JPH06111230A - Magnetic head - Google Patents

Magnetic head

Info

Publication number
JPH06111230A
JPH06111230A JP26370492A JP26370492A JPH06111230A JP H06111230 A JPH06111230 A JP H06111230A JP 26370492 A JP26370492 A JP 26370492A JP 26370492 A JP26370492 A JP 26370492A JP H06111230 A JPH06111230 A JP H06111230A
Authority
JP
Japan
Prior art keywords
magnetic
gap
magnetic core
winding
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26370492A
Other languages
Japanese (ja)
Inventor
Hiroyuki Okuda
裕之 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP26370492A priority Critical patent/JPH06111230A/en
Publication of JPH06111230A publication Critical patent/JPH06111230A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress the generation of a pseudo gap by constituting an oxide magnetic body in the vicinity of a part where half bodies of a magnetic core having a metallic magnetic thin film are wound only of a polycrystal body. CONSTITUTION:The magnetic head is almost symmetric via a non-magnetic body 3 as a magnetic gap. A metallic magnetic thin film 1 is formed at the side of a magnetic core 2 of an oxide magnetic body where the magnetic gap is formed. The magnetic core 2 is comprised of a pair of half bodies. The metallic magnetic thin films 1 are butted via the non-magnetic body 3 and reinforced by a non-magnetic glass material 4 at the lateral side thereof, thereby constituting an annular magnetic core. A winding 5 is provided along a face of the magnetic core approximately parallel to a confronting recording medium. The oxide magnetic body in the vicinity of the part where the winding 5 is provided in the half bodies of true magnetic core is constituted of a polycrystal body 2a alone, and the oxide magnetic body except in the vicinity of the part of the winding 5 has a single crystal body 2b bonded at the side of the polycrystal body 2a where the magnetic gap is formed. Therefore, a pseudo gap is hard to generate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はVTR、DAT、HDD
等の磁気記録再生装置に使用される磁気ヘッドに関す
る。
The present invention relates to a VTR, DAT, HDD
The present invention relates to a magnetic head used in a magnetic recording / reproducing apparatus such as the above.

【0002】[0002]

【従来の技術】VTR等の磁気記録再生装置において
は、時間的な記録密度の向上(周波数の高帯域化)や空
間的な記録密度の向上(狭トラック化、短波長化)が望
まれ、それを実現するためには、狭ギャップ、狭トラッ
ク幅の磁気ヘッドを短波長記録が可能な高抗磁力媒体に
近接配置し、両者を高速で相対走行させながら電磁信号
を入出力することが前提となる。
2. Description of the Related Art In a magnetic recording / reproducing apparatus such as a VTR, it is desired to improve temporal recording density (higher frequency band) and spatial recording density (narrow track, shorter wavelength). In order to realize this, it is premised that a magnetic head with a narrow gap and a narrow track width is placed close to a high coercive force medium capable of short-wavelength recording, and electromagnetic signals are input and output while both are traveling relatively at high speed. Becomes

【0003】このような高密度記録用の磁気ヘッドとし
ては、図9に示すように磁気コアの大部分を高周波特性
に優れた酸化物磁性体2で構成し、該コアのギャップ突
き合わせ部に高飽和磁束密度の金属磁性薄膜1を配し
た、MIG(メタル・イン・ギャップ)構造のヘッドが
有力である。
In such a high-density recording magnetic head, as shown in FIG. 9, most of the magnetic core is composed of an oxide magnetic material 2 having excellent high frequency characteristics, and a high gap is provided at the gap abutting portion of the core. A head having a MIG (metal-in-gap) structure in which the metal magnetic thin film 1 having a saturation magnetic flux density is arranged is effective.

【0004】ところが、前記図9のようなMIGヘッド
においては、酸化物磁性体と金属磁性薄膜の境界面が疑
似的なギャップとして作用し、記録再生出力の周波数特
性曲線に図10のような「うねり」が現れやすい。ま
た、MIGヘッドの磁気コア主要部を構成する酸化物磁
性体は、信号再生時に磁気ヘッドと記録媒体との高速摺
動に伴って発生するノイズ、所謂摺動ノイズを誘起しや
すい。
However, in the MIG head as shown in FIG. 9, the boundary surface between the oxide magnetic material and the metal magnetic thin film acts as a pseudo gap, and the frequency characteristic curve of the recording / reproducing output is shown in FIG. Swells are likely to appear. In addition, the oxide magnetic material that constitutes the main part of the magnetic core of the MIG head easily induces noise, which is so-called sliding noise, which is generated due to high-speed sliding between the magnetic head and the recording medium during signal reproduction.

