (1) a step of stacking and joining a plurality of non-magnetic substrates on which a magnetic alloy film is formed to form a laminated substrate block, and (2) forming the laminated substrate block. Cutting and forming a plurality of wafers of a magnetic core half member having two surfaces parallel to each other, and (3) excavating a winding groove on at least one of the two surfaces parallel to each other of the wafer. Forming, and (4) mirror polishing two parallel surfaces of the wafer,
(5) a step of forming a gap spacer film on at least one of the two surfaces of the wafer which are parallel to each other, and (6) stacking and joining a plurality of the wafers (that is, the term used in the conventional manufacturing method is used). For example, a step of collectively gap welding) to form a laminated magnetic core block, and (7) cutting the laminated magnetic core block along a plane that divides the thickness of the wafer into two to form a magnetic core bar. And (8) cutting the magnetic core bar along a plane that divides the thickness of the substrate into two to form a magnetic head chip.

【0018】[0018]

【作用】本発明による上記のような製造方法によれば、
(6)の工程で複数枚のウエハを一括溶着して形成した
積層磁気コアブロックを、(7)の工程で前記各ウエハ
の厚さを2分割する面に沿って切断して磁気コアバーを
形成するという工程を経ることになるので、(2)〜
(6)の工程に関連するウエハの厚さを従来の製造方法
による場合に比べて厚くしても、材料の損失を招くこと
がなく、そのような厚いウエハを用いれば、(4)のギ
ャップ面研摩工程においてウエハが反りにくく、(6)
の一括溶着工程におけるギャップ突き合わせの接合強度
やギャップ長の寸法精度が向上する。
According to the above manufacturing method of the present invention,
The laminated magnetic core block formed by collectively welding a plurality of wafers in the step (6) is cut along the plane dividing the thickness of each wafer into two to form a magnetic core bar in the step (7). Since it will go through the process of doing, (2) ~
Even if the thickness of the wafer related to the step (6) is made thicker than in the case of the conventional manufacturing method, no material loss is caused, and if such a thick wafer is used, the gap of (4) The wafer is less likely to warp in the surface polishing process, and (6)
The joint strength of the gap butting and the dimensional accuracy of the gap length in the collective welding step of are improved.

【0019】[0019]

【実施例】以下、本発明による磁気ヘッドの製造方法の
実施例について説明する。
Embodiments of the method of manufacturing a magnetic head according to the present invention will be described below.

【0020】本発明による磁気ヘッドの製造方法は、非
磁性の補強基板20によって挾持された磁性合金膜1か
らなる一対の磁気コア半体を、非磁性のギャップスペー
サ3を介して突き合わせ接合してなる図2のような磁気
ヘッドの製造方法において、まず図3に示すように、結
晶化ガラス、非磁性セラミック等からなる基板20の一
方の表面に、ガラス層5を塗布焼成法、スパッタリング
法等によって付着形成し、他方の表面に、磁性合金膜1
をトラック幅に相当する厚さ分、スパッタリング法等に
よって付着形成する。
In the method of manufacturing a magnetic head according to the present invention, a pair of magnetic core halves made of a magnetic alloy film 1 held by a non-magnetic reinforcing substrate 20 are butted and joined together via a non-magnetic gap spacer 3. In the method of manufacturing a magnetic head as shown in FIG. 2, first, as shown in FIG. 3, a glass layer 5 is applied to one surface of a substrate 20 made of crystallized glass, non-magnetic ceramic or the like by a firing method, a sputtering method, or the like. Is adhered and formed by the magnetic alloy film 1 on the other surface.
Is deposited by a sputtering method or the like by a thickness corresponding to the track width.

【0021】次に、図4に示すように、前記基板を複数
枚積み重ね、図中矢印Pの向きに加圧した状態で真空中
または不活性ガス雰囲気中で加熱昇温して前記ガラス層
5を溶融させることによって前記基板を積層接合し、図
5のような積層基板ブロック91を得る。ここまでの工
程は、前記従来例の製造方法と変わらない。
Next, as shown in FIG. 4, a plurality of the substrates are stacked and heated in a vacuum or in an inert gas atmosphere while being pressurized in the direction of arrow P in the figure, and the glass layer 5 is heated. The substrates are laminated and joined by melting to obtain a laminated substrate block 91 as shown in FIG. The steps up to this point are the same as those in the conventional manufacturing method.