【0005】特開平1−133204には、MIGヘッ
ドにおける前記疑似ギャップ問題の解決手段として、鏡
面研摩、燐酸エッチング、逆スパッタリング等の処理が
施されて完全結晶面が露出した酸化物磁性体のギャップ
形成面上に、厚さ数nmの耐熱性薄膜を介して金属磁性
薄膜を形成することが開示されている。
Japanese Unexamined Patent Publication (Kokai) No. 1-133204 discloses, as a means for solving the above-mentioned pseudo-gap problem in an MIG head, a gap of an oxide magnetic material having a perfect crystal plane exposed by a treatment such as mirror polishing, phosphoric acid etching and reverse sputtering. It is disclosed that a metal magnetic thin film is formed on the formation surface via a heat resistant thin film having a thickness of several nm.

【0006】特開平2−139704には、MIGヘッ
ドの磁気コア構成部材としての酸化物磁性体に関して、
前記摺動ノイズの低減という点では単結晶体よりも多結
晶体の方が有利であるが、前記疑似ギャップ防止対策の
難易という点や記録再生出力に影響を及ぼすギャップ形
成面の平坦度という点では単結晶体の方が有利であるこ
とが開示されている。
Japanese Unexamined Patent Publication No. 2-139704 discloses an oxide magnetic material as a magnetic core constituting member of an MIG head.
A polycrystalline body is more advantageous than a single crystal body in terms of reducing the sliding noise, but it is difficult to prevent the pseudo-gap and the flatness of the gap forming surface that affects the recording / reproducing output. Discloses that a single crystal body is more advantageous.

【0007】特開昭63−184903には、前述のよ
うな単結晶酸化物磁性体単独、あるいは多結晶酸化物磁
性体単独での短所を補完することを目的として、多結晶
体2aの記録媒体対向面側に単結晶体2bを配置した図
11のようなMIGヘッドが開示されているが、該MI
Gヘッドにおける複合酸化物磁性体は単結晶体と多結晶
体を交互に複数枚積層接合して製造されねばならず、寸
法精度、製造工数等の点で量産性に優れているとは言い
がたい。
Japanese Patent Laid-Open No. 63-184903 discloses a recording medium for a polycrystalline body 2a for the purpose of complementing the above-mentioned disadvantages of the single crystalline oxide magnetic material alone or the polycrystalline oxide magnetic material alone. There is disclosed an MIG head having a single crystal body 2b arranged on the opposite surface side as shown in FIG.
The composite oxide magnetic body in the G head has to be manufactured by alternately laminating and bonding a plurality of single crystal bodies and polycrystal bodies, and is not said to be excellent in mass productivity in terms of dimensional accuracy and manufacturing man-hours. I want to.

【0008】[0008]

【発明が解決しようとする課題】以上のような従来技術
を踏まえた上で、本発明では記録再生出力が大きく、疑
似ギャップが生じず、摺動ノイズが小さく、量産性にも
優れたMIGヘッドの構造を明らかにする。
On the basis of the above-mentioned conventional techniques, the present invention has a large recording / reproducing output, a pseudo gap does not occur, a sliding noise is small, and the MIG head is excellent in mass productivity. Clarify the structure of.

【0009】[0009]

【課題を解決するための手段】本発明による磁気ヘッド
は、酸化物磁性体からなる一対の磁気コア半体の内、少
なくとも一方の磁気コア半体のギャップ形成面側に金属
磁性薄膜が形成され、該金属磁性薄膜と他方の磁気コア
半体とが磁気ギャップとなる非磁性体を介して突き合わ
されて環状磁気コアが形成され、該環状磁気コアの記録
媒体対向面に略平行な面に沿って巻線が施される磁気ヘ
ッドにおいて、前記金属磁性薄膜が形成される磁気コア
半体の前記巻線が施される部分近傍の酸化物磁性体は多
結晶体のみで構成され、該磁気コア半体の前記巻線が施
される部分近傍以外の酸化物磁性体は、多結晶体のギャ
ップ形成面側に単結晶体が接合された構造を有すること
を特徴とする。
In a magnetic head according to the present invention, a metal magnetic thin film is formed on the gap forming surface side of at least one magnetic core half of a pair of magnetic core halves made of an oxide magnetic material. The metal magnetic thin film and the other half of the magnetic core are butted against each other via a non-magnetic material serving as a magnetic gap to form an annular magnetic core, and the annular magnetic core is along a surface substantially parallel to the recording medium facing surface. In the magnetic head in which the winding is applied, the oxide magnetic body near the portion of the magnetic core half on which the metal magnetic thin film is formed is formed of only a polycrystalline body. The oxide magnetic body other than the vicinity of the portion of the half body where the winding is applied is characterized by having a structure in which a single crystal body is joined to the gap forming surface side of the polycrystalline body.

【0010】[0010]

【作用】本発明の磁気ヘッドは、記録再生出力、疑
似ギャップ、摺動ノイズ、量産性等に関する前述の
ような課題に対して、以下のような作用効果を呈する。
The magnetic head of the present invention exhibits the following operational effects with respect to the above-mentioned problems relating to recording / reproducing output, pseudo gap, sliding noise, mass productivity and the like.

【0011】記録再生出力に関して、MIGヘッドの
酸化物磁性体部ギャップ形成面が多結晶で構成される場
合には、前記特開平1−133204で開示された疑似
ギャップ防止対策としての燐酸エッチング処理が施され
ると、結晶方位の異なる種々の結晶粒のエッチング速度
の違いに起因して該ギャップ形成面に凹凸が生じ、その
上に形成される金属磁性薄膜の表面にも凹凸が現れて鮮
明なギャップを形成できず、記録再生出力が低下する
が、本発明のMIGヘッドでは複合酸化物磁性体のギャ
ップ形成面側が単結晶で構成されるため、前記燐酸エッ
チング処理が施されても鮮明なギャップが形成される。
Regarding the recording / reproducing output, when the oxide magnetic material portion gap forming surface of the MIG head is made of polycrystal, the phosphoric acid etching treatment as the measure for preventing the pseudo gap disclosed in the above-mentioned JP-A-1-133204 is performed. When applied, unevenness is generated on the gap forming surface due to the difference in etching rate of various crystal grains having different crystal orientations, and unevenness also appears on the surface of the metal magnetic thin film formed on the gap forming surface to make it clear. Although the gap cannot be formed and the recording / reproducing output is reduced, in the MIG head of the present invention, since the gap forming surface side of the composite oxide magnetic body is composed of a single crystal, a clear gap is obtained even if the phosphoric acid etching treatment is performed. Is formed.

【0012】疑似ギャップ問題に関して、本発明のM
IGヘッドでは複合酸化物磁性体のギャップ形成面側が
単結晶で構成されるため、燐酸エッチング処理等、前記
特開平1−133204で開示された疑似ギャップ防止
対策が、他に悪影響を及ぼすことなく有効に作用する。
With respect to the pseudo-gap problem, the M of the present invention
In the IG head, the gap forming surface side of the complex oxide magnetic body is composed of a single crystal, and therefore the pseudo gap prevention measures disclosed in the above-mentioned JP-A-1-133204, such as phosphoric acid etching treatment, are effective without adversely affecting the other. Act on.

【0013】摺動ノイズに関して、摺動ノイズの発生
機構としては、磁気ヘッドと記録媒体との高速相対走行
に伴って発生する微小弾性振動が磁気ヘッドの記録媒体
対向面から磁気コアの巻線が施される部分にまで伝搬
し、該巻線部において前記微小弾性振動が磁気コア材に
逆磁歪効果を及ぼすことによって磁束の微小振動が生
じ、該磁束の微小振動によって巻線に誘導されるという
機構が主であり、記録媒体対向面近傍で発生した磁束の
微小振動が巻線部にまで伝搬して誘導されるという機構
の寄与は副次的なものであると考えられるので、多結晶
酸化物磁性体に比べて逆磁歪効果の大きい単結晶磁性体
が前記巻線部にさえ配置されていなければ、摺動ノイズ
の発生は少ない。
Regarding the sliding noise, the mechanism for generating the sliding noise is that the minute elastic vibrations generated by high-speed relative running between the magnetic head and the recording medium are generated from the surface of the magnetic head facing the recording medium to the winding of the magnetic core. It is said that the microscopic vibration of the magnetic flux propagates to the applied portion and the microelastic vibration exerts an inverse magnetostriction effect on the magnetic core material in the winding part, and thus the microvibration of the magnetic flux is generated, and is induced in the winding by the microvibration of the magnetic flux. Since the mechanism is the main, and the contribution of the mechanism that the minute vibration of the magnetic flux generated in the vicinity of the recording medium facing surface is propagated to the winding portion and induced, is a secondary one. The occurrence of sliding noise is small unless a single crystal magnetic body having a large inverse magnetostriction effect as compared with a physical magnetic body is arranged even in the winding portion.