【0022】次に、前記積層基板ブロック91を図5の
破線D−Eに沿って切断し、互いに平行な2表面を有す
る図10のような磁気コア半体部材のウエハ92を得
る。このとき、ウエハ92の厚さTは図2の磁気ヘッド
コアの横幅[Wa+Wb]に、後の研摩工程での削りし
ろ及び切断工程での切りしろを加えた厚さとする。
Next, the laminated substrate block 91 is cut along a broken line D-E in FIG. 5 to obtain a wafer 92 of a magnetic core half member as shown in FIG. 10 having two surfaces parallel to each other. At this time, the thickness T of the wafer 92 is a thickness obtained by adding the width [Wa + Wb] of the magnetic head core in FIG. 2 to the shaving margin in the subsequent polishing step and the shaving margin in the cutting step.

【0023】次に、図11に示すように、前記ウエハ9
2の一方の表面にガラス溝を掘削してガラス40を充填
し、他方の表面に巻線溝6を掘削形成する。その後、該
ウエハ92の前記一方及び他方の両表面を鏡面研摩し、
少なくとも一方の表面にギャップスペーサ膜(図示せ
ず)を付着形成する。
Next, as shown in FIG.
The glass groove is excavated on one surface of No. 2 to fill the glass 40, and the winding groove 6 is excavated on the other surface. Thereafter, both the one surface and the other surface of the wafer 92 are mirror-polished,
A gap spacer film (not shown) is deposited on at least one surface.

【0024】次に、図12に示すように、前記ウエハを
複数枚積み重ね、積み重ねた向きに加圧した状態で真空
中または不活性ガス雰囲気中で加熱昇温して前記ガラス
溝中のガラスを溶融流動させ、該ガラスを前記巻線溝の
先端部にまで流し込んで、積層磁気コアブロック93を
得る。
Next, as shown in FIG. 12, a plurality of the above-mentioned wafers are stacked and heated in a vacuum or in an inert gas atmosphere while being pressurized in the stacking direction to remove the glass in the glass grooves. The laminated magnetic core block 93 is obtained by melting and flowing the glass to the tip of the winding groove.

【0025】次に、図1に示すように前記積層磁気コア
ブロック93を、前記ウエハ92の厚さを2分割する面
A−Bに沿って切断して、磁気コアバー94を形成す
る。
Next, as shown in FIG. 1, the laminated magnetic core block 93 is cut along a plane AB that divides the thickness of the wafer 92 into two to form a magnetic core bar 94.

【0026】以後の工程は、前記従来例の製造方法と変
わらないが、前記磁気コアバー94の記録媒体対向面を
図9の一点鎖線Fに沿って曲面研摩した後、該接合体を
図9の一点鎖線Gすなわち前記基板20の厚さを2分割
する面に沿って切断して、図2のような磁気ヘッドチッ
プ95を得る。
The subsequent steps are the same as those in the manufacturing method of the conventional example, but after the surface of the magnetic core bar 94 facing the recording medium is curved along the alternate long and short dash line F in FIG. The magnetic head chip 95 as shown in FIG. 2 is obtained by cutting along the alternate long and short dash line G, that is, the surface dividing the thickness of the substrate 20 into two.

【0027】本発明による上記のような製造方法によれ
ば、図12の工程で複数枚のウエハを一括溶着して形成
した積層磁気コアブロック93を、図1の工程で前記各
ウエハ92の厚さを2分割する面に沿って切断して、磁
気コアバー94を形成するという工程を経ることになる
ので、図10〜図12の工程に関連するウエハ92の厚
さTを従来の製造方法による場合に比べて厚くしても材
料の損失を招くことがなく、そのような厚いウエハを用
いれば、図10のギャップ面研摩工程においてウエハが
反りにくく、図11の一括溶着工程におけるギャップ突
き合わせの接合強度やギャップ長の寸法精度が向上す
る。
According to the above manufacturing method of the present invention, the laminated magnetic core block 93 formed by collectively welding a plurality of wafers in the step of FIG. Since the process of cutting along the plane that divides the thickness into two and forming the magnetic core bar 94 is performed, the thickness T of the wafer 92 related to the process of FIGS. Even if the thickness is made thicker than that in the case, the material is not lost, and if such a thick wafer is used, the wafer is less likely to warp in the gap surface polishing step of FIG. 10, and the gap butting bonding in the collective welding step of FIG. 11 is performed. Dimensional accuracy of strength and gap length is improved.