【0014】量産性に関して、磁気ヘッドのギャップ
突き合わせ部が多数個、縦横に並んだ磁気コア半体部材
を突き合わせ接合して、その後磁気ヘッド1個ずつに切
断するような工程を編成しようとすると、前記特開昭6
3−184903のMIGヘッドにおける複合酸化物磁
性体は単結晶体と多結晶体を交互に複数枚積層接合しし
ておかなければならいが、本発明では単結晶体と多結晶
体を各1枚ずつ接合した複合酸化物磁性体を準備するだ
けでよいので、寸法精度、製造工数等の点で有利であ
る。
In terms of mass productivity, when an attempt is made to knit a process in which a large number of gap abutting portions of a magnetic head and longitudinally and laterally aligned magnetic core half members are abutted and joined, and then the magnetic heads are cut one by one, The above-mentioned JP-A-6
The composite oxide magnetic body in the MIG head of 3-184903 must have a plurality of single crystal bodies and polycrystal bodies alternately laminated and bonded. However, in the present invention, one single crystal body and one polycrystal body are bonded to each other. Since it suffices to prepare the composite oxide magnetic body bonded to each other, it is advantageous in terms of dimensional accuracy, manufacturing man-hours, and the like.

【0015】[0015]

【実施例】本発明による磁気ヘッドの一例を図1及び図
2に示す。図1は該磁気ヘッドの外観斜視図、図2の
(a)は図1の磁気ヘッドの記録媒体対向面平面図、図
2の(b)は図2(a)のA−B断面図、すなわち該磁
気ヘッドの主磁路構成面断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An example of a magnetic head according to the present invention is shown in FIGS. FIG. 1 is an external perspective view of the magnetic head, FIG. 2A is a plan view of the recording medium facing surface of the magnetic head of FIG. 1, and FIG. 2B is a sectional view taken along the line AB of FIG. 2A. That is, it is a sectional view of the main magnetic path constituting surface of the magnetic head.

【0016】図1及び図2の磁気ヘッドは、磁気ギャッ
プとなる非磁性体3の両側で略対称な構造を有してお
り、酸化物磁性体からなる一対の磁気コア半体2のギャ
ップ形成面側に金属磁性薄膜1が形成され、該金属磁性
薄膜が磁気ギャップとなる非磁性体3を介して互いに突
き合わせられ、その側面に配された非磁性のガラス材4
によって補強接合されて環状磁気コアが形成され、該環
状磁気コアの記録媒体対向面に略平行な面に沿って巻線
5が施された磁気ヘッドであって、前記金属磁性薄膜が
形成される磁気コア半体の前記巻線が施される部分近傍
の酸化物磁性体は多結晶体2aのみで構成され、該磁気
コア半体の前記巻線が施される部分近傍以外の酸化物磁
性体は多結晶体2aのギャップ形成面側に単結晶体2b
が接合された構造を有する。
The magnetic heads shown in FIGS. 1 and 2 have a substantially symmetrical structure on both sides of the non-magnetic body 3 serving as a magnetic gap, and a gap is formed between a pair of magnetic core halves 2 made of an oxide magnetic body. A metal magnetic thin film 1 is formed on the surface side, the metal magnetic thin films are butted against each other via a non-magnetic body 3 serving as a magnetic gap, and a non-magnetic glass material 4 arranged on the side surface thereof.
A magnetic head in which an annular magnetic core is formed by reinforcement joining by means of, and a winding 5 is provided along a surface of the annular magnetic core substantially parallel to the surface of the annular magnetic core facing the recording medium, wherein the metal magnetic thin film is formed. The oxide magnetic body near the portion of the magnetic core half where the winding is applied is composed only of the polycrystalline body 2a, and the oxide magnetic body other than near the portion where the winding of the magnetic core half is provided. Is a single crystal body 2b on the gap forming surface side of the polycrystalline body 2a.
Have a joined structure.

【0017】前記酸化物磁性体2の材料としては、単結
晶体及び多結晶体を製造するのが比較的容易で飽和磁束
密度も比較的大きいMn−Znフェライトが適する。該
Mn−Znフェライトの組成としては、フェライト単体
型磁気ヘッド用として一般的な「52〜56mol%F
23−22〜30%MnO−残りZnO」等が採用さ
れるが、より高透磁率、高飽和磁束密度でありながら摺
動ノイズを発生しやすいという理由で従来敬遠されてき
た「52〜56mol%Fe23−30〜38%MnO
−残りZnO」の組成も、低摺動ノイズ構造の本発明磁
気ヘッドには好適である。
As a material for the oxide magnetic body 2, Mn-Zn ferrite is suitable, which is relatively easy to produce a single crystal body and a polycrystalline body and has a relatively large saturation magnetic flux density. The composition of the Mn-Zn ferrite is "52 to 56 mol% F, which is generally used for magnetic heads of a simple ferrite type.
"e 2 O 3 -22 to 30% MnO-remaining ZnO" and the like are adopted, but they have been shunned in the past due to the fact that sliding noise is likely to occur while having higher magnetic permeability and higher saturation magnetic flux density. ~56mol% Fe 2 O 3 -30~38% MnO
The composition of "remaining ZnO" is also suitable for the magnetic head of the present invention having a low sliding noise structure.

【0018】前記酸化物磁性体の多結晶部2aには、通
常の焼結フェライトに熱間静水圧処理等が施されて気孔
率が低下、結晶粒が微細化した、所謂高密度フェライト
が採用される。
For the polycrystalline portion 2a of the oxide magnetic material, a so-called high-density ferrite in which ordinary sintered ferrite is subjected to hot isostatic pressure treatment to lower the porosity and the crystal grains are made finer is adopted. To be done.

【0019】前記酸化物磁性体単結晶部2bの結晶方位
としては、前記特開平1−133204で推奨された
「ギャップ形成面{100}、記録媒体対向面{11
0}」等が採用されるが、本願発明者は、疑似ギャップ
が発生しにくくて対称性の高い、すなわち面指数の小さ
い方位として、「ギャップ形成面{110}、記録媒体
対向面{100}」や「ギャップ形成面{111}、記
録媒体対向面{110}」、「ギャップ形成面{21
1}、記録媒体対向面{111}」、「ギャップ形成面
{210}、記録媒体対向面{521}」、「ギャップ
形成面{521}、記録媒体対向面{210}」等が好
適であることも実験的に見出している。
Regarding the crystal orientation of the oxide magnetic single crystal part 2b, the "gap forming surface {100}, the recording medium facing surface {11" recommended in JP-A-1-133204 is used.
0} ”or the like is adopted, but the inventor of the present application defines“ gap formation surface {110}, recording medium facing surface {100} ”as an azimuth with high symmetry with less occurrence of pseudo gap, that is, with small surface index. , "Gap forming surface {111}, recording medium facing surface {110}", "gap forming surface {21}
1}, recording medium facing surface {111} "," gap forming surface {210}, recording medium facing surface {521} "," gap forming surface {521}, recording medium facing surface {210} "and the like are preferable. That is also found experimentally.

【0020】前記金属磁性薄膜1としては、高透磁率、
高飽和磁束密度のFe−Al−Si系多結晶合金、Fe
−Zr−N系微細結晶合金、Co−Zr系アモルファス
合金等が採用される。
The metal magnetic thin film 1 has a high magnetic permeability,
Fe-Al-Si-based polycrystalline alloy with high saturation magnetic flux density, Fe
A -Zr-N-based fine crystal alloy, a Co-Zr-based amorphous alloy, or the like is adopted.

【0021】ここで前記図1及び図2の磁気ヘッドの製
造工程について、図3及び図4を参照しながら説明す
る。
The manufacturing process of the magnetic head shown in FIGS. 1 and 2 will be described with reference to FIGS.

【0022】図3の(a)に相当する工程:多結晶酸化
物磁性体基板2aと単結晶酸化物磁性体基板2bを各1
枚準備し、両者の表面を鏡面研摩して突き合わせ、10
00〜1500℃、数kg/cm2 の熱間加圧処理を施
して複合酸化物磁性体基板2を得る。
Step corresponding to FIG. 3A: one polycrystalline oxide magnetic substrate 2a and one single crystalline oxide magnetic substrate 2b are provided.
Prepare the two pieces, and polish both surfaces by mirror polishing and butt 10
The composite oxide magnetic substrate 2 is obtained by performing hot pressure treatment at 00 to 1500 ° C. at several kg / cm 2 .

【0023】図3の(b)に相当する工程:複合酸化物
磁性体基板2の単結晶体側を鏡面研摩し、燐酸エッチン
グ、逆スパッタリング、耐熱性薄膜形成等の疑似ギャッ
プ防止処理を施した後、厚さ数μmの金属磁性薄膜10
及び厚さ数百nmのギャップスペーサ薄膜(図示せず)
をスパッタリング法等によって付着形成する。
Step corresponding to FIG. 3B: After the single crystal body side of the composite oxide magnetic substrate 2 is mirror-polished and subjected to pseudo-gap prevention treatment such as phosphoric acid etching, reverse sputtering and heat resistant thin film formation. , A metal magnetic thin film 10 having a thickness of several μm
And a gap spacer thin film having a thickness of several hundreds nm (not shown)
Are deposited by a sputtering method or the like.

【0024】以下図4の(c)乃至(f)は製造工程進
行に伴う図3(b)のP、Q側面の形状変化を図示した
ものである。
FIGS. 4 (c) to 4 (f) show changes in the shape of the side faces P and Q in FIG. 3 (b) as the manufacturing process progresses.