【0028】さらに、本発明の製造方法によれば、図1
2の工程で複数枚のウエハ92を一括溶着して積層磁気
コアブロック93を形成することになるので、2枚のウ
エハを1ペアとして多数回溶着する場合に比べて工数が
低減できるし、2枚のウエハを1ペアとして多数ペアの
ウエハを大きな溶着炉内にセットして溶着する場合に比
べても、溶着炉の小型化が図れ、大きな溶着炉内の温度
分布の不均一によって溶着結果の良否、すなわち、ガラ
スの流れ具合やそれに依存する接合強度、残留応力、さ
らにそれに依存する記録再生出力等、がばらつくことが
なくなる。
Further, according to the manufacturing method of the present invention, as shown in FIG.
Since a plurality of wafers 92 are collectively welded in the step 2 to form the laminated magnetic core block 93, the number of steps can be reduced as compared with the case where two wafers are welded as one pair many times, and Compared to the case where a large number of wafers are set as one pair and a large number of wafers are set in a large welding furnace for welding, the size of the welding furnace can be reduced, and the uneven temperature distribution in the large welding furnace causes Good or bad, that is, the flow condition of glass, the bonding strength depending on it, the residual stress, the recording / reproducing output depending on it, and the like do not vary.

【0029】なお、前記図12の一括溶着工程において
は、所謂アジマス角付きの磁気ヘッドを製造する場合
に、プラスアジマス、マイナスアジマスの磁気ヘッドを
1つの積層磁気コアブロックから得るために、巻線溝の
先端の向きをウエハの各層毎に変えて積み重ねることも
有効である。
In the collective welding step of FIG. 12, in order to obtain a magnetic head of plus azimuth and minus azimuth from one laminated magnetic core block when manufacturing a magnetic head with a so-called azimuth angle, the winding It is also effective to stack the wafers by changing the direction of the tip of each groove for each layer of the wafer.

【0030】[0030]

【発明の効果】本発明によれば、非磁性の補強基板によ
って挾持された磁性合金膜からなる一対の磁気コア半体
を、非磁性のギャップスペーサを介して突き合わせ接合
してなる磁気ヘッドの製造方法において、従来の製造方
法に比べて材料の損失や工数の増加を抑えながら、ギャ
ップ突き合わせ溶着の強度や精度に優れ、記録再生特性
のバラツキが小さく、小型の磁気ヘッドを製造すること
が可能となる。
According to the present invention, a magnetic head manufactured by butt-joining a pair of magnetic core halves made of a magnetic alloy film held by a non-magnetic reinforcing substrate via a non-magnetic gap spacer. In this method, it is possible to manufacture a small-sized magnetic head with excellent strength and precision of gap butt welding, with little variation in recording / reproducing characteristics, while suppressing loss of material and increase in man-hours compared to conventional manufacturing methods. Become.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例を説明するための、積層磁気コア
ブロックの外観斜視図である。
FIG. 1 is an external perspective view of a laminated magnetic core block for explaining an embodiment of the present invention.

【図2】本発明実施例及び従来例の製造方法によって得
られる、磁気ヘッドの外観斜視図である。
FIG. 2 is an external perspective view of a magnetic head obtained by a manufacturing method of an example of the present invention and a manufacturing method of a conventional example.

【図3】本発明実施例及び従来例を説明するための、基
板の斜視図である。
FIG. 3 is a perspective view of a substrate for explaining an example of the present invention and a conventional example.

【図4】本発明実施例及び従来例を説明するための、基
板を積層した状態の斜視図である。
FIG. 4 is a perspective view showing a state in which substrates are stacked to explain an example of the present invention and a conventional example.

【図5】本発明実施例及び従来例を説明するための、積
層基板ブロックの斜視図である。
FIG. 5 is a perspective view of a laminated substrate block for explaining an example of the present invention and a conventional example.

【図6】従来例を説明するための、ウエハの斜視図であ
る。
FIG. 6 is a perspective view of a wafer for explaining a conventional example.

【図7】従来例を説明するための、ウエハの斜視図であ
る。
FIG. 7 is a perspective view of a wafer for explaining a conventional example.

【図8】従来例を説明するための、ウエハを突き合わせ
た状態の斜視図である。
FIG. 8 is a perspective view showing a state in which wafers are butted, for explaining a conventional example.

【図9】本発明実施例及び従来例を説明するための、磁
気コアバーの斜視図である。
FIG. 9 is a perspective view of a magnetic core bar for explaining an example of the present invention and a conventional example.

【図10】本発明実施例を説明するための、ウエハの斜
視図である。
FIG. 10 is a perspective view of a wafer for explaining an embodiment of the present invention.

【図11】本発明実施例を説明するための、ウエハの斜
視図である。
FIG. 11 is a perspective view of a wafer for explaining an embodiment of the present invention.