【0025】図4の(c)に相当する工程:金属磁性薄
膜及びギャップスペーサ薄膜のギャップ突き合わせ部と
して残るべき部分1をフォトレジストで覆い、他の部分
をイオンビーム法等によってエッチング除去する。フォ
トレジストはエッチング後に有機溶剤等で洗い落とす。
Step corresponding to FIG. 4C: A portion 1 of the metal magnetic thin film and the gap spacer thin film to be left as a gap butting portion is covered with a photoresist, and the other portions are removed by etching by an ion beam method or the like. After etching, the photoresist is washed off with an organic solvent or the like.

【0026】図4の(d)に相当する工程:前工程のイ
オンビームエッチングによって基板表面に露出した酸化
物磁性体部にトラック溝加工6、巻線溝加工7、ガラス
棒挿入溝加工8を施す。ここで本発明の特徴を具現する
ためには、巻線溝の深さを、少なくとも複合酸化物磁性
体の多結晶部にまで届く深さに、さらに好ましくは複合
酸化物磁性体単結晶部の厚さの2倍以上の深さにする必
要がある。巻線溝が浅すぎると、図12のように巻線部
にも単結晶酸化物磁性体2bが配置されたMIGヘッド
か形成されてしまい、本発明の作用効果が期待できな
い。
Step corresponding to FIG. 4D: Track groove processing 6, winding groove processing 7, and glass rod insertion groove processing 8 are performed on the oxide magnetic material portion exposed on the substrate surface by the ion beam etching in the previous step. Give. In order to embody the features of the present invention, the depth of the winding groove is set to a depth at least reaching the polycrystal part of the composite oxide magnetic body, and more preferably, the single crystal part of the composite oxide magnetic body. It is necessary to make the depth more than twice the thickness. If the winding groove is too shallow, the MIG head in which the single crystal oxide magnetic body 2b is arranged is also formed in the winding portion as shown in FIG. 12, and the effect of the present invention cannot be expected.

【0027】図4の(e)に相当する工程:ここまでの
工程を経て得られた第1の磁気コア半体部材基板と、前
記ガラス棒挿入溝が形成されていない点以外は前記第1
の磁気コア半体部材基板と同一構造を有する第2の磁気
コア半体部材とを一対にして突き合わせ、前記ガラス棒
挿入溝にガラス棒40を挿入した状態で加熱昇温する。
Step corresponding to FIG. 4E: The first magnetic core half member substrate obtained through the steps up to this point, and the first rod except that the glass rod insertion groove is not formed
The magnetic core half body member substrate and the second magnetic core half body member having the same structure are abutted against each other in a pair, and the glass rod 40 is inserted into the glass rod insertion groove, and heated and heated.

【0028】図4の(f)に相当する工程:溶融するま
で加熱昇温されたガラスは、毛細管現象によって前記ト
ラック溝部46及び巻線溝先端部47に流れ込み、前記
一対の磁気コア半体部材が接合一体化される。該接合一
体化物をガラス溝及びトラック溝に沿って切断し、記録
媒体対向面を研摩して磁気ヘッドチップを得る。
Step corresponding to FIG. 4 (f): The glass heated and heated until it melts flows into the track groove portion 46 and the winding groove tip portion 47 due to the capillary phenomenon, and the pair of magnetic core half members. Are joined and integrated. The bonded integrated product is cut along the glass groove and the track groove, and the surface facing the recording medium is polished to obtain a magnetic head chip.

【0029】本発明による磁気ヘッドの他の例を図5乃
至図8に示す。各図において、(a)は該磁気ヘッドの
記録媒体対向面平面図、(b)は(a)のA−B断面
図、すなわち該磁気ヘッドの主磁路構成面断面図であ
る。
Other examples of the magnetic head according to the present invention are shown in FIGS. In each drawing, (a) is a plan view of the surface of the magnetic head facing the recording medium, and (b) is a cross-sectional view taken along the line AB of (a), that is, a cross-sectional view of the main magnetic path forming surface of the magnetic head.

【0030】図5は、トラック幅規制溝及び巻線溝の内
壁面にも金属磁性薄膜が形成された例であり、金属磁性
薄膜は摺動ノイズを誘起しにくい材質であるので、巻線
孔内壁面に付着していても本発明の作用効果を損なうこ
とはない。
FIG. 5 shows an example in which a metal magnetic thin film is formed also on the inner wall surfaces of the track width regulating groove and the winding groove. Since the metal magnetic thin film is a material that hardly induces sliding noise, the winding hole Even if it adheres to the inner wall surface, it does not impair the effects of the present invention.

【0031】図6及び図7は、一方の磁気コア半体のみ
に金属磁性薄膜が形成された例であり、この場合他方の
磁気コア半体の巻線部に摺動ノイズの原因となる単結晶
酸化物磁性体が配置されないようにするため、図6では
金属磁性薄膜が形成されない磁気コア半体の巻線部の単
結晶酸化物磁性体2bが巻線溝加工によって除去されて
おり、図7では金属磁性薄膜が形成されない磁気コア半
体が多結晶酸化物磁性体2aのみで構成されている。
FIGS. 6 and 7 show an example in which a metal magnetic thin film is formed only on one magnetic core half body. In this case, a single magnetic core half body causes sliding noise on the winding portion of the other magnetic core half body. In order to prevent the crystalline oxide magnetic body from being arranged, the single crystalline oxide magnetic body 2b in the winding portion of the magnetic core half body in which the metal magnetic thin film is not formed is removed by winding groove processing in FIG. In No. 7, the magnetic core half body in which the metal magnetic thin film is not formed is composed only of the polycrystalline oxide magnetic body 2a.

【0032】図8は、酸化物磁性体2a、2bと金属磁
性薄膜1の境界面がギャップ突き合わせ面に対して傾い
た、所謂傾斜型MIGヘッドに本発明を適用した例であ
る。
FIG. 8 shows an example in which the present invention is applied to a so-called tilted MIG head in which the boundary surface between the oxide magnetic bodies 2a and 2b and the metal magnetic thin film 1 is tilted with respect to the gap abutting surface.

【0033】[0033]

【発明の効果】本発明による磁気ヘッドは、MIG構造
であるため高密度磁気記録に適し、金属磁性薄膜の成膜
下地は単結晶酸化物磁性体で構成されるため疑似ギャッ
プが発生しにくく、巻線が施される部分近傍の酸化物磁
性体が多結晶体のみで構成されるため摺動ノイズが発生
しにくく、多結晶と単結晶の酸化物磁性体基板を各1枚
接合しただけの複合基板を用いて製造できるので量産性
にも優れる。
The magnetic head according to the present invention is suitable for high-density magnetic recording because it has an MIG structure. Since the metal magnetic thin film deposition base is made of a single-crystal oxide magnetic material, a pseudo gap hardly occurs. Since the oxide magnetic material in the vicinity of the portion where the winding is applied is composed of only a polycrystalline material, sliding noise is less likely to occur, and it is only necessary to join one polycrystalline and single crystalline oxide magnetic material substrate. Since it can be manufactured using a composite substrate, it has excellent mass productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明第1実施例磁気ヘッドの外観斜視図であ
る。
FIG. 1 is an external perspective view of a magnetic head according to a first embodiment of the present invention.

【図2】本発明第1実施例磁気ヘッドの(a)記録媒体
対向面平面図、及び(b)磁路構成面断面図である。
FIG. 2A is a plan view of a surface facing a recording medium, and FIG. 2B is a sectional view of a magnetic path constituting surface of a magnetic head according to a first embodiment of the present invention.

【図3】本発明第1実施例磁気ヘッドの製造工程説明図
(前半)である。
FIG. 3 is an explanatory diagram (first half) of a manufacturing process of the magnetic head according to the first embodiment of the present invention.

【図4】本発明第1実施例磁気ヘッドの製造工程説明図
(後半)である。
FIG. 4 is an explanatory diagram (second half) of the manufacturing process of the magnetic head according to the first embodiment of the present invention.

【図5】本発明第2実施例磁気ヘッドの(a)記録媒体
対向面平面図、及び(b)磁路構成面断面図である。
5A is a plan view of a surface facing a recording medium, and FIG. 5B is a sectional view of a magnetic path constituting surface of a magnetic head according to a second embodiment of the present invention.

【図6】本発明第3実施例磁気ヘッドの(a)記録媒体
対向面平面図、及び(b)磁路構成面断面図である。
FIG. 6A is a plan view of a surface facing a recording medium and FIG. 6B is a sectional view of a magnetic path constituting surface of a magnetic head according to a third embodiment of the present invention.

【図7】本発明第4実施例磁気ヘッドの(a)記録媒体
対向面平面図、及び(b)磁路構成面断面図である。
FIG. 7A is a plan view of a recording medium facing surface of a magnetic head according to a fourth embodiment of the present invention, and FIG. 7B is a sectional view of a magnetic path constituting surface.

【図8】本発明第5実施例磁気ヘッドの(a)記録媒体
対向面平面図、及び(b)磁路構成面断面図である。
FIG. 8A is a plan view of a recording medium facing surface of a magnetic head according to a fifth embodiment of the present invention, and FIG.

【図9】第1従来例磁気ヘッドの外観斜視図である。FIG. 9 is an external perspective view of a first conventional magnetic head.

【図10】従来例磁気ヘッドにおける疑似ギャップ問題
を説明するための周波数特性曲線図である。
FIG. 10 is a frequency characteristic curve diagram for explaining a pseudo gap problem in a conventional magnetic head.