【図12】本発明実施例を説明するための、積層磁気コ
アブロックの外観斜視図である。
FIG. 12 is an external perspective view of a laminated magnetic core block for explaining an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 磁性合金膜 20 非磁性基板 3 ギャップスペーサ 4 ガラス 40 ガラス 6 巻線溝 91 積層基板ブロック 92 ウエハ 93 積層磁気コアブロック 94 磁気コアバー 95 磁気ヘッドチップ 1 Magnetic Alloy Film 20 Non-Magnetic Substrate 3 Gap Spacer 4 Glass 40 Glass 6 Winding Groove 91 Laminated Substrate Block 92 Wafer 93 Laminated Magnetic Core Block 94 Magnetic Core Bar 95 Magnetic Head Chip

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 非磁性の補強基板によって挾持された磁
性合金膜からなる一対の磁気コア半体を、非磁性のギャ
ップスペーサを介して突き合わせ接合してなる磁気ヘッ
ドの製造方法において、磁性合金膜が付着形成された非
磁性基板を複数枚積み重ね接合して積層基板ブロックを
形成する工程と、前記積層基板ブロックを切断して互い
に平行な2表面を有する磁気コア半体部材のウエハを複
数枚形成する工程と、前記ウエハの互いに平行な2表面
のうち少なくとも一方の表面に巻線溝を掘削形成する工
程と、前記ウエハの互いに平行な2表面をそれぞれ鏡面
研摩する工程と、前記ウエハの互いに平行な2表面のう
ち少なくとも一方の表面にギャップスペーサ膜を形成す
る工程と、前記ウエハを複数枚積み重ね接合して、積層
磁気コアブロックを形成する工程と、前記積層磁気コア
ブロックを、前記ウエハの厚さを2分割する面に沿って
切断して磁気コアバーを形成する工程と、前記磁気コア
バーを前記基板の厚さを2分割する面に沿って切断して
磁気ヘッドチップを形成する工程とを備えることを特徴
とする磁気ヘッドの製造方法。
1. A method of manufacturing a magnetic head, comprising a pair of magnetic core halves made of a magnetic alloy film sandwiched by a non-magnetic reinforcing substrate, butted and joined to each other through a non-magnetic gap spacer. Forming a laminated substrate block by stacking and joining a plurality of non-magnetic substrates on which are adhered, and cutting the laminated substrate block to form a plurality of magnetic core half member wafers having two surfaces parallel to each other. A step of excavating a winding groove on at least one of the two surfaces of the wafer which are parallel to each other, a step of mirror-polishing the two surfaces of the wafer which are parallel to each other, and a step of paralleling the wafer to each other. Forming a gap spacer film on at least one of the two surfaces, and stacking and bonding a plurality of the wafers to form a laminated magnetic core block. Forming, a step of cutting the laminated magnetic core block along a surface dividing the thickness of the wafer into two parts to form a magnetic core bar, and a surface dividing the magnetic core bar into two parts of the thickness of the substrate. And a step of forming a magnetic head chip by cutting along the line.
JP34247392A 1992-12-22 1992-12-22 Production of magnetic head Pending JPH06195622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34247392A JPH06195622A (en) 1992-12-22 1992-12-22 Production of magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34247392A JPH06195622A (en) 1992-12-22 1992-12-22 Production of magnetic head

Publications (1)

Publication Number Publication Date
JPH06195622A true JPH06195622A (en) 1994-07-15

Family

ID=18354017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34247392A Pending JPH06195622A (en) 1992-12-22 1992-12-22 Production of magnetic head

Country Status (1)

Country Link
JP (1) JPH06195622A (en)

Similar Documents

Publication Publication Date Title
JPH0542726B2 (en)
KR930000067B1 (en) Magnetic head
JPH06195622A (en) Production of magnetic head
JPS60231903A (en) Composite type magnetic head and its production
JPS6214313A (en) Magnetic head
JPH08329409A (en) Magnetic head
JP3025990B2 (en) Manufacturing method of magnetic head
JP2933638B2 (en) Manufacturing method of magnetic head
JP2508522B2 (en) Manufacturing method of composite magnetic head
JPH0354704A (en) Magnetic head and its manufacture
JPH0580724B2 (en)
JPS59203210A (en) Magnetic core and its production
JPS6374103A (en) Composite type magnetic head and its production
JPH06131624A (en) Magnetic head
JPH0689407A (en) Magnetic head and its production
JPS63288407A (en) Production of magnetic head
JPH06111230A (en) Magnetic head
JPH11339219A (en) Magnetic head and production therefor
JPS62145511A (en) Magnetic head
JPH01258206A (en) Magnetic head and its manufacture
JP2002304707A (en) Magnetic head and its manufacturing method and magnetic recording/reproducing device using the same
JPH05197916A (en) Magnetic head
JP2004152407A (en) Magnetic head and its manufacturing method
JPH07302408A (en) Magnetic head and its production
JPH08203023A (en) Production of magnetic head