【図11】第2従来例磁気ヘッドの外観斜視図である。FIG. 11 is an external perspective view of a second conventional magnetic head.

【図12】比較例磁気ヘッドの(a)記録媒体対向面平
面図、及び(b)磁路構成面断面図である。
12A is a plan view of a recording medium facing surface of a comparative magnetic head, and FIG. 12B is a cross-sectional view of a magnetic path forming surface.

【符号の説明】[Explanation of symbols]

1 金属磁性薄膜 2 酸化物磁性体 2a 多結晶酸化物磁性体 2b 単結晶酸化物磁性体 3 磁気ギャップ用非磁性体 4 接合補強用ガラス 5 巻線 1 Metal Magnetic Thin Film 2 Oxide Magnetic Material 2a Polycrystalline Oxide Magnetic Material 2b Single Crystal Oxide Magnetic Material 3 Non-Magnetic Material for Magnetic Gap 4 Glass for Joining Reinforcement 5 Winding

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 酸化物磁性体からなる一対の磁気コア半
体の内、少なくとも一方の磁気コア半体のギャップ形成
面側に金属磁性薄膜が形成され、該金属磁性薄膜と他方
の磁気コア半体とが磁気ギャップとなる非磁性体を介し
て突き合わされて環状磁気コアが形成され、該環状磁気
コアの記録媒体対向面に略平行な面に沿って巻線が施さ
れる磁気ヘッドにおいて、前記金属磁性薄膜が形成され
る磁気コア半体の前記巻線が施される部分近傍の酸化物
磁性体は多結晶体のみで構成され、該磁気コア半体の前
記巻線が施される部分近傍以外の酸化物磁性体は、多結
晶体のギャップ形成面側に単結晶体が接合された構造を
有することを特徴とする磁気ヘッド。
1. A metal magnetic thin film is formed on a gap forming surface side of at least one magnetic core half of a pair of magnetic core halves made of an oxide magnetic material, and the metal magnetic thin film and the other magnetic core half are formed. A magnetic head in which an annular magnetic core is formed by being abutted against a body via a non-magnetic body that serves as a magnetic gap, and a winding is applied along a plane substantially parallel to the recording medium facing surface of the annular magnetic core, A portion of the magnetic core half on which the metal magnetic thin film is formed, in the vicinity of the portion on which the winding is applied, is made of only a polycrystalline material, and a portion of the magnetic core half on which the winding is applied. A magnetic head characterized in that the oxide magnetic material other than the vicinity has a structure in which a single crystal body is joined to a gap forming surface side of a polycrystalline body.
JP26370492A 1992-10-01 1992-10-01 Magnetic head Pending JPH06111230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26370492A JPH06111230A (en) 1992-10-01 1992-10-01 Magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26370492A JPH06111230A (en) 1992-10-01 1992-10-01 Magnetic head

Publications (1)

Publication Number Publication Date
JPH06111230A true JPH06111230A (en) 1994-04-22

Family

ID=17393168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26370492A Pending JPH06111230A (en) 1992-10-01 1992-10-01 Magnetic head

Country Status (1)

Country Link
JP (1) JPH06111230A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5875081A (en) * 1994-09-21 1999-02-23 Sony Corporation Magnetic head

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5875081A (en) * 1994-09-21 1999-02-23 Sony Corporation Magnetic head

Similar Documents

Publication Publication Date Title
JPS58155513A (en) Composite magnetic head and its manufacture
JPH06111230A (en) Magnetic head
JPS60231903A (en) Composite type magnetic head and its production
JP2933638B2 (en) Manufacturing method of magnetic head
JP2954784B2 (en) Magnetic head and method of manufacturing the same
JP2810820B2 (en) Magnetic head and method of manufacturing magnetic head
JPH05282619A (en) Magnetic head
JPH0580724B2 (en)
JPH0676226A (en) Magnetic head and its production
JPH0673165B2 (en) Method of manufacturing magnetic head
JPS6238514A (en) Magnetic head
JPH02139705A (en) Production of magnetic head
JPS62125509A (en) Magnetic head
JPS62139110A (en) Manufacture of magnetic head
JPS63164010A (en) Manufacture of magnetic head
JPH07225907A (en) Production of magnetic head
JPH05197916A (en) Magnetic head
JPH06203323A (en) Magnetic head and its production
JPH02132610A (en) Magnetic head
JPH11213319A (en) Manufacture of magnetic head
JP2000149213A (en) Manufacture of magnetic head
JPH05101326A (en) Magnetic head and production thereof
JPH0448416A (en) Magnetic head
JPH07192216A (en) Magnetic head and its production
JPH05325129A (en) Magnetic head